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Introduction

Suicide is a serious public health problem. Globally, more 
than 700 000 people die by suicide each year.1 Older adults 
are at a higher risk of suicide than other age groups,2 and 
suicide rates among older adults are steadily increasing.3 
Late-life depression (LLD) is an important risk factor for 
suicide, and a significant proportion of older adults who die 
from suicide have previously experienced depression.2 Sui-
cidal behaviour among older adults is different from that 
observed earlier in the lifespan. Compared with younger 
people, suicidal ideation (SI) in LLD often involves a more 
definite suicide plan, and suicide attempts among older 

adults are more highly lethal.4 Suicidal ideation is the first 
stage of the suicide continuum, has a high risk of progres-
sion to suicide attempt, and is a predictor of complex sui-
cidal behaviour.5 However, older adults are less likely to 
openly acknowledge SI,6 which hampers early identifica-
tion. Therefore, the search for more objective biomarkers to 
detect SI, in addition to clinical assessment, will be condu-
cive to early identification and effective avoidance of sui-
cide attempts and death. Moreover, biomarkers may reveal 
the pathological mechanisms of suicide and facilitate the 
development of effective interventions.7

Previous studies have demonstrated triple-network dys-
functions in LLD.8,9 These networks include the executive 
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Background: Patients with late-life depression (LLD) with suicidal ideation (SI) often have more explicit suicide plans, and suicide at-
tempts among older adults are more highly lethal than in other age groups. Increasing evidence suggests that people with SI in depres-
sion exhibit abnormal brain network connectivity; however, the relationship between suicidal ideation in LLD and brain network dynamics 
is still unclear. Methods: We recruited patients with LLD and SI (LLD-SI), patients with LLD without SI (LLD-NSI), and age-matched 
healthy older adults. We collected 64-channel resting state electroencephalography (EEG) recordings of all participants and used micro-
state analysis to explore large-scale brain network dynamics. Results: We included 33 patients with LLD-SI, 29 patients with LLD-NSI, 
and 31 controls. We observed abnormal microstate parameters in the LLD-SI group, characterized by higher duration (p = 0.04), occur-
rence (p = 0.009), and contribution (p = 0.001) of microstate C (reflecting activity of the salience network), compared with the LLD-NSI 
group, as well as higher occurrence (p = 0.03) and contribution (p = 0.009) of microstate C compared with the control group. Further-
more, transition probabilities from microstate class A to D (r = –0.466, p = 0.04) and class D to A (r = –0.506, p = 0.02) (involving coup
ling and sequential activation of auditory and executive control network) were negatively correlated with completion time of Stroop Colour 
and Word Test Part C (a neuropsychological test of executive function) in the LLD-SI group. Limitations: The sample size was relatively 
small, the cross-sectional nature of this study prohibited exploring the causal relationship between abnormal microstate dynamics and 
suicidal ideation, and we did not include medication-naive patients with first-episode LLD. Conclusion: The study reveals altered micro-
state dynamics among patients with LLD-SI, compared with patients with LLD-NSI and controls. Our findings suggest that microstate 
dynamics could serve as potential neurobiomarkers for identifying SI in LLD.
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control network (ECN), responsible for exerting goal-
directed behaviours and regulating emotions;8 the default 
mode network (DMN), involved in ruminative, negative 
self-referential processes;10 and the salience network (SN), 
which serves as a hub in mediating dynamics interaction 
between the ECN and DMN to generate appropriate be-
havioural responses to salient stimuli.11 Several studies 
have also documented that abnormal connectivity within 
or between these large-scale brain networks may contrib-
ute to suicidal ideation.12–15 However, this evidence mostly 
comes from functional magnetic resonance imaging (fMRI) 
studies, which lacks the temporal resolution needed to 
track the dynamics of brain activities.

