
RESEARCH ARTICLE

Predicting fear and perceived health during

the COVID-19 pandemic using machine

learning: A cross-national longitudinal study

Stephanie Josephine EderID
1*, David Steyrl1,2, Michal Mikolaj Stefanczyk3,

Michał Pieniak3, Judit Martı́nez Molina4, Ondra Pešout5, Jakub Binter6, Patrick Smela1,
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Abstract

During medical pandemics, protective behaviors need to be motivated by effective commu-

nication, where finding predictors of fear and perceived health is of critical importance. The

varying trajectories of the COVID-19 pandemic in different countries afford the opportunity

to assess the unique influence of ‘macro-level’ environmental factors and ‘micro-level’ psy-

chological variables on both fear and perceived health. Here, we investigate predictors of

fear and perceived health using machine learning as lockdown restrictions in response to

the COVID-19 pandemic were introduced in Austria, Spain, Poland and Czech Republic.

Over a seven-week period, 533 participants completed weekly self-report surveys which

measured the target variables subjective fear of the virus and perceived health, in addition

to potential predictive variables related to psychological factors, social factors, perceived

vulnerability to disease (PVD), and economic circumstances. Viral spread, mortality and

governmental responses were further included in the analysis as potential environmental

predictors. Results revealed that our models could accurately predict fear of the virus

(accounting for approximately 23% of the variance) using predictive factors such as worry-

ing about shortages in food supplies and perceived vulnerability to disease (PVD), where

interestingly, environmental factors such as spread of the virus and governmental restric-

tions did not contribute to this prediction. Furthermore, our results revealed that perceived

health could be predicted using PVD, physical exercise, attachment anxiety and age as

input features, albeit with smaller effect sizes. Taken together, our results emphasize the

importance of ‘micro-level’ psychological factors, as opposed to ‘macro-level’ environmental

factors, when predicting fear and perceived health, and offer a starting point for more
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extensive research on the influences of pathogen threat and governmental restrictions on

the psychology of fear and health.

Introduction

Fear and the crisis

The global Coronavirus Disease 2019 (COVID-19) pandemic affected millions of people and

forced the mobilization of governments worldwide. New regulations were adopted around the

globe, and responses from citizens to novel measures were diverse [1]. Importantly, individual

responses are critical in shaping the course of the current pandemic and of comparable health

crises, since modern-day human behavior greatly influences the propagation and extinction of

diseases (e.g., by following hygiene recommendations, stay at home orders, practicing physical

distancing, and achieving immunity through vaccinations) [2]. A critical factor in understand-

ing a population’s response to a threat is the fear it elicits, since fear is an important predictor

of behavioral changes and health-securing behaviors [3–6]. Thus, fear appeal is one of the

most effective interventions to control health-related pandemics via behavioral changes, where

accurate estimations of fear levels in a given population are essential for informing decisions

with respect to educational and preventive interventions [7]. Theoretical frameworks such as

protection motivation theory and the health belief model have been conceptualized to predict

health-related behaviors in relation to mechanisms of fear appeal [8, 9]. They highlight that

perceived threat, perceived vulnerability/susceptibility and perceived efficacy/benefits and bar-
riers are all critical components for promoting protective behaviors; importantly, these models

have been used widely to design behavioral interventions [8, 9]. Indeed, studies drawing upon

these theoretical frameworks have confirmed the predictive power of these variables with

regard to health-related behaviors during the COVID-19 crisis [10–13]. In relation, it has been

shown that perceived risk for oneself–as opposed to actual risk–partially accounts for compli-

ance with rules [14]. Critically, this compliance interacts with interpersonal, ‘micro-level’ vari-

ables (i.e., individual variables such as biological sex, age, and personality traits) in

combination with macro-level variables such as governmental rules [14, 15].

Indeed, some individuals perceive situations as more threatening than others, and whilst

many studies on the efficacy of fear appeals have emerged, less is known about which factors

actually influence how much fear a threat elicits and how this interacts with individual differ-

ences. This is of critical importance for public health campaigns that need to effectively com-

municate the magnitude of a threat in order to guide health promoting behaviors.

