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Abstract:  

Background: Heart failure (HF) is a leading cause of morbidity and mortality worldwide, with 
over 18 million deaths annually. Despite extensive research, genetic and environmental factors 
contributing to HF remain complex and poorly understood. Recent studies suggest that 
epigenetic modifications, such as DNA methylation, may play a crucial role in regulating HF-
associated phenotypes. In this study, we leverage the Hybrid Mouse Diversity Panel (HMDP), a 
cohort of over 100 inbred mouse strains, to investigate the role of DNA methylation in HF 
progression. 

Objective: We aim to identify epigenetic modifications associated with HF by integrating DNA 
methylation data with gene expression and phenotypic traits. Using isoproterenol (ISO)-induced 
cardiac hypertrophy and failure in HMDP mice, we explore the relationship between methylation 
patterns and HF susceptibility. 

Methods: We performed reduced representational bisulfite sequencing (RRBS) to capture DNA 
methylation at single-nucleotide resolution in the left ventricles of 90 HMDP mouse strains under 
both control and ISO-treated conditions. We identified differentially methylated regions (DMRs) 
and performed an epigenome-wide association study (EWAS) using the MACAU algorithm.  We 
identified likely candidate genes within each locus through integration of our results with 
previously reported sequence variation, gene expression, and HF-related phenotypes. In vitro 
approaches were employed to validate key findings, including gene knockdown experiments in 
neonatal rat ventricular myocytes (NRVMs).  We also examined the effects of preventing DNA 
methyltransferase activity on HF progression. 

Results: Our EWAS identified 56 CpG loci significantly associated with HF phenotypes, 
including 18 loci where baseline DNA methylation predicted post-ISO HF progression. Key 
candidate genes, such as Prkag2, Anks1, and Mospd3, were identified based on their 
epigenetic regulation and association with HF traits. In vitro follow-up on a number of genes 
confirmed that knockdown of Anks1 and Mospd3 in NRVMs resulted in significant alterations in 
cell size and blunting of ISO-induced hypertrophy, demonstrating their functional relevance in 
HF pathology. 

Furthermore, treatment with the DNA methyltransferase inhibitor RG108 in ISO-treated BTBRT 
mice significantly reduced cardiac hypertrophy and preserved ejection fraction compared to 
mice only treated with ISO, highlighting the therapeutic potential of targeting DNA methylation in 
HF. Differential expression analysis revealed that RG108 treatment restored the expression of 
several methylation-sensitive genes, further supporting the role of epigenetic regulation in HF. 

Conclusion: Our study demonstrates a clear interplay between DNA methylation, gene 
expression, and HF-associated phenotypes. We identified several novel epigenetic loci and 
candidate genes that contribute to HF progression, offering new insights into the molecular 
mechanisms of HF. These findings underscore the importance of epigenetic regulation in 
cardiac disease and suggest potential therapeutic strategies for modifying HF outcomes through 
targeting DNA methylation. 

Keywords: heart failure, DNA methylation, epigenome-wide association study, Hybrid Mouse 
Diversity Panel, gene expression, cardiac hypertrophy, isoproterenol, EWAS, methylation 
inhibitors 
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Introduction 1 

Heart failure (HF) is a leading cause of worldwide mortality and morbidity, associated with over 2 

18 million deaths per year worldwide1.  In the United States alone, approximately 6 million 3 

individuals are currently living with HF and HF is reported to play a role in approximately 1 in 8 4 

deaths each year1.  Heart Failure is a final unifying pathway for a number of distinct inciting 5 

etiologies and is typically diagnosed in the elderly after significant cardiac damage has already 6 

occurred2.  This late age of detection results in a high degree of inter-individual environmental 7 

variation that impedes the efforts of scientists to identify genetic variants which underlie HF2-4.  8 

In earlier work, we used a large cohort of inbred mouse strains, the Hybrid Mouse Diversity 9 

Panel (HMDP) to circumvent these sources of environmental noise5,6.  The HMDP consists of 10 

over 100 inbred strains of mice and contains approximately 4.2 million polymorphisms7.  In our 11 

prior study, we used chronic beta adrenergic overdrive through the use of isoproterenol (ISO) to 12 

induce cardiac hypertrophy and failure in 104 strains of the HMDP.  Through genetic mapping 13 

we identified 41 genome-wide significant loci in HF-associated phenotypes5,6 and, after 14 

combining our data with strain-and-condition-specific RNA transcriptomes, successfully 15 

identified and validated candidate genes at these loci through a combination of in vitro and in 16 

vivo approaches. 17 

Recent research into HF has extended into a study of the epigenome, looking for non-18 

sequence-level variations in DNA that are linked to changes in HF-associated phenotypes8,9.  19 

