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Background: Abnormal chromosome segregation is identified to be a common hallmark
of cancer. However, the specific predictive value of it in lung adenocarcinoma (LUAD) is
unclear.

Method: The RNA sequencing and the clinical data of LUAD were acquired from The
Cancer Genome Atlas (TACG) database, and the prognosis-related genes were identified.
The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were
carried out for functional enrichment analysis of the prognosis genes. The independent
prognosis signature was determined to construct the nomogram Cox model.
Unsupervised clustering analysis was performed to identify the distinguishing clusters
in LUAD-samples based on the expression of chromosome segregation regulators
(CSRs). The differentially expressed genes (DEGs) and the enriched biological
processes and pathways between different clusters were identified. The immune
environment estimation, including immune cell infiltration, HLA family genes, immune
checkpoint genes, and tumor immune dysfunction and exclusion (TIDE), was assessed
between the clusters. The potential small-molecular chemotherapeutics for the individual
treatments were predicted via the connectivity map (CMap) database.

Results: A total of 2,416 genes were determined as the prognosis-related genes in LUAD.
Chromosome segregation is found to be the main bioprocess enriched by the prognostic
genes. A total of 48 CSRs were found to be differentially expressed in LUAD samples and
were correlated with the poor outcome in LUAD. Nine CSRs were identified as the
independent prognostic signatures to construct the nomogram Cox model. The LUAD-
samples were divided into two distinct clusters according to the expression of the 48
CSRs. Cell cycle and chromosome segregation regulated genes were enriched in cluster
1, while metabolism regulated genes were enriched in cluster 2. Patients in cluster 2 had a
higher score of immune, stroma, and HLA family components, while those in cluster 1 had
higher scores of TIDES and immune checkpoint genes. According to the hub genes highly
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expressed in cluster 1, 74 small-molecular chemotherapeutics were predicted to be
effective for the patients at high risk.

Conclusion: Our results indicate that the CSRs were correlated with the poor prognosis
and the possible immunotherapy resistance in LUAD.

Keywords: lung adenocarcinoma, chromosome segregation regulators, prognostic signature, immune
environment, bioinformatics

INTRODUCTION

Lung cancer is a malignant tumor with the highest mortality rate
in the world (Nooreldeen and Bach, 2021). Lung adenocarcinoma
(LUAD) is now the most common histological subtype of
primary lung cancer (Travis et al., 2011; Torre et al., 2016;
Hutchinson et al., 2019), accounting for more than 40% of
cases (Hutchinson et al., 2019). Improvements in multimodal
treatment strategies (e.g., targeted therapy, radiotherapy, and
immunotherapy) have markedly increased the overall survival
(OS) of LUAD-patients in recent years (Moreira and Eng, 2014;
Jin et al., 2020), quite a few patients eventually become resistant to
these therapies, partly attributed to the malfunctioning of genes
that regulate cardinal bioprocesses (Philpott et al., 2017). Thus,
sufficient strategies are needed to predict prognosis and guide
individual treatment in LUAD. The availability of public cohorts
with RNA sequencing data and improved technology brought the
opportunity to identify a more generalized prognostic signature
for LUAD. For instance, an immune-related four-gene prognostic
signature in LUAD was identified to regulate the innate immune
response and to be a benefit for the prognosis prediction (Sun
et al., 2020). Pyroptosis-related prognostic gene signature and
metabolism-associated gene signature were also identified as a
predictor of the prognosis in LUAD-patients (He et al., 2020; Lin
et al., 2021). However, the novel biomarkers with guiding
significance for therapy of LUAD still need to be explored.

Mitotic cell division is commonly thought to involve the equal
distribution of duplicated genomes into the two daughter cells
through appropriate chromosome segregation (Neumüller and
Knoblich, 2009; Sarkar et al., 2021). Abnormal chromosome
segregation at mitosis causes the aneuploidy of the daughter
cells with an unequal distribution of chromosomes (Levine and
Holland, 2018), this is one way by which neoplastic cells
accumulate the many genetic abnormalities required for tumor
development (Gisselsson, 2008; Naylor and van Deursen, 2016;
Levine and Holland, 2018). Moreover, mitotic errors and
aneuploidization are found during tumor evolution, and the
extent of chromosomal aberrations is correlated with tumor
grade and poor prognosis (Loeper et al., 2001; M’Kacher et al.,
2010; Bakhoum et al., 2011; Levine and Holland, 2018; Ben-David
and Amon, 2020). Cells have well-conserved mechanisms to
ensure proper chromosome segregation (Tanaka and Hirota,
2009), whose dysregulation may be involved in tumorigenesis.
Therefore, chromosome missegregation is becoming a critical
hallmark of tumor biology.

In this study, we determined a chromosome segregation-
related gene prognostic signature from The Cancer Genome

Atlas (TACG) LUAD cohort. The distinct chromosome
segregation regulators (CSRs)-related clusters of LUAD-
samples were established, and the overall survival (OS) and
the immune environment estimation were assessed in the
distinct clusters. This study indicates that the CSRs were
correlated with the poor prognosis and the possible
immunotherapy resistance in LUAD, which might lay a
theoretical foundation for the individualized treatment of
LUAD-patients.

MATERIALS AND METHODS

Data Acquisition
The gene expression matrix (HTSEQ-Counts, HTSEQ-FPKM)
for LUAD was acquired from the Genomic Commons Data
Portal GDC (https://portal.gdc.cancer.gov/) of The Cancer
Genome Atlas (TCGA) database (Tomczak et al., 2015), which
contains 510 samples of patients and 58 normal samples. Clinical
survival data (n = 738) and phenotype data (n = 877) of TCGA-
LUAD matched patients were acquired from TCGA database.
Excluding patients without information of survival, a total of 497
patients were retained for the prognostic analysis. For the
nomogram model construction, 115 patients without
information of the clinical index were excluded, and a total of
382 patients were retained.

The external validation sets of the Coxmodel were constructed
using GSE3141 (n = 111) (Bild et al., 2006), GSE13213 (n = 117)
(Tomida et al., 2009), GSE31210 (n = 226) (Yamauchi et al.,
2012), GSE30219 (n = 278) (Rousseaux et al., 2013), and
GSE50081 (n = 181) (Der et al., 2014) datasets from the Gene
Expression Omnibus (GEO) database (Barrett et al., 2013). The
data was acquired by the GEOquery R package (Zhou J. et al.,
2021).