Resting-state electroencephalography (EEG) has a high 
temporal resolution, which can provide complementary in-
formation about neural dynamics, and EEG microstate 
analysis is a powerful approach for capturing the dynam
ically changing large-scale brain networks in subsecond 
scales.16 At resting state, the spontaneous activity of the 
brain can be characterized as a series of quasi-stable scalp 
potential topographies that switch between each other in 
an organized manner.17 Using this approach, 4  microstate 
classes  — A, B, C, and D — have been widely identified; 
these correspond to the auditory network, the visual net-
work, the SN, and the ECN, respectively.16,18–20 A previous 
study has also suggested that microstate C is associated 
with the self-referential subnetwork of the DMN.21 In re-
cent years, microstate analysis has become increasingly 
popular in the research of psychiatric disorders. In a previ-
ous study, Lao and colleagues22 used EEG microstate 
analysis to investigate the difference in brain resting-state 
network dynamics between episodic and remitted LLD. We 
sought to expand on this research by investigating the 
dynamics of large-scale brain networks in LLD with SI 
(LLD-SI) using EEG microstate analysis. We hypothesized 
that, given their correlation with the ECN, DMN, and SN, 
we would observe altered patterns involving microstates C 
and D among patients with LLD-SI, compared with those 
with LLD without SI (LLD-NSI) and controls.

Methods

Participants

We recruited all participants from the Affiliated Brain Hospi-
tal of Guangzhou Medical University and Guangzhou com-
munity screening centres. All participants received free clin
ical examinations, and the results for hospitalized patients 
were provided to their bedside physicians to assist in their 
diagnosis and treatment.

For the LLD groups, we included patients aged 60–
85  years who met the Diagnostic and Statistical Manual of 
Mental Disorders, Fourth Edition (DSM-IV) criteria for single 
or current major depressive disorder with current major 
depressive episodes, diagnosed by at least 2  proficient 
psychiatrists. The severity of depressive symptoms was as-
sessed using the Hamilton Rating Scale for Depression 
(HAMD), with a cut-off value of 17 used to classify patients 

with current major depressive episodes. Patients were re-
quired to be right-handed and have normal or corrected-to-
normal visual and auditory senses. We included controls if 
they demonstrated normal cognition and had no history of 
depressive episodes. We excluded patients with LLD and 
controls with any other DSM-IV Axis I disorders (e.g., 
severe or unstable mental conditions), a lifetime history of 
neurologic disorders (e.g., stroke, delirium, Parkinson dis-
ease, brain tumours), other conditions that could cause de-
pression (e.g., hypothyroidism, drug use), a current history 
of alcohol use to alcohol dependence, or a history of head 
injury with loss of consciousness exceeding 30 minutes.

We subsequently divided patients with LLD into LLD-SI 
and LLD-NSI groups based on whether they had current SI 
as assessed by item 3 of the 17-item HAMD.23 The threshold 
for SI was a score of 2 or higher on item 3 (“wishes to be dead 
or has any thoughts of possible death to self”) of the 
HAMD.24 Current SI was defined as having had suicidal 
thoughts in the past week. 

Demographic and clinical assessments

We collected demographic information for all partici-
pants, including age, sex, education, medical history, and 
current medication. Before the EEG recording, all partici-
pants underwent a comprehensive assessment by 
2 trained psychiatrists. 

Neuropsychological assessments

We used the Mini-Mental State Examination (MMSE) to as-
sess global cognitive function. We determined cut-off 
scores for categorizing normal cognition among controls 
using MMSE scores adjusted according to Chinese norms 
for participants’ education levels (17 for those without for-
mal education, 20 for those who receive elementary educa-
tion, and 24 for those with middle school or higher educa-
tion).25 Subsequently, a neuropsychologist administered a 
series of neuropsychological tests to evaluate 5 distinct cog-
nitive domains. Memory capabilities were assessed by the 
Auditory Verbal Learning Test, which measures the ability 
to learn and recall a list of words over multiple trials. Infor-
mation processing speed was evaluated using the Symbol 
Digit Modalities Test, in which participants were required 
to match symbols with corresponding numbers as quickly 
as possible. Scores on this test are determined by the num-
ber of symbols recorded accurately within 90 seconds. The 
evaluation of executive function was conducted using the 
Stroop Colour and Word Test Part C (Stroop C), in which 
participants named the colour of the ink in which words 
were printed, regardless of the meaning of the words. Lan-
guage skills were evaluated through the Boston Naming 
Test, where participants were required to identify pictures 
of several objects based on verbal descriptions. The assess-
ment of visuospatial skills was conducted using the Rey–
Osterrieth Complex Figure Test. This test comprises the 
tasks of copying, memorizing, and reproducing a complex 
geometric figure.
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Electroencephalography data acquisition and processing