Interestingly, manipulation checks in laboratory fear-appeal studies tend to only find moder-

ate associations between fear induction and induced fear [6]. It is therefore of theoretical inter-

est and practical importance when designing health policies to consider variables that predict

the subjective fear of the Sars-CoV-2 virus in a real-life setting. In response, we aim to identify

both macro-level environmental and micro-level psychological variable that can specifically

predict subjective fear of the COVID-19 virus.

Factors influencing fear and behavioral changes in the face of threats may be perceived vul-

nerability to diseases [16], both generally and specific to COVID -19 [11, 17], and aversion to

germs, a concept related to disgust sensitivity, which has been shown to be implicated in sub-

jective fear of COVID-19 [18]. Further, social support [19] and close relationships may buffer

the fear-inducing effects of an external threat, since they are crucial for well-being and health

[20]. In relation, attachment style influences affect regulation [21], and insecure attachment
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has been linked to heightened sensitivity for anxiety [22], as well as personal fear of death [23].

Traditionally, attachment theory explains behaviors and attitudes towards a close person in

stressful situations [24]. As such, it provides a useful framework for investigating individual

reactions to environmental stressors (such as the medical and economic threats elicited by a

pandemic) and social stressors (such as the withdrawal of social contacts resulting from gov-

ernmental restrictions). For example, individuals with high attachment security may be able to

draw upon more optimal and adaptive psychological resources in order to effectively cope

with such stressors related to COVID-19 [25]. Critically, secure attachment relates to an inter-

nal locus of control [26], which in turn has been shown to be a protective factor against the

stress elicited by the COVID-19 pandemic [27].

Finally, objective environmental conditions, such as death tolls, might also affect fear levels;

however, it remains unclear how objective measures of threat interact with psychological vari-

ables in the context of this unprecedented pandemic. Uncovering the variables that influence

this relationship between external threats and the extent of fear elicited by these threats might

guide targeted policies that avoid overreactions (i.e., panic purchases), while conversely, elicit-

ing a sense of threat that is sufficient to motivate compliance with protective public health rec-

ommendations (i.e., social distancing and wearing masks in public settings). This study aims

to shed light on the predictive value of environmental conditions, perceived vulnerability to

disease, social factors and attachment security, in predicting fear of the novel coronavirus dur-

ing the COVID-19 pandemic. As such, it aims to provide guidance for effectively constructing

public health strategies and identifying target groups for behavioral interventions.

Social isolation and impact on perceived health

Globally, social isolation and the shut-down of all public life has been essential to containing

the spread of the virus [28]. Citizens were asked to stay at home and to avoid anyone other

than the people they live with, which was enforced with fines in some countries [29]. For peo-

ple living alone, this isolation may be particularly painful, as lockdown restrictions and curfews

limit the possibilities of social interaction. Social contact can be ensured over social media, but

the deprivation of physical contact has negative social and health implications, since touch

plays an important role in maintaining and stabilizing social relations and provides various

health benefits (such as reducing anxiety) that would be valuable in the face of a stressful crisis

[30–32]. Overall, increases in loneliness, anxiety, and depression are likely [33] and have been

reported in the context of this crisis [34, 35].

These changes likely have an impact on a populations’ perceived health, since psychological

well-being and loneliness in turn predicts physical and perceived health [36, 37]. Lower per-

ceived health has indeed been reported during the COVID-19 pandemic [38], and is associated

with high levels of stress during this crisis [39]. Importantly, perceived vulnerability to the dis-

ease may also mediate such relationships between perceived health and emotional reactions

related to fear and stress [40]. It may further interact with social consequences of the crisis,

since loneliness resulting from social isolation has been found to partially mediate the effects

of perceived vulnerability to COVID-19 on traumatic stress related to the pandemic [17].

A protective factor against the negative impacts of this crisis on perceived health may simi-

larly be secure attachment, where various studies have linked secure attachment to more opti-

mal coping mechanisms and positive health outcomes [41, 42]. It has been suggested that the

benefits of physical interpersonal interactions are particularly valuable for people high in

attachment anxiety [43]. A special case of physical interaction, sexual behavior, has also been

linked to greater health outcomes [44], but is likely to decrease for singles or those living alone

as curfews and lockdown restrictions are implemented. Further, physical activity positively
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influences perceived health and well-being [45], and has similarly been highly restricted during

lockdowns. Here, we aim to investigate which factors predict perceived health throughout the

crisis, and explore the complex and dynamic role of physical contact, attachment, sexual

behavior, perceived vulnerability to disease, exercising, and various environmental conditions

related to the COVID-19 pandemic. In doing so, we hope to identify protective factors that

may help to maintain a high perceived state of health, which might mitigate excessive stress

despite external medical and economical threats and social isolation.