The Cox and Nomogram Model
Construction
The gene expression matrix of the 48 CSRs in the 497 LUAD
samples was used for the univariate cox regression, LASSO
regression, and multivariate cox regression analyses. The
Survival R package was used to calculate the correlation
between the expression of each gene and overall survival
(OS), and genes with a p-value < 0.05 were retained for the
following LASSO regression analysis. Glmnet and the survival
R package were used for the LASSO regression analysis to
screen the significant variables in the univariate cox regression
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analysis. In order to obtain more accurate independent
prognostic factors (prognostic characteristic genes),
multivariate cox regression analysis was used for the final
screening. The risk score was calculated as the follows: risk
score = (exp-gene1*coef-gene1) + (exp-gene n*coef-gene n).
Patients were divided into high- and low-risk groups based on
the median of risk score.

Time-dependent receiver operating characteristic (ROC)
curves were used to assess survival predictions, and the Time
ROC R package was used to calculate the area under the ROC
curve (AUC) value to measure prognosis and predict accuracy.
Survcomp R package was used for the C-index analysis. For the
nomogram analysis, the phenotype data (n = 382) was used and
the clinical indexes, including age, gender, race, TNM staging,
and stage, were brought into the nomogram analysis. The
calibration and decision curve analysis (DCA) were
performed to assess the predictive power of the
nomogram model.

The correlation of the 48 CSRs with the risk score was
determined by Spearman correlation analysis. The Wilcoxon
rank-sum test was used for the significant statistics.

Identification of CSRs Pattern in LUAD
Patients
Unsupervised clustering analysis (Testa et al., 2021) was used to
identify the distinct clusters of LUAD patients according to the
expression of 48 CSRs. R “Consensus Cluster Plus” package
(Wilkerson and Hayes, 2010) was used for the clustering analysis.

DEGs Determination and the Functional
Enrichment Analysis
The differentially expressed genes (DEGs) were calculated using
HTSEQ-FPKM of TCGA-LUAD by the Deseq 2 R package (Love
et al., 2014), and visualized by the Ggplot 2 R package. The
threshold is folded change>2 and P. adjust <0.05.

Gene Ontology (GO) (Ashburner et al., 2000) and pathway
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Ogata
et al., 1999) enrichment were performed by the ClusterProfiler
R package (Yu et al., 2012), and visualized by the Ggplot 2 R
package.

Identification of Hub Genes
The protein-protein interaction network was constructed by
STRING (https://cn.string-db.org/) (Szklarczyk et al., 2019),
and visualized by Cytoscape (v3.7.2) (Shannon et al., 2003).
The rank of each gene in the network was calculated by
CytoHubba (Chin et al., 2014). The Top 50 hub genes were
chosen for the following analysis.

TME Estimate Analysis
Stromal score, Immune score, ESTIMATE score, and Tumor purity
score were calculated based onmRNA expression matrix (Count, n =
497) by an estimate R package (Yoshihara et al., 2013). Immunization
checkpoint block (ICB) assessment was performed by calculating the
tumor immune dysfunction and exclusion (TIDE) score. This is a

kind of computing algorithm based on gene expression profiles
(http://tide.dfci.harvard.edu) (Fu et al., 2020). The difference
between HLA family and immune checkpoint genes between the
two clusters was performed based on the TPM of these genes.

The immune cell infiltration was calculated respectively by
CIBERSORT algorithm (Newman et al., 2015) and xCell
algorithm (Aran et al., 2017). The gene expression matrix
data (FPKM, n = 497) were uploaded to CIBERSORT, and
the 22 types of immune cell infiltration matrix were obtained.
The distribution of the immune cell infiltration in each sample
was shown using Ggplot 2 R package. The 38 types of cells in
xCell algorithm were obtained by immunedeconv R package
(Sturm et al., 2020).

The correlation of the 48 CSRs with immunocyte fraction was
determined by Spearman correlation analysis. The Wilcoxon
rank-sum test was used for the significant statistics.

Correlation Analysis Between CSRs
and TMB
For each tumor sample, the total number of somatic mutations
(except silent mutations) detected in the tumor is defined as the
tumor mutation burden (TMB) (Merino et al., 2020), TMB score
for each sample was calculated, and the difference between the
two clusters was performed. The correlation of the 48 CSRs with
the TMB score was determined by Spearman correlation analysis.
The Wilcoxon rank-sum test was used for the significant
statistics.

The Chemotherapeutics Forecast
The 50 hub genes were used for the chemotherapeutics forecast,
which was performed using the mode of action (moa) module of
the connectivity map (CMap, https://clue.io/command) (Gao
et al., 2019).

Statistical Analysis
The statistical analysis was calculated viaWilcoxon rank-sum test
and unpaired t-text. All statistical tests were bilateral. All
statistical tests and visualization were performed in R software
(version 4.0.2).

RESULTS

Chromatin Separation Is the Main
Bioprocess Enriched by the Prognostic
Genes in LUAD
To determine the significant genes involved in the prognosis of
patients with LUAD, the batch prognostic analysis of whole genes
in samples of TCGA-LUAD was performed. Among the 17,430
genes, a total of 2,416 genes significantly correlated with
prognosis were obtained, with a threshold of p-value < 0.05
(Supplementary Table S1). GO and KEGG were performed to
analyze the functional enrichment of these prognosis related
genes, which showed that these genes were enriched in the
biological processes of chromosome segregation, organelle
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fission, and nuclear division, the cellular components of
chromosomal region, condensed chromosome, centromeric
region, spindle, and condensed chromosome, and molecular
functions of cadherin binding, single-stranded DNA binding,
and ATP hydrolysis activity (Figure 1A, Supplementary Table
S2). Additionally, the KEGG pathways these prognostic genes
were enriched in Amyotrophic Lateral sclerosis, Parkinson’s
disease, Cell cycle, and DNA replication (Figure 1B,
Supplementary Table S3). We noticed that chromosome
segregation was the most significant bioprocess enriched by
these genes (P.adjust = 5.5350E-19). We selected 128 genes
enriched in the terms of chromosome segregation, nuclear
chromosome segregation, and sister chromatid segregation for
the subsequent analysis (Figure 1C, Supplementary Table S4),
and we named them chromosome segregation regulators (CSRs).
According to the calculated rank in the Protein-Protein

interaction (PPI) network (Figure 1C), the top 14 genes were
selected, including centromere protein E (CENPE), mitotic arrest
deficient 2 like 1 (MAD2L1), BUB1 mitotic checkpoint serine/
threonine kinase (BUB1), BUB1 mitotic checkpoint serine/
threonine kinase B (BUB1B), TTK protein kinase (TTK), cell
division cycle 20 (CDC20), aurora kinase B (AURKB), aurora
kinase B (KIF2C), DNA topoisomerase II alpha (TOP2A), DLG
associated protein 5 (DLGAP5), non-SMC condensing I complex
subunit G (NCAPG), cyclin B1 (CCNB1), centromere protein F
(CENPF), and cell division cycle associated 8 (CDCA8)
(Figure 1C, Supplementary Table S5). Among these genes, a
total of 48 CSRs were found to overlap with the 823 DEGs in
TCGA-LUAD (Figure 1D, Supplementary Table S6,
Supplementary Table S7).