All participants were prohibited from consuming alcohol, 
sleep medication, caffeine, and nicotine within 24 hours be-
fore the examination. We collected all EEG data in the 
morning to control circadian rhythm effects. To ensure optimal 
electrode placement and EEG data collection, we instructed 
participants to wash their hair upon arrival at the laboratory. 
The recording environment was a sound-attenuated, shielded 
room maintained at constant light and temperature levels. A 
5-minute resting-state EEG was recorded under eyes-closed 
conditions using the Electrical Geodesics 64-channel system at 
a sampling rate of 1000 Hz, using the midline central (Cz) elec-
trode as the online reference. All electrode impedance re-
mained below 50 kΩ throughout the EEG recording.

We conducted offline preprocessing of the EEG data 
using the EEGLAB version 14.1.1 toolbox in MATLAB 
R2016b. The data were filtered with a bandpass of 0.1–70 Hz 
and a notch of 48–52 Hz. We performed segmentation into 
2-second epochs and interpolated noisy electrodes using 
spherical spline interpolation. We removed artifacts such as 
eye movements, blinks, or muscle activity using independ
ent component analysis in EEGLAB. Finally, we excluded 
data with excessive artifact contamination (exceeding 
± 100 mV) before averaging.

Microstate analysis

We performed EEG microstate analysis using the Microstate 
0.3 plug-in in EEGLAB (http://sccn.ucsd.edu/wiki/
EEGLAB_Extensions_and_plug-ins). Initially, EEG data were 
re-referenced to an average reference, filtered with a bandpass 
of 1–40 Hz.26 We computed the global field power for each 
time point, representing the variance of potential across all 
electrodes at a certain instance. We conducted the EEG micro-
state analysis by calculating peaks of the global field power, as 
these topographies have the highest signal-to-noise ratio and 
stability. Next, all maps marked as peaks of global field power 
were extracted and submitted to a k-means clustering algo-
rithm.16 The number of desired microstates was set to k value 
of 4 for better comparability with well-established studies.27 
During microstate clustering, polarity can be ignored.17 We cal-
culated mean values of the EEG microstate group for each 
group by sorting individual EEG microstates first and then 
finding the common topology for all participants. We then fit-
ted individual EEG sets using group mean topographies. 
Finally, we extracted characteristics of EEG microstates from 
each participant, including duration (the mean duration of 
each given microstate class present in milliseconds), occur-
rence (the mean number of times a microstate class occurs per 
second), contribution (the percentage of total occupied time for 
a given microstate class), and transition probability (the prob
ability of mutual transition between microstate class).

Statistical analysis

We used SPSS 26.0 for statistical analyses. The significance 
level was set at 0.05, and all statistical tests were 2-tailed.

For demographic characteristics and clinical and neuro
psychological scores, we evaluated group differences using 
1-way analysis of variance to compare continuous variables 
and the χ2 test to compare categorical variables.

We conducted a repeated-measures analysis of covari-
ance (ANCOVA) to assess differences in microstate dynam-
ics across groups, with microstate classes (A–D) as a 
within-subject factor; group (LLD-SI, LLD-NSI, control) as a 
between-subject factor; and age, sex, and antipsychotic use 
as controlling factors. We performed a post hoc univariate 
ANCOVA if the interaction effect between microstate class 
and group was significant. We also applied repeated-
measures ANCOVA for each transition probability, with 
transition probabilities between each microstate class (A–D) 
as a within-subject factor and group as a between-subject 
factor, using the same covariates mentioned above. We used 
the Bonferroni correction for multiple comparisons.

We used Pearson correlation analysis to explore the rela-
tionship between significantly different microstate param
eters, HAMD scores, and neuropsychological tests, corrected 
with the false discovery rate.

Ethics approval

The study was approved by the Ethics Committees of the 
Affiliated Brain Hospital of Guangzhou Medical University 
(no. 2014, 078). 