The current study

Taken together, the goal of the current study was to cross-culturally predict i) fear of the virus

and ii) perceived health, as social isolation measures in response to the COVID-19 pandemic

were being both enforced and dissolved within Europe. Here, fear was self-assessed and opera-

tionalized as the subjective fear and threat perceived by participants, both to themselves and to

people that are emotionally close to them, of being harmed and/or becoming infected by the

virus; whereas subjective health was the self-assessed overall perceived health state of

participants.

By incorporating both features specific to the individual (e.g., perceived vulnerability and

attachment style) and their environment (e.g., spread of the virus, governmental restrictions,

living situation, economic threats), we utilize machine learning to predict fear of the virus and

perceived health status. We then identify the variables that contribute most to these predic-

tions. Employing machine learning as opposed to conventional analyses presents the advan-

tage of predicting, rather than just explaining, psychological outcomes, in addition to clearly

identifying useful predictors [46, 47]. The utility of machine learning models with regards to

understanding complex human states and behavior has been repeatedly demonstrated in

recent years [27, 48]. More specifically, these models represent a very robust way of multivari-

ate data analysis, which can incorporate and control for a large amount of input variables

while avoiding overfitting [49].

We hypothesize that our machine learning models will predict accurately reported fear lev-

els when a variety of input factors are taken into account and controlled; specifically, we expect

that perceived vulnerability to disease, attachment security and environmental factors will

have high predictive value. Similarly, we hypothesize that machine learning models will be able

to predict accurately perceived health, when utilizing information pertaining to living situa-

tions, exercising, sexual behavior, touching interactions, and perceived vulnerability to the

pandemic threat as input variables.

Importantly, we aim to elucidate the factors that contribute most to the predictions of fear

and perceived health. These variables may then help to target specific groups for behavioral

interventions including fear appeal, and to design tailored interventions to counteract a

decrease in perceived health as lockdown restrictions in response to this global threat are

implemented.

Methods

Participants

Our sample consisted of 533 adult participants (mean age = 30.48, SD = 12.18), the majority of

which were female (n = 345 female). Individuals participated in our study over a 7-week

period, allowing us to collect repeated measurements of both static and changing environmen-

tal and psychological conditions, which served as inputs into our machine learning models.

The amount of surveys completed by each participant varied, where some elected to take part

every week, and some only filled in one or two questionnaires (three questionnaires on
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average, n = 1639 surveys in total). The study comprised of participants from the following

countries: Austria (n = 190), Poland (n = 136), Spain (n = 107) and Czech Republic (n = 56).

An additional 43 participants residing in other countries (Germany, United Kingdom, Ireland,

Italy, and Pakistan) filled in surveys.

Additionally, 68% of participants were in a committed romantic relationship at the time of

the study, and only 9% of all participants reported living alone during stay-at-home restric-

tions. The majority of participants had not yet experienced a COVID-19 case in their immedi-

ate social sphere and did not throughout the whole study period, although this differed

markedly between the nations (82% in Austria, 94% in Poland, 57% in Spain, 91% in Czech

Republic). Furthermore, 60% of participants reported to have experienced some economic dis-

advantages due to the crisis, but only 17% were certain that this could prove to be an existential

threat.

No exclusion criteria were applied. All cases with at least one missing variable of interest

were excluded from the machine learning models (see Results for trials included in each

model). This sample is the same as investigated in other projects: https://osf.io/db4px/.

Procedure

For the duration of seven weeks, weekly surveys were administered via e-mail to participants

who had been recruited over social media (convenience sample). The surveys were adminis-

tered over the platform SoSci Survey (www.soscisurvey.com). Weekly responses were matched

by a self-generated participant code. All participants were informed about the aim of study

and that they could stop participating at any point. Participants were fully debriefed and

received the option to leave a contact address to be informed of the results of the study. Com-

munication with the participants took place in their native language. All procedures of the

data collection were performed in accordance with the GDPR regulation for data handling

and the 1964 Helsinki Declaration and later amendments. We received ethical approval by the

Institutional Review Board of Charles University as part of a larger program of research.