The Kaplan-Meier analysis showed that the 48 CSRs were all
correlated with the poor OS in LUAD (Supplementary Figure

FIGURE 1 | Chromatin Separation is the main bioprocess enriched by the prognostic genes in LUAD. (A) GO enrichment of the prognostic genes in LUAD. (B)
KEGG enrichment of the prognostic genes in LUAD. (C) PPI network of the 128 CSRs. (D) Venn drawing showing the co genes between the 128 CSRs and LUAD-
related DEGs. The LUAD-related DEGs were genes differentially expressed in LUAD-samples compared to the normal samples. Fold change>2, P. adjust<0.05.
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S1). In addition, the Spearman correlation analysis showed that
these CSRs were positively associated with the high TMB in
LUAD (Table 1). These indicated that the 48 CSRs may play
important roles in LUAD progression.

The CSRs Are Involved in LUAD Process
The 48 CSRs we identified were used to perform the Univariate
Cox regression analysis in TCGA-LUAD (n = 497), and 47
genes were eligible for screening (p-value < 0.05,
Supplementary Table S8). The 47 genes were then chosen
to perform the LASSO regression, and 12 genes were

screened out to build a multivariate Cox regression analysis
(Figures 2A,B, Supplementary Table S9). Finally, 9 genes,
including PLK1, TTK, DLG associated protein 5 (DLGAP5),
Holliday junction recognition protein (HJURP), kinesin family
member 14 (KIF14), Opa interacting protein 5 (OIP5), extra
spindle pole bodies like 1, separase (ESPL1), kinesin family
member 18B (KIF18B), and NUF2 component of NDC80
kinetochore complex (NUF2), were identified to be
independent prognostic signatures (Figures 2C,D,
Supplementary Table S10, Supplementary Table S11). The
497 LUAD samples were divided into two subgroups with

TABLE 1 | Correlation of CSRs with Risk_Score and TMB.

Gene Name Risk_Score TMB

Correlation (spearman) p-Value Correlation (spearman) p-Value

AURKB 0.36 <2.2e-16 0.46 3.31e-27
BIRC5 0.41 <2.2e-16 0.43 2.04e-24
BUB1 0.45 <2.2e-16 0.45 5.99e-6
BUB1B 0.49 <2.2e-16 0.40 4.84e-21
CCNB1 0.48 <2.2e-16 0.38 2.92e-18
CCNE1 0.34 <4.4e-15 0.38 1.33e-18
CDC20 0.43 <2.2e-16 0.47 1.12e-28
CDC6 0.42 <2.2e-16 0.41 6.12e-22
CDCA2 0.46 <2.2e-16 0.38 8.74e-19
CDCA5 0.46 <2.2e-16 0.45 2.7e-26
CDCA8 0.41 <2.2e-16 0.45 8.53e-26
CDT1 0.38 <2.2e-16 0.37 6.67e-18
CENPE 0.45 <2.2e-16 0.39 7.37e-20
CENPF 0.43 <2.2e-16 0.40 6.8e-21
CENPK 0.36 <2.2e-16 0.30 1.53e-11
DLGAP5 0.5944 <2.2e-16 0.42 5.64e-23
EME1 0.26 2.8e-09 0.45 1.4e-26
ESPL1 0.3928 <2.2e-16 0.43 1.61e-23
FAM83D 0.43 <2.2e-16 0.36 2.19e-16
HJURP 0.5546 <2.2e-16 0.46 2.7e-28
KIF14 0.5192 <2.2e-16 0.43 8.08e-24
KIF18B 0.3933 <2.2e-16 0.43 2.17e-24
KIF23 0.5 <2.2e-16 0.44 5.55e-25
KIF2C 0.43 <2.2e-16 0.48 5.13e-30
KIF4A 0.45 <2.2e-16 0.40 4.16e-21
KIFC1 0.4 <2.2e-16 0.47 1.29e-28
KNTC1 0.21 3.2e-06 0.39 3.31e-19
MAD2L1 0.46 <2.2e-16 0.36 4.73e-17
MKI67 0.5 <2.2e-16 0.36 1.44e-16
NCAPG 0.46 <2.2e-16 0.43 1.49e-23
NCAPH 0.45 <2.2e-16 0.47 1.06e-28
NDC80 0.45 <2.2e-16 0.46 6.56e-26
NEK2 0.45 <2.2e-16 0.47 4.71e-29
NUF2 0.354 <2.2e-16 0.52 1.2e-34
NUSAP1 0.47 <2.2e-16 0.39 1.12e-19
OIP5 0.5075 <2.2e-16 0.40 5.67e-21
PLK1 0.6434 <2.2e-16 0.42 1.35e-22
PRC1 0.51 <2.2e-16 0.40 1.43e-20
SKA1 0.45 <2.2e-16 0.44 2.32e-25
SKA3 0.48 <2.2e-16 0.45 8.21e-27
SPAG5 0.38 <2.2e-16 0.46 9.98e-28
SPC24 0.35 2.3e-15 0.39 2.58e-19
SPC25 0.45 <2.2e-16 0.40 6.9e-21
TOP2A 0.38 <2.2e-16 0.45 6.78e-25
TRIP13 0.37 <2.2e-16 0.45 5.54e-27
TTK 0.41 <2.2e-16 0.47 1.48e-29
UBE2C 0.34 2.9e-15 0.47 1.04e-28
ZWINT 0.39 <2.2e-16 0.39 2.54–19
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different risk scores: high- and low-risk subgroups, according
to the median risk score based on the 9-gene independent
prognostic signature (Figure 2C). The mortality of the high-
risk group was higher than that of the low-risk group

(Figure 2C), and the patients in the high group had a poor
outcome compared with those in the low-risk group (p =
1.726e-09, Figure 2E). Meanwhile, the 48 CSRs were all
positively associated with the risk score (Figure 2D;

FIGURE 2 | Construction of the cox regression model by the 48 CSRs. (A) LASSO coefficient spectrum of prognostic gene screening. (B) Stepwise Cox
proportional risk regressionmodel to screen the prognostic genes. (C) The risk score distribution and survival status of patients in the training cohort. (D) The heatmap of
prognostic gene distribution in the training cohort. (E) The overall survival of high- and low-risk groups. (F) ROC analyses of the cox model for 1-, 3-, and 5-years.