Results

Demographic and clinical characteristics

A total of 93  people participated in our study, including 
62 patients with LLD (33 patients with LLD-SI, 29 patients 
with LLD-NSI) and 31  controls. Table  1 shows the demo-
graphic and clinical characteristics. No significant group dif-
ferences were found in age, sex, years of education, and 
smoking status. Moreover, we did not observe any difference 
in medications used between the LLD-SI and LLD-NSI 
groups. For clinical measures, both LLD groups exhibited 
worse HAMD scores than the control group, but there was 
no significant difference in HAMD scores between the LLD-
SI and LLD-NSI groups. Both the LLD-SI and LLD-NSI 
groups exhibited worse cognitive performance than the con-
trol group. However, no significant differences in any assess-
ment were found between the LLD-NS and LLD-S groups.

Microstate analysis

Figure 1 shows the topographical maps of the 4 microstate 
classes for patients with LLD and for controls.

Repeated-measures ANCOVA showed significant micro-
state class by group interactions for mean duration (F = 2.868, 
p  =  0.01, η2  =  0.091), occurrence (F  =  2.763, p  =  0.01, 
η2 = 0.086), and contribution (F = 3.063, p = 0.007, η2 = 0.096).

Post hoc tests revealed that the LLD-SI group exhibited sig-
nificantly higher duration (p = 0.04), occurrence (p = 0.009) 
and contribution (p  =  0.001) values in microstate class  C, 
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compared with the LLD-NSI group. In addition, the LLD-SI 
group showed significantly higher occurrence (p = 0.027) and 
contribution (p = 0.009) values in microstate class C than con-
trols. Details are provided in Figure 2.

Repeated-measures ANCOVA also showed significant 
transition probability by group interactions (F  =  2.045, 
p = 0.006, η2 = 0.224). Compared with the control group, the 
LLD-SI group exhibited significantly higher transition prob
abilities from class C to D (p = 0.03) and from class D to C 
(p = 0.047), while transition probabilities A to D (p = 0.008) 
and D to A (p = 0.01) were significantly lower. In addition, the 
LLD-NSI group had significantly higher transition probabil
ities from class B to D than both the LLD-SI group (p = 0.02) 
and the control group (p = 0.03). The transition probabilities 
from class D to B were also significantly higher in the LLD-
NSI group than in both the LLD-SI group (p = 0.03) and the 
control group (p = 0.03). Details are provided in Figure 3 and 

Appendix  1, Table S1, available at www.jpn.ca/lookup/
doi/10.1503/jpn.240115/tab-related-content.

The relationship between EEG microstate parameters and 
neuropsychological characteristics in LLD-SI

Pearson correlation analysis revealed that the completion 
time of Stroop  C was negatively correlated with transition 
probabilities from microstate class  A to D (r  =  –0.466, 
p  =  0.04) and from microstate class  D to A (r  =  –0.506, 
p = 0.02) in the LLD-SI group (Figure 4). There were no other 
significant correlations between EEG microstate parameters 
and cognitive or depression scores in the LLD-SI group 
(corrected p > 0.05), nor were there significant associations 
between EEG microstate parameters and cognitive or depres-
sion scores in the LLD-NSI or control groups (corrected 
p > 0.05).

Table 1: Demographic and clinical characteristics of participants

Characteristic

No. (%) of participants*

F or χ2† p value Post hoc test

Patients with 
LLD-SI
n = 33

Patients with 
LLD-NSI
n = 29

Controls
n = 31

Demographic

Age, yr, mean ± SD 67.36 ± 4.50 68.03 ± 6.06 69.84 ± 4.47 2.045 0.1

Sex, male/female 1.125 0.6

   Male 9 (27.3) 9 (31.0) 6 (19.4)

   Female 24 (72.7) 20 (69.0) 25 (80.6)

Years of education, mean ± SD 9.27 ± 2.54 9.14 ± 2.55 10.29 ± 3.05 10.165 1.6

Smoking history, yes/no 0.304 0.8

   Yes 3 (9.1) 3 (10.3) 2 (6.4)

   No 30 (90.9) 26 (89.6) 29 (93.5)

Assessments

HAMD-17, mean ± SD 22.97 (3.11) 21.62 (2.37) 2.83 (2.42) 552.806  < 0.001 LLD-SI and LLD-NSI > Control