Timeframe and political situation

Administration of our surveys occurred during a phase when all observed countries had

recently implemented various measures to fight the spread of the virus. The first questionnaire

was sent out to all participating countries during the week of March 16th to 22nd, 2020, the last

one was to be completed during the week of April 27th to May 3rd, 2020.

The actual spread and effects of the virus, as well as the defensive measures taken to coun-

teract the virus, differed between the observed countries (Fig 1). Importantly, this range

allowed us to optimally examine the predictive validity of these key features on fear and per-

ceived health. Petherick and colleagues [28] summarize the gravity of governments’ responses

to the COVID-19 crisis as a stringency index, based on indicators of ‘containment and closure

policies’, ‘economic policies’ and ‘health system policies’. Fig 1 shows how this index devel-

oped, as well as confirmed cases and confirmed deaths per million citizens over the period of

observation in each country. Notably, these numbers are influenced by the testing and report-

ing policies in each country.

Surveys

Participants were asked to fill in the Perceived Vulnerability to Disease Scale (PVD, [52]) and

the Experiences in Close Relationships Revised (ECR-R, [53]; Polish version: [54]; Czech ver-

sion: [55]; Spanish version modified from: [56]) twice, around four weeks apart, in order to

ensure stability of these constructs. The PVD is used as a measure of participants’ general
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perceived vulnerability to infectious diseases and their aversion towards actions that could

potentially cause them, whereas the ECR-R is a self-report measure of adult attachment style

that is widely used in research studies examining inner representations of social relationships

(e.g. [57]). The PVD scale includes the subscales infectability (Cronbach’s α = .925) and germ

aversion (Cronbach’s α = .705); the ECR-R consists of the subscales anxiety (Cronbach’s α =

.920) and avoidance (Cronbach’s α = .917), where securely attached individuals would typi-

cally score low on both these scales [53]. If available, validated translations of the question-

naires were used, otherwise the questionnaire was translated by a native speaker and reviewed

by another native speaker. The translations of the PVD to German, Spanish, Polish and Czech

including values regarding their internal consistency and temporal stability are available on

Fig 1. Spread of COVID-19 and governmental reactions. (A) Severity of governmental measures in response to the pandemic summarized as a

stringency index (SI) [28], (B) confirmed cases and (C) deaths per million citizens caused by COVID-19 over the course of the study for Spain (yellow),

Austria (green), Poland (red) and Czech Republic (blue). Source: Hale et al. [50]; Eurostat [51].

https://doi.org/10.1371/journal.pone.0247997.g001
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OSF: https://osf.io/2a4rc/. Additionally, each week we assessed i) information regarding sexual

behaviour, ii) asked how much physical contact to other persons the participant had, ii) how

much the participant exercised in the last week, iv) if the political measures taken could prove

to be economically threatening to the participant, and v) how satisfied the participant was with

the measures taken by their government. Further, we asked i) how the participant would assess

their health state (target variable ‘health’, 5-point Likert-scale), and ii) about their fear of infec-

tion, fear that the virus might threaten their own health, and fear that the virus would threaten

the health of people emotionally close to them (target variable ‘fear of the virus’, 5-point Likert

scale, the three questions were averaged).

Demographic and personal information were additionally collected, including biological

sex, sexual orientation, relationship status, living situation, weight, height, and country of resi-

dence (for a summary of all variables see Table 1). For each week and country, we included the

aforementioned stringency index describing the severity of governmental measures in

response to the COVID-19 crisis as calculated by Petherick et al. [28, Oxford COVID-19 Gov-

ernment Response Tracker] based on indicators such as travel bans, workplace closing and

Table 1. Features included in machine learning models to predict the targets ‘fear’ and ‘perceived health’.