TABLE 2 | The clinical index of LUAD patients used in the Cox model.

Characteristic Levels Overall High-Risk Low-Risk

n (Dead/Alive) 382 (149/233) 204 (103/101) 178 (46/132)
Age, n (%) >=65 213 (55.76%) 114 (53.52%) 98 (46.48%)

<65 169 (44.24%) 90 (44.12%) 90 (55.88%)
Gender, n (%) Male 170 (44.50%) 78 (45.88%) 92 (54.12%)

Female 212 (55.50%) 126 (59.43%) 86 (40.57%)
N stage, n (%) N0 249 (65.18%) 129 (51.80%) 120 (48.20%)

N1 65 (17.01%) 40 (61.53%) 25 (38.47%)
N2 56 (14.65%) 27 (48.21%) 29 (51.79%)
N3 1 (0.26%) 1 (100%) 0 (0)
NX 11 (2.90%) 7 (63.63%) 4 (36.37%)

M stage, n (%) M0 241 (63.08%) 124 (51.45%) 117 (48.55%)
M1 21 (5.49%) 8 (38.09%) 13 (61.91%)
MX 120 (31.43%) 72 (60.00%) 48 (40.00%)

T stage, n (%) T1 132 (34.55%) 75 (56.82%) 57 (44.18%)
T2 196 (51.30%) 97 (49.49%) 99 (50.51%)
T3 40 (10.47%) 22 (55.00%) 18 (45.00%)
T4 13 (3.40%) 9 (69.23%) 4 (30.77%)
TX 1 (0.28%) 1 (100%) 0 (0%)

Pathologic stage, n (%) Stage I 209 (54.71%) 107 (51.20%) 102 (48.80%)
Stage II 87 (22.77%) 53 (60.92%) 34 (39.08%)
Stage III 59 (15.44%) 33 (55.93%) 26 (44.07%)
Stage IV 21 (5.49%) 8 (38.10%) 13 (61.90%)
N/A 6 (1.59%) 3 (50.00%) 3 (50.00%)
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Table 1). The ROC curve was used to predict the prognosis for
1-year, 3-years, and 5-years, which showed that the AUC value
ranged from 0.628 to 0.73 (Figure 2F). These indicated that the
high expression of CSRs predicts the poor OS in LUAD.

Construction of Nomogram Model by the
Nine-Gene Prognostic Signature
To further analyze the prognostic significance of the CSRs in
LUAD patients, the 9-gene prognostic signature was used to
perform the nomogram model with the combination of the
clinical indexes, including pT_stage, pN_stage, pM_stage, and
stage (Table 2). Two significant genes (PLK1 and DLGAP5) were
brought into the nomogram model, which showed that the
expression values of the two genes and the risk score predicted
the survival of LUAD patients (Figures 3A,B). The ROC curve
showed that the nomogramCoxmodel could precisely predict the
survival of patients, with the AUC ranging from 0.642 to 0.733
(Figure 3C). The decision curve analysis (DCA) and calibration

analysis of nomogram predicted probability also suggested the
accuracy of the Cox model (Figures 3B,D). However, there was
no significant difference in the pTNM staging between the two
risk groups (Figure 3E).

Validation of the CSRs-Related Prognostic
Signature With GEO Datasets
We used the nine genes to conduct the Cox model in five GEO
data sets (GSE3141, GSE13213, GSE30219, GSE31210, and
GSE50081), which contains 913 LUAD samples (Table 3,
Supplementary Table S12). The Kaplan-Meier curve showed
the patients in the high-risk group had poor outcomes in the five
validation sets (Figures 4A–E). The AUC value of 1-, 3-, and 5-
years in the five validation sets were ranging from 0.612 to 0.788
(Figures 4F–J), which verified our previous results that the 9-
gene prognostic signature was linked to predicting the OS of
LUAD patients.

Identification of Different Clusters Mediated
by the 48 CSRs in LUAD.
To investigate the specific function of the CSRs involved in the
development of LUAD, the unsupervised consensus clustering
analysis was conducted for LUAD samples based on the
expression of 48 CSRs. The result showed that the 497 LUAD
samples were divided into two distinct subgroups of cluster 1 (C1,
n = 338) and cluster 2 (C1, n = 159) (Figures 5A–D,
Supplementary Table S13). The Kaplan-Meier curve showed

FIGURE 3 | Construction of nomogram model by the 9-gene prognostic signature. (A) The nomogram to predict the prognosis of LUAD-patients. (B) The
calibration analysis of the nomogram predicted a probability of 1-, 3-, and 5-years survival. (C) ROC analyses of the nomogram model for 1-, 3-, and 5-years. (D) DCA
result of the prognostic model. (E) Risk groups in relation to a clinical index.

TABLE 3 | Information of GEO data sets used in the validation of the Cox.

Gene Name

GPL6480 117 (49/68) 58 (33/25) 59 (16/43)
GSE31210 GPL570 226 (35/191) 113 (28/85) 113 (7/106)
GSE30219 GPL570 278 (188/90) 139 (115/24) 139 (72/66)
GSE3141 GPL570 111 (58/53) 55 (33/22) 56 (25/31)
GSE50081 GPL570 181 (75/106) 91 (48/42) 90 (27/64)
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that patients in C1 had a worse outcome than those in C2 (p =
0.000351, Figure 5E). The difference in TMB score between the
two clusters was assessed, and the result showed that C1 had a
higher TMB score (Figure 5F). Moreover, the 48 CSRs were
consistently highly expressed in group C1 compared with those in
cluster 2 (Figures 5G,H, Supplementary Table 14), validating the
existence of distinguishing CSRs patterns in LUAD, and the
cluster 1 may represent high-risk groups.

DEGs and the Functional Analysis Between
the Two CSRs-Related Clusters
Then, we identified the DEGs between the two clusters. As a result, a
total of 536 genes (278 up-regulated genes and 258 down-regulated
genes) were found to be significantly and differently expressed in
group C1 compared to group C2 (Figures 6A,B, Supplementary
Table S15). The subsequent KEGG and GO showed that the up-
regulated genes were enriched in the pathways of cell cycle
(Figure 6C, Supplementary Table S16), and the biological
processes of chromosome segregation, organelle fission, and
nuclear division, and mitotic nuclear division (Figure 6D,

Supplementary Table S16). The down-regulated genes were
enriched in the pathways of Complement and coagulation
cascades, Arachidonic acid metabolism, and Drug
metabolism–cytochrome P450 (Figure 6E, Supplementary Table
S16), and biological processes of antibacterial humoral response,
eicosanoid biosynthetic process, protein processing, respond to
corticosteroid, respond to glucocorticoid, and eicosanoid
metabolic process (Figure 6F, Supplementary Table S16).