MMSE, mean ± SD 19.91 (3.96) 20.38 (3.99) 26.26 (1.46) 34.690  < 0.001 LLD-SI and LLD-NSI < Control

AVLT short-term delayed recall, mean ± SD 2.45 (1.84) 2.86 (2.15) 6.71 (2.31) 38.891  < 0.001 LLD-SI and LLD-NSI < Control

SDMT, s, mean ± SD 17.94 (10.48) 19.66 (9.24) 35.32 (6.91) 35.087  < 0.001 LLD-SI and LLD-NSI < Control

Stroop C, s, mean ± SD 112.67 (35.12) 114.34 (22.92) 79.51 (14.69) 17.696  < 0.001 LLD-SI and LLD-NSI > Control

BNT, mean ± SD 16.52 (4.34) 18.28 (3.84) 23.65 (1.68) 35.481  < 0.001 LLD-SI and LLD-NSI < Control

ROCF, mean ± SD 18.33 (5.47) 19.19 (9.97) 27.47 (4.48) 16.439  < 0.001 LLD-SI and LLD-NSI < Control

Medications

Unmedicated 15 (45.4) 18 (62.1) 1.711 0.2

SSRI 7 (21.2) 6 (20.7) 0.003 1.0

SNRI 7 (21.2) 4 (13.8) 0.582 0.4

NASSA 8 (24.2) 3 (10.3) 2.043 0.2

Antipsychotic 11 (33.3) 4 (13.8) 3.213 0.07

Buspirone or tandospirone 2 (6.1) 1 (3.4) 0.000 1.000

BZD 13 (39.4) 10 (34.5) 0.160 0.7

AVLT = Auditory Verbal Learning Test, BNT = Boston Naming Test, BZD = benzodiazepine, HAMD = Hamilton Rating Scale for Depression, LLD-NSI = late-life depression without 
suicidal ideation, LLD-SI = late-life depression with suicidal ideation, MMSE = Mini-Mental State Examination, NASSA = noradrenergic and specific serotonergic antidepressant, ROCF = 
Rey–Osterrieth Complex Figure, SD = standard deviation, SDMT = Symbol Digit Modalities Test, SNRI = serotonin–norepinephrine reuptake inhibitor, SSRI = selective serotonin 
reuptake inhibitor, Stroop = Stroop Colour and Word Test.
*Unless indicated otherwise.
†Continuous variables compared with analysis of variance; categorical variables compared with χ2 test.
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Discussion

We used resting-state EEG microstate analysis to explore the 
alternations in large-scale brain network dynamics in LLD-SI, 
which revealed abnormal dynamic activity of global brain 
resting-state networks, particularly involving microstate C in 
LLD-SI. This included a significantly higher duration than  in 
the LLD-NSI group and significantly higher occurrence and 
contribution than in the LLD-NSI and control groups.

In previous studies, researchers have found that patients 
with depression exhibit higher microstate C parameters than 
healthy controls.28,29 Interestingly, in the present study, pa-
tients with LLD-SI showed abnormalities in microstate  C 
parameters compared with those with LLD-NSI even when 
depression severity was similar. Microstate  C reflects the 
neural activity in the SN and activation of the anterior cingu-
late cortex and insula.16 The heightened temporal dynamics 
of microstate C have been linked to SN dysfunctions,20,30 and 
brain regions within the SN are associated with suicidality.31 
Previous studies have suggested that the insula may serve as 
a neurostructure for the development of suicide in LLD.32 
Moreover, task-based imaging has shown that patients with 

depression who had attempted suicide exhibited reduced 
connectivity between the dorsal anterior cingulate cortex and 
the insula during emotion-processing tasks.33 Patients with 
depression with reduced coherence in the SN are more likely 
to engage in suicidal ideation.34 Furthermore, the increased 
contribution of microstate C could reflect higher occipital α 
power,35 which has been found in patients with SI or a his-
tory of suicide attempts.36 Our findings indicate that the 
underlying abnormalities involved in the SN, reflected by 
increased microstate class  C parameters, could potentially 
serve as neurobiomarkers for SI in LLD. 