Target Fear of the Virus Perceived Health

Macro-level environmental features Local and temporal spread of SARS-CoV-2 and

mortality of COVID-19

Local and temporal spread of SARS-CoV-2 and

mortality of COVID-19

Stringency of lockdown restrictions Stringency of lockdown restrictions

(Country) (Country)

Demographic features Biological sex Biological sex

Sex. Orientation Sex. Orientation

Age Age+

Relationship status (Relationship status)

(Having children) (Having children)

Living situation (alone/with others) Living situation (alone/with others)

- Weight/height

Immediate personal effects of the crisis and response to
the new situation

Leaving house for occupational reasons Leaving house for occupational reasons

(Loss of income) (Loss of income)

(Existentially threatening economical loss) Existentially threatening economical loss

Infection in social sphere+ -

Satisfaction with government decisions (Feeling of preparedness)

(Worry of outbreak and its consequences)+ (Worry of outbreak and its consequences)+

Worry of food shortage+ (Worry of food shortage)+

- Exercise/week+

(Exercise: actual vs. habit) Exercise: actual vs. habit

Psychological and social features Perceived health Mean fear

PVD+ PVD+

ECR-R ECR-R+

Sexual activity Sexual activity

(Masturbation) (Masturbation)

(Levels of sexual arousal) Levels of sexual arousal

(Sexual satisfaction) Sexual satisfaction

Physical contact Physical contact

Note. Features that were only included in the extensive models are set in parenthesis here. Features with a median proportional predictive value (permutation feature

importance) greater than 0.05 in the better performing models are marked with ‘+’.

https://doi.org/10.1371/journal.pone.0247997.t001

PLOS ONE Predicting fear and perceived health during the COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0247997 March 11, 2021 7 / 16

https://osf.io/2a4rc/
https://doi.org/10.1371/journal.pone.0247997.t001
https://doi.org/10.1371/journal.pone.0247997


stay at home requirements. We further include confirmed COVID-19 cases and deaths per

million citizens (weekly) as indicators of the current viral spread and mortality in each country

(Sources: [50, 51], see Fig 1).

Analysis

For each of the predicted variables (i.e., fear and health), we fit two types of machine learning

models, one being a linear model (LASSO [least absolute shrinkage and selection operator],

[58]), and one being a non-linear model (ERT [Extremely Randomized Trees], [59]). Analyses

were conducted in Python 3.7.7. (Scikit-learn 0.22.2. [60]) and R [61]. The models were evalu-

ated with a nested cross-validation procedure (90/10, 100 repeats each) [62]. Cross-validation

allows one to assess model performance on new data, hence capturing the generalizability of

the models [49]. Hyper-parameter tuning and feature scaling (z-scoring) took place in an inner

loop within the main loop, using training data of the current cross-validation loop only. Cate-

gorical features were one-hot encoded [63]. Critically, these models allow us to incorporate

many input features while avoiding over-fitting [49]. Extremely Randomized Trees further

have the advantage of accurately capturing complex, non-linear relationships between different

variables. The models were trained on repeated measurements from each participant, allowing

for a good estimation of the impact of changing variables (e.g., governmental restrictions and

mortality). Importantly, however, cross-validation was stratified, controlling for participant ID

in order to counteract subject cluster learning. This procedure allows one to estimate the mod-

els’ performance in new, ‘unknown’ participants.

We compared this performance to a trivial predictor, which uses the mean of all target vari-

ables for each prediction. To estimate the predictive value of the input features, we report the

median permutation feature importance (PFI) for the better-performing model as the propor-

tional loss of explained variance if the input is replaced by a random (non-informative) array

of that variable [64]. Initially, the models included all collected variables (see Table 1). Subse-

quently, we repeated the calculations with reduced input factors, taking into account only var-

iables that were either influential (i.e., positive permutation feature importance) or explicitly

expected to be influential (i.e. not just possible confounders) (Table 1). Since all trials with

missing values in the input features were excluded, reducing the input dimensions leads to

higher data density.

Results

Fear of the virus

Our machine learning models were able to predict mean fear of the virus significantly better

than a trivial predictor. Specifically, the extensive models predict around 35% of the variance

of fear ratings (LASSO: R2
avg = .35, R2

median = .35, p< .001; ERT: R2
avg = .32, R2

median = .36, p<
.001; Ntrials = 896), where the input ‘worrying about the outbreak and its consequences’ had

the highest predictive value. Since this input is conceptually close to the target, we repeated the

calculation without this input, and further reduced it by some input factors that evidenced

lower predictive value (Table 1). The reduced models predicted approximately 23% of the vari-

ance, where again the linear models performed better (LASSO: R2
avg = .23, R2

median = .24, p<
.001; Ntrials = 1033; ERT: R2

avg = .22, R2
median = .22, p< .001; Ntrials = 1033).