Identification of Hub-Genes Between the
Distinct Clusters
The 536 DEGs between the two CSRs-related clusters were used to
perform the PPI network, which showed that there was an obvious
group with a close correlation occurring in the up-regulated genes
(Figure 7A). We calculated the rank by cytohubba in the PPI
network, and the top 50 hub-genes were selected, which were all
up-regulated genes in cluster 1 (Figure 7B, Supplementary Table
S17). The subsequent GO showed these genes were enriched in the
biological processes of the mitotic cell cycle, cell division, and
regulation of chromosome segregation (Figure 7C).

FIGURE 4 | Validation of the CSRs-related prognostic signature with GEO datasets. (A–E) The overall survival of the high- and the low-risk group in the five
validation sets. (F–J) ROC analyses of the cox model for 1-, 3-, and 5-years in the five validation sets.
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CSRs Are Associated With Immunization
Checkpoint Block in LUAD
Cancer cells must have evaded the anti-tumor immune response
to grow progressively, which relies in part on the expression on
their surface of proteins with immunosuppressive functions, such
as programmed cell death 1 (PD-L1) (Reisländer et al., 2020).
Enhanced ability to escape immune detection always caused
malignant development of cancer cells, and the following poor
outcome for patients with LUAD. To find out the possible
molecular mechanism that the CSRs impact on the prognosis,
the difference in immunization checkpoint block (ICB) score
between the two clusters, including the levels of immune
checkpoint genes, tumor immune dysfunction and exclusion
(TIDE) score, and HLA component expression, were
evaluated. We found that the C1 had a higher level of risk
score (p = 2.26e-21, Figure 8A), and TIDE score (p = 1.8e-11,

Figure 8B). Additionally, the immune checkpoint genes, CD274
(PD-L1), lymphocyte activating 3 (LAG3), programmed cell
death 1 (PDCD1 (PD-1)), and programmed cell death 1 ligand
2 (PDCD1LG2), were significantly expressed higher in C1 than in
C2 (Figure 8C). Moreover, among the eight MHC-Ⅱ
components, seven molecules were expressed lower in C1 than
in C2 (Figure 8D). One MHC-Ⅰ component was also expressed
lower in C1 (Figure 8D). These all indicated that the patients in
cluster 1 may have a higher immunization checkpoint
block (ICB).

CSRs Are Associated With Immune
Characteristics of LUAD
To further explain the possible impact of the CSRs on anti-tumor
immune response, the TME characteristics between the two
clusters were also assessed. The result of TME showed that the

FIGURE 5 |Unsupervised consensus clustering of LUAD-samples based on the 48 CSRs. (A)Consistent cumulative distribution shows the cumulative distribution
function with different values of k, which is used to judge the optimal value of k. (B)Delta area map. (C) The consistency matrix of all data sets with k = 2. (D) PCA showing
the LUAD-samples were divided into two distinct clusters. (E) The OS of LUAD-patients in the cluster 1 and 2. (F) The difference in TMB between the two clusters. The
significance was calculated by Wilcoxon rank-sum test. ***p < 0.001. (G) Heatmap showing the expression pattern of the 48 CSRs in the two clusters. (H) The 48
CSRs were all highly expressed in cluster 1. The significance was calculated by Wilcoxon rank-sum test. ***p < 0.001.
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ESTIMATE score (p = 0.0042), immune score (p = 0.0196), and
stromal score (p = 0.0017) were lower in cluster 1 than in cluster 2
(Figures 9A–C), while the tumor purity (p = 0.003) was higher in
C1 than in C2 (Figure 9D). CIBERSORT algorithm was firstly
used to calculate the 22 types of immune cells. The result showed
that the filtrating proportion of resting memory CD4+ T cells,
activated mast cells, resting myeloid dendritic cells, and memory
B cells were higher in cluster 2 than in cluster 1 (Figure 9E), while
the filtrating proportion of follicular helper T cells, CD8+ T cells,
M0 macrophages, and M1 macrophages were higher in cluster 1
than in cluster 2 (Figure 9E). The xCELL algorithm was further

used to assess another immune cell set, which contains 35 kinds of
immune cells. The result showed that the proportion of T cell
CD8+ naïve, Common lymphoid progenitor, CD4+ Th2, CD4+

Th1, plasmacytoid dendritic cell, and M1 macrophage were
higher in cluster 1 (Figure 9F), while the content of activated
myeloid dendritic cell, granulocyte-monocyte progenitor, mast
cell, myeloid dendritic cell, M2 macrophage, memory CD4+

effector T cells, and NK T cells were higher in cluster 2
(Figure 9F). Besides this, immune score, microenvironment
score, and stroma score were lower in cluster 1 than in cluster
2, which was consistent with our previous result (Figure 9F).

FIGURE 6 | DEGs and the functional analysis between the two CSRs-related clusters. (A) Volcano Plot showing the DEGs in cluster 1 vs. cluster 2. (B) Heatmap
showing the DEGs in cluster 1 vs. cluster 2. (C) KEGG enrichment of up-regulated genes in cluster 1. D GO enrichment of up-regulated genes in cluster 1. (E) KEGG
enrichment of down-regulated genes in cluster 1. (F) GO enrichment of down-regulated genes in cluster 1.
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The difference in the abundance of 22 immune
microenvironment infiltrating cells calculated by CIBERSORT
algorithm between high- and low-risk groups in TCGA cohort
and two GEO datasets was further revealed. The result in TCGA
cohort showed that the high-risk group has a very similar pattern
of infiltrated immune cells as the C1 population (Figure 9G). In
addition, the infiltrating abundance of M0 and M1 macrophages
were significantly higher in the high-risk group in all three
datasets (Figure 9G, Supplementary Figure S2), and the
filtrating proportion of resting memory CD4+ T cells was
lower in the high-risk group compared to the low-risk group
in all three datasets (Figure 9G, Supplementary Figure S2),
indicating that the nine-gene independent prognostic signature
was positively correlated with the infiltrating abundance of M0
and M1 macrophages and negatively associated with resting
memory CD4+ T cells. These all demonstrated that the CSRs

were associated with the immune characteristics in the TME
of LUAD.