However, in another study, He and colleagues37 used 
microstate analysis to investigate abnormal brain network 
dynamics among adolescents with major depressive dis
order (MDD) and SI. They found that significantly lower oc-
currence and contribution of microstate  B among patients 
with SI than those without SI,37 which contrasts with the in-
creased parameters in microstate class C found in our cur-
rent research. Several reasons may contribute to this differ-
ence. As mentioned in a previous meta-analysis, LLD and 
MDD in younger age groups have differences in the visual 
network since LLD uniquely affects this brain network.38 

Figure 1: The topographical maps of the 4 microstate classes (A–D) among patients with late-life depression with suicidal ideation (LLD-SI), 
patients with late-life depression without suicidal ideation (LLD-NSI), and controls. Red and blue indicate positive and negative values, 
respectively. In the current microstate analysis, the polarity of the maps was not considered during the clustering procedure.
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LLD-NSI

Class A Class B Class C Class D

Control
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Figure 2: Microstate parameters of (A) duration, (B) occurrence, and (C) contribution among patients with late-life depression with suicidal 
ideation (LLD-SI), patients with late-life depression without suicidal ideation (LLD-NSI), and controls. The LLD-SI group exhibited significantly 
higher duration (p = 0.04), occurrence (p = 0.009), and contribution (p = 0.001) values in microstate class C than the LLD-NSI group, and sig-
nificantly higher occurrence (p = 0.027) and contribution (p = 0.009) values in microstate class C than controls. *p < 0.05, **p < 0.01.
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Furthermore, a series of studies have shown that the param-
eters of microstate C were correlated with aging, cognitive 
decline, and Alzheimer disease pathology.39–41 Cognitive de-
cline is a vital risk factor for late-life suicide,42 and LLD is 
considered prodromal to dementia.43 This evidence could 
explain why we did not observe abnormalities in micro-
state B, but found increased duration, occurrence, and con-
tribution in microstate class  C. The unique alterations in 
microstate  C parameters may serve as a distinctive bio-
marker for diagnosing SI in LLD. 

In the previous study conducted by Lao and colleagues,22 
higher parameters of microstate  D were primarily found 
among patients with episodic LLD compared with those 
with remitted LLD and controls, and these parameters were 
positively correlated with depressive severity. However, 
they did not observe increased parameters of microstate C 
in the episodic LLD group. In contrast, all patients with 
LLD in the present study were in depressive episodes, and 
there was no significant difference in depressive severity 
between the LLD-SI and LLD-NSI groups. In addition, our 

Figure 3: Transition probability analysis. As indicated with red arrows, patients with late-life depression without suicidal ideation (LLD-NSI) had 
significantly higher transition probabilities between microstate class B to D than those with late-life depression with suicidal ideation (LLD-SI) 
(p = 0.02) and the control group (p = 0.03). Yellow arrows indicate significantly higher transition probabilities between microstate class C and 
D in the LLD-SI group, and blue arrows indicate significantly lower transition probabilities between microstate class A and D in the LLD-SI 
group, compared with the control group.
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Figure 4: Correlation between completion time on Stroop Colour and Word Test Part C and transition probabilities from (A) microstate class A 
to class D (r = –0.4656, p = 0.04) and (B) from microstate class D to class A (r = – 0.5057, p = 0.02) among patients with late-life depression 
with suicidal ideation.
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results showed no difference in parameters of microstate C 
between LLD-NSI and controls. These findings suggested 
that the observed increase in parameters of microstate  C 
may be more specific to SI rather than a general aspect of 
depression in LLD.

In our transition probability analysis, we observed specific 
interaction modes between different large-scale brain networks 
among patients with LLD-SI, including increased transition 
probabilities between microstates C and D (C to D and D to C), 
as well as decreased transition probabilities between A and D 
(A to D and D to A), compared with controls. Moreover, transi-
tion probabilities between microstate B and D (B to D and D to 
B) were significantly higher among patients with LLD-NSI than 
among both patients with LLD-SI and controls. These findings 
indicated that patients with LLD-SI exhibited disrupted 
sequence of large-scale brain networks.