The most important predictors which contributed more than 5% to the overall explained

variance of the variable ‘fear’ were i) worrying about food shortage (30.45%), ii) PVD scores

(infectability: 16.33%; germ aversion: 12.21%), and iii) infections in the participant’s social

sphere (7.08%), which all positively influenced fear ratings (Fig 2).
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Perceived health

Even though perceived health during the lockdown could be predicted significantly better by

both our extensive and reduced models than by a trivial predictor, this is of little practical rele-

vance since on average only 9% of the variance could be predicted with the reduced linear

models (R2
avg = .09, R2

median = .13, p< .001, Ntrials = 932), and 5% with the non-linear model

(R2
avg = .05, R2

median = .09, p< .001, Ntrials = 932). The more extensive models performed

slightly worse, where on average, 5% of the variance was predicted (LASSO: R2
avg = .05,

R2
median = .08, p = .002, Ntrials = 896; ERT: R2

avg = .05, R2
median = .09, p = .003, Ntrials = 896).

The most important predictors were the i) PVD score (infectability: 32.21%; higher scores

predicting lower health ratings), ii) exercising (17.5%; more exercise/week predicting higher

health ratings), iii) attachment security (anxiety: 6.67%; higher anxiety predicting lower health

ratings) and iv) age (6.2%; younger age predicting higher health ratings). Sexual activity, physi-

cal contact, case counts and other country characteristics did not or only marginally improved

the predictive value of the models (Fig 2).

Discussion

The present study aimed to identify factors that could predict interpersonal differences in fear

of the virus and perceived health as social isolation measures are implemented during the

COVID-19 pandemic. We repeatedly administered questionnaires in four European states and

trained machine-learning models to predict the outcome variables fear and perceived health.

Our results revealed that fear of the virus could indeed be predicted with high accuracy

(accounting for approximately 23% of the variance). Here, worries about resource shortage,

perceived vulnerability to disease in general (PVD) [52], and infections in the participant’s

social sphere were the most important predictors. Perceived health could be predicted better

than by a trivial predictor, albeit at low effect sizes, where PVD, exercise, attachment security

and age had some predictive value. Interestingly, macro-level environmental variables such as

nationality, local and temporal spread of the virus, mortality, and the local stringency of gov-

ernmental measures did not add predictive value during machine learning computations

(Fig 2). Indeed, these results show the importance of considering ‘micro-level’ psychological

variables over ‘macro-level’ environmental variables when predicting reactions to the COVID-

19 pandemic (cf. [15, 65]). Here, we show the role of perceived vulnerability to diseases in gen-

eral (as assessed by the PVD) in predicting fear of the COVID-19 threat, but also as a risk fac-

tor for experiencing poor subjective health during lockdown restrictions. Similarly, our results

revealed that increased age and lower attachment security predicted lower perceived health; in

other words, these individuals were at a higher risk for feeling unhealthy during these excep-

tionally stressful circumstances.

Predicting fear

In the current cross-national machine learning study, approximately 23% of the variance of

mean self-reported fear levels of the virus causing COVID-19 could be predicted based on vari-

ables such as ‘worrying about food shortages’, PVD (both infectability and germ aversion

[52]), and ‘infections in the participant’s social sphere’. These results highlight that inter-indi-

vidual factors significantly contribute to a population’s fears of the novel coronavirus (Sars-

CoV-2), and support previous work calling attention to the ‘audience’ when investigating and

designing behavioral interventions based on fear appeal [5]. Such studies have oftentimes

reported sex differences with regard to this dimension [see 5]; interestingly, we found that

other variables were much more influential predictors independent of reported biological sex

(only 2% permutation feature importance).
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Since fear of infection is an adaptive response to an environmental threat [66], we expected

that it would be additionally influenced by environmental changes. Critically, however, our

findings underscore that micro-level interpersonal, rather than macro-level environmental

factors, contribute to fear development, since model prediction did not profit from input fea-

tures related to objective pathogenic threat and governmental responses. This lack of influence

on model prediction accuracy may reflect individual inabilities to process and understand the

meaning of high digit numbers, such as the 2525.5 COVID-19 cases per million citizens com-

municated by the third week of the study in Spain, resulting in decreased capacities to ratio-

nally process the information (singularity effect, [67]). Additionally, the spread of

misinformation with regard to the dangers of COVID-19 may have influenced how these