The Small-Molecular Chemotherapeutics
Forecast for High-Risk Patients Based on
the Hub-Genes
Our previous results showed that patients in cluster 1 were the
predicted high-risk population, and we then wanted to find the
potential chemotherapeutics suited for these populations.
According to the different biological characteristics between
the two clusters, the hub genes were assumed to be the critical
and potential targets for the therapy of the high-risk groups.
Therefore, the adjuvant chemotherapeutics targeting the 50 hub
genes were assessed through the mode of action (moa) module in
the CMap database. The result showed that a total of 74 small-

FIGURE 7 | Identification of hub-genes between the distinct clusters. (A) PPI network of the DEGs between the two clusters. The red represents the up-regulated
genes, and the blue represents the down-regulated genes. (B) The network of the top 50 hub genes. The color depth represents the rank of the genes. (C) GO
enrichment of the hub genes, which was performed by the Metascape database (https://metascape.org/gp/index).
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molecular perturbagens, targeting aurora kinase B (AURKA),
cyclin-dependent kinase 1 (CDK1), TOP2A, AURKB, polo-like
kinase 4 (PLK4), PLK1, ribonucleotide reductase regulatory
subunit M2 (RRM2), CCNB1, TTK, and cyclin A2 (CCNA2),
were predicted to be the potential chemotherapeutics for patients
in cluster 1 (Figure 10). A total of 47 moas were predicted to be
the possible pathways by which these chemotherapeutics
function, such as Aurora kinase inhibitor, CDK inhibitor, and
topoisomerase inhibitor (Figure 10). Among the 74 potential
chemotherapeutics, AT-9283, indirubin, and LY-294002 were the
most outstanding ones, which function as the most common
pathways (marked in blue, Figure 10).

DISCUSSION

Lung cancer is the most common malignancy and remains the
leading cause of cancer mortality worldwide (Bade and Cruz,
2020). Approximately 85% of patients have a histological subtype
known as non-small cell lung cancer (NSCLC) (Herbst et al.,
2018), with the main subtype of LUAD (Herbst et al., 2018; Sun
and Zhao, 2019). Recently, LUAD has been the major cause of
cancer-associated mortality with a poor prognosis (Song et al.,
2021). Chromosomal abnormalities are reported to be a common
characteristic of cancer, which is attributed to the ongoing
chromosome segregation errors during mitosis (Bakhoum
et al., 2018; Kou et al., 2020a). It is associated with poor
outcomes and therapeutic resistance in various cancers

(Potapova and Gorbsky, 2017; Bakhoum and Cantley, 2018;
Kou et al., 2020a). Chromosomal segregation errors or the
alteration of CSRs are usually the critical factors of genomic
instability that drive tumor evolution (Hanahan and Weinberg,
2011; Bolhaqueiro et al., 2019; Tayoun et al., 2021). For example,
aneuploidy is a direct consequence of chromosome segregation
errors in mitosis (Janssen et al., 2011; Kawakami et al., 2019). This
is always accompanied by chromosomal instability (CIN) and
genomic instability and causes additional chromosome gains or
losses in a significant proportion of cell divisions, which further
manifests the complexity of cancer karyotypes (Dürrbaum and
Storchová, 2016). Aneuploidy correlates with increased
metastatic and drug resistance, indicating that Aneuploidy is
more beneficial for cancerous cells than diploid cells (Dürrbaum
and Storchová, 2016). The genomic diversification caused by
chromosome segregation errors usually promotes tumor
evolution and heterogeneity (Soto et al., 2019), which is an
important reason for therapeutic resistance (Dagogo-Jack and
Shaw, 2018; Lim and Ma, 2019). Although aneuploidy provides
advantages for the proliferation and drug resistance of cancer
cells, excessive aneuploidy beyond a critical level is lethal to
cancer cells (Kawakami et al., 2019). Therefore, molecular and
bioprocesses engaged in chromosome segregation should be
utilized as potential therapeutic targets for cancers.

Previous studies have indicated that CIN and loss of
heterozygosity (LOH) play significant roles in the development
of LUAD (Ninomiya et al., 2006). In this study, chromosomal
segregation during mitosis was found to be correlated with the

FIGURE 8 |CSRs are associated with immunization checkpoint block in LUAD. (A) The risk score in the two clusters. (B) The TIDE score in the two clusters. (C) The
immune checkpoint genes in the two clusters. (D) The HLA family genes in the two clusters. The statistical significance was calculated viaWilcoxon rank-sum test, ***p <
0.001, **p < 0.01, *p < 0.05.
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poor prognosis of LUAD. Among the determined
2,416 prognosis-related genes, 128 genes were found to be
enriched in the biological processes of chromosomal
segregation, indicating that these chromosomal segregation-
related genes may play an important role in the development
of LUAD. 48 of 128 genes were found to be up-regulated in
LUAD compared with the normal people and were associated
with the high TMB in patients with LUAD. Besides, 47 genes were

identified as the prognostic signatures after suffering from
univariate cox regression. By LASSO and multivariate cox
regression, nine genes were finally determined as the
independent prognostic signature to construct the nomogram
cox model. Patients in the high-risk subgroup had significantly
poor OS. Notably, PLK1 and DLGAP5 were found to have
valuable significance for the prediction of prognosis. PLK1
plays multiple roles in the initiation, maintenance, and

FIGURE 9 | CSRs are associated with immune characteristics of LUAD. (A–D) Comparison of estimate score (A), immune score (B), stromal score (C), and tumor
purity (D) in the two clusters. (E) Heatmap showing the 22 types of immune cells infiltration in the two clusters by CIBERSORT algorithm. (F) Heatmap showing the 27
types of immune cells infiltration in the two clusters by xCell algorithm. The red label represents the cells that were highly infiltrated in cluster 2, the blue label represents
the cells that were highly infiltrated in cluster 1. The statistical significance was calculated via Wilcoxon rank-sum test, ***p < 0.001, **p < 0.01, *p < 0.05. (G) The
difference in infiltrated abundance of immune cells between the two risk groups. The infiltrated abundance of immune cells was calculated by CIBERSORT algorithm. The
statistical significance was calculated via Wilcoxon rank-sum test, ***p < 0.001, **p < 0.01, *p < 0.05.
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completion of mitosis (Liu et al., 2017), maintaining genome
stability (Zhang et al., 2016; Gheghiani et al., 2021), and DNA
damage response (DDR) (Peng et al., 2021). It is found to be
highly expressed in most of the human cancers (Gutteridge et al.,
2016), and enhanced gene expression is associated with a poor
prognosis (Ramani et al., 2015; Tut et al., 2015; Zhang et al., 2015;
Chen Z. et al., 2019; Montaudon et al., 2020). Besides, PLK1 has
been reported to be associated with chemotherapeutic drugs
resistance, including doxorubicin (Wang P. et al., 2018),
paclitaxel (Gasca et al., 2016; Shin et al., 2019; Shin et al.,
2020), metformin (Shao et al., 2015; Zhu et al., 2022), and
gemcitabine (Song et al., 2013; Li et al., 2016; Mao et al.,
2018). DLGAP5 is a microtubule-associated protein and is
identified to be a prognosis biomarker in various cancers
(Schneider et al., 2017; Branchi et al., 2019; Xu et al., 2020;
Zheng et al., 2020; Feng Y. et al., 2021; Zhou D. et al., 2021).
Inhibition of this gene suppresses cell proliferation and invasion,
induces G2/M phase arrest, and promotes apoptosis in human
cancers (Liao et al., 2013; Zhang et al., 2021a). Not only these
findings were confirmed, but also the predictive value of the two
genes was proposed in this study. Here, PLK1 and DLGAP5 were
found as the independent prognostic signatures combined with
HJURP, KIF14, OIP5, TTK, ESPL1, KIF18B, and NUF2 to predict
the prognosis of LUAD-patients. HJURP is reported to be an