A particularly notable result is that the heightened transi-
tion probability between microstates C and D, which repre-
sents enhanced interaction between the SN and ECN in 
LLD-SI. This result was aligned with a previous MRI study, 
which found enhanced functional connectivity between the 
SN and ECN among adolescents with depression who had 
attempted suicide compared with those who had not made 
such attempts.13 In previous studies, an increased transition 
to microstate  C could also represent resting-state network 
disconnection, notably failure of the SN to initiate normal 
switching between ECN-based goal-directed and DMN-
controlled self-referential processes.20,44,45 The enhanced 
interaction between the SN and ECN could be driving ab-
normal switching between the ECN and DMN, contributing 
to overall depressive severity and increasing vulnerability 
to suicide behaviours in depression.9

In addition, we observed that the interaction between the 
ECN and the visual network was significantly higher in the 
LLD-NSI group than in the LLD-SI and control groups, as 
reflected by increased transition probabilities between 
microstates  B and D. The enhanced large-scale brain net-
work activity may act as protective factors for the formation 
of SI in LLD. The ECN plays a critical role in cognitive con-
trol. Impairments in this network can cause difficulties in 
regulating emotions, which may contribute to suicidal be-
haviours.46 The dorsolateral prefrontal cortex (DLPFC) is 
the key hub of the ECN; it can interact with a variety of net-
works throughout the brain and plays a compensatory role 
in inhibiting abnormalities that cause depressive symp-
toms.44,47 In previous research, Lin and colleagues48 used 
seed-based functional connectivity analysis base of fMRI 
data, which found reduced DLPFC functional connectivity 
in the LLD-SI group. In a recent functional near-infrared 
spectroscopy study, researchers found hyperactivation of 
the DLPFC among patients with depression without SI 
compared with both the SI group and healthy controls.49 
Overall, the enhanced microstate parameter in our current 
research may represent a compensatory recruitment of re-
sources for the ECN in LLD.

In our research, both LLD groups exhibited worse execu-
tive function (higher completion time of Stroop C) than the 
control group. Moreover, the transition probabilities between 

microstates class  A and D were both negatively correlated 
with completion time of Stroop C in LLD-SI. Decreased tran-
sition probabilities between microstates A and D in LLD-SI 
may be related to executive dysfunction. This finding seems 
to align with a previous study that found abnormal inter
actions between microstates A and D among older adults at 
different stages of cognitive impairment.41 According to the 
resting-state functional networks corresponding to these 
microstates, the interaction between the auditory network and 
ECN may be impaired. The ECN is involved in modulating 
the operation of other cognitive and emotional systems to en-
able the individual to support goal-directed behaviours. 
Moreover, the intrinsic and extrinsic connectivity of the ECN 
is likely to deteriorate in aging,50 which contributes to both the 
cognitive and affective symptoms of LLD. Late-life depression 
is always accompanied by cognitive impairments,4 such as 
executive dysfunction (including impaired cognitive inhibi-
tion51 and cognitive flexibility)42 and impaired cognitive con-
trol.52 Cognitive impairment may also serve as risk factor for 
suicidal behaviour in LLD.53

Limitations

Our sample size was relatively small. Our study was cross-
sectional, meaning that the causal relationship between ab-
normal microstate dynamics and suicidal ideation remains 
unclear. Prospective longitudinal studies or advanced neuro-
modulation protocols are necessary to explore this causal re-
lationship. We did not include medication-naive patients 
with first-episode LLD; the pharmacologic effect of anti
depressants may influence brain network dynamics. How-
ever, there were no significant differences in medication use 
between the LLD-SI and LLD-NSI groups, so the potential 
confounding effect of medication should be minimal. This 
study focused solely on SI in LLD. Further exploration 
should include both people with SI and those who have at-
tempted suicide to investigate the full continuum of suicidal 
behaviour, from ideation to action, to achieve a comprehen-
sive understanding of this complex phenomenon.

Conclusion

In our research, we revealed distinct patterns in microstate 
dynamics among patients with LLD-SI, in comparison with 
patients with LLD-SI and controls, primarily involving 
microstate C. Furthermore, we observed reduced transition 
probabilities between microstate class A and D, which may 
represent executive dysfunction in LLD-SI. The present study 
sheds light on the neural underpinnings of SI in LLD, sug-
gesting that microstate dynamics might serve as a possible 
neurobiomarker for identifying SI in LLD.
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