Fig 2. Summary of the results from the machine-learning models. The most important predictors of the better-performing models and the most

notable variables with no predictive value are featured.

https://doi.org/10.1371/journal.pone.0247997.g002
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numbers are processed (see [68]). Importantly, our findings emphasize the need for communi-

cation that is tailored to human psychology in order to help facilitate protective behaviors in

times of crisis (see [69]). In line with this, it has been shown that fear arousal is an efficient pro-

moter of disease-avoiding actions on the individual level [3, 4]. Indeed, an important theoreti-

cal framework for understanding fear appeals is protection motivation theory, which

delineates appraisal processes that significantly influence changes in health-related behaviors.

Threat appraisal is conceptualized as comprising of both the perceived severity of a threat and

the perceived vulnerability to it, where coping appraisal is described as the perceived response

to the threat in both efficacy and self-efficacy [8]. From the viewpoint of such frameworks, our

results have elucidated aspects of threat appraisal related to the COVID-19 pandemic, which

then need to be combined with efficacy-promoting messages (e.g. regarding the protective

effects of face-masks and physical distancing) when used to define target groups and conceptu-

alize behavioral interventions. Indeed, the importance of self-efficacy in fear appeal has been

repeatedly demonstrated [6].

Importantly, fear induction alone will not solve a crisis, since fear-related behaviors may

also contribute to harmful actions during viral pandemics [70], where Van Bavel et al. suggest

that panic-driven behaviors (e.g., hoarding purchases) might contagiously be promoting indi-

vidualistic behavior [71]. This is particularly dangerous when facing a threat where the most

effective measures (e.g., wearing face masks) are aimed at protecting other people, not the indi-

vidual. Stigmatization of infected individuals (both ‘victims and vectors’, [72]) could also be

enhanced simultaneously with the fear of the virus [72], where vulnerable populations as well

as populations at the front-line of fighting the deadly pandemic might inversely profit from

fear-reducing interventions [73]. Taken together, an evidence-driven view by which psycho-

logical, demographic, and message-related [14] factors facilitate fear induction and behavioral

changes in a given population is important to sensitize those who may play down a medical

pandemic, while avoiding irrational, panic-driven behaviors.

Predicting perceived health

In addition to the fear elicited by COVID-19, we aimed at predicting perceived health during

this crisis, where we expected physical contact, sexual activity and environmental threats to

have a high predictive value, which they did not. Nevertheless, perceived health could be pre-

dicted by our models significantly better than by a trivial predictor. Predictive factors for per-

ceived health included not only exercising and perceived vulnerability to disease (both

infectability and germ aversion), but also attachment security, thereby confirming previous

findings [18, 40, 42]. Critically, however, the small effect size indicates that key variables influ-

encing interpersonal differences in perceived health might have not been accurately captured

in the current study. Future investigations should examine other potentially predictive fea-

tures, which might include previously experiencing threatening illnesses [74], mindfulness [75,

76], and self-efficacy/individual locus of control [77].

Limitations

It is unclear to which extent people with psychiatric disorders and medical conditions partici-

pated in the current study. Indeed, this may have distorting effects on perceived threat and

health. Nevertheless, the cross-cultural composition should allow for some generalizations, in

particular since our models are evaluated by their performance in predicting ‘unknown’ sub-

jects and because nationality alone is not of predictive value for any of our target variables. Of

course, this might change if more distant cultures were taken into account.
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Conclusion

The current cross-national longitudinal machine learning study provides critical insights with

respect to predicting inter-individual differences in fear of the virus and perceived health dur-

ing the COVID-19 pandemic in Europe. We identify predictors of both variables, where inter-

estingly, psychological variables including perceived vulnerability to disease and attachment

security were useful predictors, whereas macro-level environmental variables such as the local

mortality rate and severity of lockdown restrictions had no predictive value. However, envi-

ronmental variables directly affecting individuals, such as how much they exercised or infec-

tions within the participants’ immediate social sphere, did contribute to predicting our target

variables.

Our models provide possible starting points for public communication strategies in order

to facilitate appropriate behaviors that avoid and terminate health crises, and to support the

people suffering most from stay-at-home requirements.
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