oncogene that promotes cancer cell proliferation, migration, and
invasion (Chen et al., 2018;Wei et al., 2019; Serafim et al., 2020; Li
Y. et al., 2021; Lai et al., 2021). KIF14 is confirmed to promote
cancer cell proliferation and contribute to chemoresistance
(Singel et al., 2014; Wang Z. Z. et al., 2018; Xiao et al., 2021).
Silencing TTK is also found to inhibit the proliferation and
invasion and increase radiosensitivity and chemosensitivity of
cancer cells (Chen S. et al., 2019; Huang et al., 2020; Liu Y. et al.,
2021; Zhang et al., 2021b; Qi et al., 2021). ESPL1 is determined to
be a novel prognostic biomarker and is associated with the
malignant features in several cancers (Finetti et al., 2014;
Wang R. et al., 2020; Liu Z. et al., 2021). KIF18B is also
illustrated to be the oncogenesis to promote tumor
progression and enhance therapeutic resistance (Li B. et al.,
2020; Liu et al., 2020; Jiang J. et al., 2021). OIP5 upregulation
is observed in human cancers (Chow et al., 2021), and seems to be
linked to drug resistance (Rodrigues-Junior et al., 2018). NUF2 is
found to be a prognostic biomarker and therapeutic target which
is correlated with the immune infiltration in patients with cancer
(Jiang X. et al., 2021; Shan et al., 2021; Xie et al., 2021). Combining
the expression of the nine genes, we conducted the cox risk
model. The subsequent DCA and calibration verified the accuracy
of the model to predict the prognosis of LUAD. However, we
found the nine-gene prognostic signature had no impact on the

FIGURE 10 | The small-molecular chemotherapeutics forecast for patients with high-risk based on the hub genes. The blue label represents the most outstanding
small-molecular perturbagens.
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clinical pNTM stage of patients. This may be attributed to the
small sample size, thus, larger samples should be analyzed further.

According to the unsupervised consensus clustering by the
expression of the 48 CSRs, the 497 TCGA-LUAD samples were
divided into clusters 1 and 2. The 48 CSRs were all highly
expressed in cluster 1, and the risk score was significantly
higher in cluster 1. The Kaplan-Meier showed that patients in
cluster 1 had a poor OS. These all suggest that the patients in
cluster 1 have a higher risk than those in cluster 2, and the
subgroup cluster 1 is deemed to be the high-risk group. A total of
536 genes (278 up-regulated genes and 258 down-regulated
genes) were determined to be the DEGs in cluster 1 compared
to cluster 2. The up-regulated genes were enriched in the
pathways of cell cycle and the biological processes of
chromosome segregation, organelle fission, and nuclear
division; the down-regulated genes were enriched in the
pathways of drug metabolism-cytochrome P450 and the
biological process of protein processing. The main function of
cytochrome P450 (CYP450) is oxidative catalysis of endogenous
and exogenous substances (Mittal et al., 2015). 80% of drugs
currently in use, including anti-cancer drugs, are involved in
phase I metabolism of CYP450 (Mittal et al., 2015). Interestingly,
the hub genes with top 50 ranks were all highly expressed in
cluster 1, which were enriched in the biological processes of
mitotic cell cycle, regulation of chromosome segregation, and
microtubule cytoskeleton organization involved in mitosis. As we
discussed previously, the dysregulation of mitotic chromosome
segregation is associated with poor prognosis and therapeutic
resistance in human cancers. Among the 50 hub genes, AURKB,
BUB1, BUB1B, CCNB1, CDCA8, CENPF, DLGAP5, KIF2C,
NCAPG, TOP2A, TTK, assembly factor for spindle
microtubules (ASPM), cyclin A2 (CCNA2), cyclin B2
(CCNB2), cell division cycle 45 (CDC45), cyclin-dependent
kinase 1 (CDK1), kinesin family member 11 (KIF11), kinesin
family member 20A (KIF20A), maternal embryonic leucine
zipper kinas (MELK), PDZ binding kinase (PBK), TPX2
microtubule nucleation factor (TPX2) were found to be the
hub genes with the rank 1, that were all reported to have pro-
metastatic effects in human cancers (Chen et al., 2015; Bertran-
Alamillo et al., 2019; Gan et al., 2019; Huang et al., 2019; Kou
et al., 2020b; Wang L. et al., 2020; Wang X. et al., 2020; Hu et al.,
2021; Wang S. et al., 2021; Li M.-X. et al., 2021; Wu et al., 2021;
Feng Z. et al., 2021; Huang et al., 2021).

The difference in ICB between the two clusters was further
assessed, including TIDE score, immune checkpoint genes, HLA
family components to evaluate the possible anti-tumor immune
response associated with the CSRs. The cluster 1 subtype featured
lower levels of HLA family genes, higher TIDE scores, and higher
levels of immune checkpoint genes, indicating that patients in
cluster 1 have the higher ICB and, in turn, a possible poor anti-
tumor immune response. The highly expressed immune
checkpoint genes, CD274, LAG3, PDCD1, PDCD1LG2, in this
subgroup further confirmed the result. PDCD1 (PD-1) is a key
coinhibitory receptor expressed on activated T cells (Ai et al.,
2020). The engagement with its ligands, mainly PD-L1, leads to
the events of inhibition of T cell proliferation, activation, cytokine
production, alters metabolism and cytotoxic T lymphocytes

(CTLs) killer functions, and eventual death of activated T cells
(Ai et al., 2020). The overexpression of PD-L1 has been verified to
contribute to the immune surveillance evasion of cancer cells and
caused the invasion and migration (Iwai et al., 2002). PDCD1LG2
(PD-L2) is a second ligand for PD-1 and inhibits T cell activation
(Latchman et al., 2001). LAG3 (CD223), an emerging targetable
inhibitory immune checkpoint molecule, is the third inhibitory
receptor pathway to be targeted in the clinic (Solinas et al., 2019).
It is mainly found on activated immune cells and is involved in
the exhaustion of T cells in malignant diseases (Puhr and Ilhan-
Mutlu, 2019). LAG3 has been reported to play a negative
regulatory role in cancer immunology by interacting with its
ligands (Wang M. et al., 2021). What’s more, seven MHC-Ⅱ and
one MHC-Ⅰ molecules were found to be under-expressed in
cluster 1, further supporting the result that patients in cluster
1 have a poor antitumor immune response. MHC-Ⅰ molecules
function to bind the encoded peptides, transport and display the
antigenic information on the cell surface, and allow CD8+ T cells
to identify pathological cells, such as cancers that are expressing
mutated proteins (Dhatchinamoorthy et al., 2021). Loss of MHC-Ⅰ
antigen presentation always leads to cancer immune evasion
(Dhatchinamoorthy et al., 2021). MHC-Ⅱ is an antigen-presenting
complex, that is important for antigen presentation to CD4+ T cells.
Tumor-specific MHC-Ⅱ is associated with favorable outcomes in
patients with cancer, including those with immunotherapies
(Axelrod et al., 2019). The lower level of MHC-Ⅱ and one MHC-Ⅰ
molecule in patients of cluster 1 may help the tumor evasion of
immune checkpoints and poor immunotherapies. What’s more, we
found a higher TMB score in cluster 1, which was positively associated
with the 48 CSRs. A recent study has shown that the average copy
number variation (CNVA) of chromosome fragments is a potential
surrogate for tumor mutational burden in predicting responses to
immunotherapy in NSCLC (Lei et al., 2021). Therefore, the increased
genomic instability in tumors with dysregulated chromosome
segregation alters mutational load and in turn impacts antitumoral
immune responses, which further impacts the prognosis in LUAD.
However, we cannot define either CINwas a cause or result of somatic
mutation, and this needs more experiment assays to be determined.

Meanwhile, the infiltrating proportions of immune cells were
further evaluated to analyze the difference in immune
characteristics between the two clusters. We found that cluster
1 had a lower immune, stromal, and ESTIMATE score compared
with cluster 2. According to the CIBERSORT and xCell
algorithms, cluster 1 was shown to have a higher infiltrating
proportion of M0 and M1 macrophages, while cluster 2 had a
higher infiltrating proportion of M2 macrophages and mast cells.
Macrophages play a critical role in cancer development and
metastasis, which could be identified as 2 major
subpopulations of M1 macrophages (Proinflammatory) and
M2 macrophages (anti-inflammatory) (Xia et al., 2020). M0
macrophages are naïve macrophages without polarization. M1
macrophages have antimicrobial and antitumoral activity, while
M2 macrophages participate in angiogenesis, immunoregulation,
tumor formation, and progression (Shapouri-Moghaddam et al.,
2018). Increased mast cell density is associated with the prognosis
and plays a multifaced role in TME by regulating tumor biology,
including cell proliferation, angiogenesis, invasiveness, and
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metastasis (Aponte-López and Muñoz-Cruz, 2020). These results
seem contradictory that M1 macrophages have antitumoral
activity but were higher infiltrated in cluster 1, whereas M2
macrophages have protumoral activity but were lower
infiltrated in cluster 1, as were the follicular helper T cells and
CD8+ T cells. We think this elevation may be a compensatory
effect, that these antitumoral immune cells are regulated to
increase against the tumor cells. However, the effective activity
of these anti-tumor immune cells may be inhibited because of the
high levels of the immunosuppressive proteins on their surface.
Most tumor-infiltrating immune cells were functionally inactive.

Based on the 50 hub genes that were upregulated in cluster 1, a
total of 74 small-molecule perturbagens were predicted to be the
potential chemotherapeutics that were possibly suited for these
patients at high risk. Among these, AT-9283, indirubin, and LY-
294002 were the most outstanding ones, which function as the most
common pathways. A total of 47 moas, including Aurora kinase
inhibitor, CDK inhibitor, and topoisomerase inhibitor, were
forecasted to be the possible molecular mechanism by these
chemotherapeutics functions. The inhibitory role of AT-9283 in
cancer cell growth and survival has been demonstrated in cell-based
systems (Kimura, 2010). Although phase Ⅱ clinical trials have not
been completed, it showed good safety and efficacy in phase Ⅰ clinical
trials conducted in patients with hematological malignancies and
solid tumors (Kimura, 2010). Indirubin has also been reported to
exert anticancer effects in human cancers (Li Z. et al., 2020). LY-
294002 enhances the chemosensitivity of liver cancer to oxaliplatin
(Xu et al., 2021). We found here these small-molecule perturbagens
might have favorable therapeutic effects for patients in cluster 1, who
had the high expression of their target genes. This will provide an
effective therapeutic regimen for the individual treatment in LUAD.

Our study is the first one to systematically analyze the
relationship between chromosome segregation regulation and
the immune microenvironment. This can provide a new
direction for immune-related LUAD pathogenesis and
therapeutic research. However, there are certain limitations in
this current study. First, although the exploration of a decent
number of samples and summarizing data can be helpful in the
research community, this analysis may have some bias due to the
small size of TCGA-LUAD cohort. The relationship between the
prognostic signatures and clinical indices, such as pNTM staging,
has not been well explained. Therefore, further analysis with
larger samples is still needed. Second, further experimental
verifications are necessary to elucidate the potential impact of
these predicted genes in the immune microenvironment.
Moreover, the protein expression levels of the hub CSRs in

pathogenesis and progression of LUAD depend on further
experimental studies to elucidate. Additionally, some of the
genes we focused on in this study have been reported to be
activated by post-translational modification and function as
kinase. Therefore, database analyses depending on the gene
expression profile at the mRNA levels have a limit. Further
analysis should be focused on the protein or post-translational
modification levels.

In conclusion, this study demonstrated that the CSRs were
important factors to influence the development and progression
of LUAD. The high expression of these regulators was correlated
with the poor prognosis and the possible immunotherapeutic
resistance in LUAD, which could be the potential therapeutic
target for LUAD.
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