The DNA methylome, notably methylation of cytosines in CG dinucleotide pairs (CpGs), has 20 

been demonstrated to play a key role in the development of the heart and regulation of HF8,10-13, 21 

and epigenome-wide association studies (EWAS) have successfully identified specific CpGs 22 

linked to phenotypic changes during HF progression13.  In past work we demonstrated that 23 

methylome differences between the inbred mouse strains BUB/J and Balb/cJ could be linked to 24 

ISO-induced HF susceptibility14.   25 

In this study, we integrate DNA methylation captured at single nucleotide resolution from the left 26 

ventricles of control and ISO-treated hearts across 90 strains of the HMDP with gene 27 

expression and phenotypic traits from these strains and uncover convincing patterns of 28 

differentially methylated regions (DMRs) that correspond with disease severity.  Application of 29 

the EWAS algorithm MACAU15 identified 56 CpG loci that are significantly associated with HF 30 

phenotypes, including 18 that link pre/un-treated DNA methylation status to post-ISO HF 31 

progression and severity.  Through the use of a prioritization algorithm that links sequence 32 

variation, CpG methylation, gene expression, and phenotypic traits, we identify many high 33 
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confidence EWAS candidate genes, including Prkag2, Anks1, and Mospd3.  Using in vitro and 34 

in silico approaches, we validate the role of several of these genes in HF.  Finally, we 35 

demonstrate that blocking the action of methyltransferases is sufficient to prevent cardiac 36 

hypertrophy in a murine strain (BTBRT<+>tf/J) that otherwise responds strongly to 37 

catecholamine overdrive.  Our findings clearly demonstrate an interplay between DNA 38 

methylation, gene expression, and HF-associated phenotypes and represent a rich resource for 39 

future scientific study. 40 

Methods 41 

Hybrid Mouse Diversity Panel Isoproterenol Study 42 

We previously reported5,6,16 a genetic study of heart failure in the Hybrid Mouse Diversity Panel, 43 

in which 8-10 week old (average 9.1 weeks) female mice from 105 diverse inbred mouse strains 44 

were divided into control (2 mice) and treated (4 mice) groups per strain.  Treated mice were 45 

administered the β-adrenergic agonist isoproterenol (ISO) via intraperitoneally-implanted 46 

osmotic micropumps (Alzet, model 2004) at a rate of 30 mg ISO/ kg body weight/ day for 21 47 

days, at which point all mice were sacrificed, organs removed, weighed, and flash frozen in 48 

liquid nitrogen.  All mice were obtained from Jackson Labs or directly from the UCLA HMDP 49 

colony as described5.  All mice were maintained on a standard chow diet and housed under 50 

pathogen-free conditions according to NIH guidelines.  Mice underwent echocardiography 51 

before surgery and weekly thereafter until sacrifice at 21 days.  Sections from the left ventricle 52 

of the heart were studied using Masson-Trichrome staining to quantify fibrosis levels as 53 

previously described16. 54 

 55 

RG108 Mouse Models 56 

BTBRT<+>/tfJ and C57BL/6J female mice aged 8-10 weeks were obtained from Jackson 57 

Laboratories.  The use of the mice were under the care and guidelines of National University of 58 

Singapore Institutional Animal Care and Use committee (NUS IACUC). 2mg of non-specific 59 

DNMT inhibitor N-phthalyl-L-trytophan (RG108) (Vector Biomed) was dissolved in 33 µl dimethyl 60 

sulfoxide (DMSO) (Sigma-Aldrich) and 15 µl ethanol17. For every 100 µl of RG108 mixture, 840 61 

µl corn oil (Sigma-Aldrich) was added. The animals were divided into 3 groups (n=12 per 62 

group). Group 1 received saline to serve as baseline control. In group 2, the mice were 63 

implanted with an Alzet osmotic pump (model 2004) to deliver a consistent dose of ISO at 64 
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30mg/kg/day for 3 weeks. In group 3, the mice received ISO (30mg/kg/day) and a single (daily) 65 

subcutaneous dose of RG108 (12.5mg/Kg/day) for 3 weeks. Echocardiography was performed 66 

on all the animals at a weekly interval and sacrificed at week 3 post-implantation. The hearts 67 

were removed and weighed and the left ventricles (LV) were harvested for histology staining. 68 

DNA and RNA were isolated for RRBS-seq and RNA-seq assays.  69 

 70 

DNA Isolation and Reduced Representational Bisulfite Sequencing 71 

DNA from 90 HMDP strains (see Supplemental Table 1) as well as from the RG108 cohorts 72 

were isolated from control and ISO-treated left ventricles.  Each sample was lysed in RLT Buffer 73 

using a roto-stator homogenizer and processed using dnEasy kits (Qiagen) according to 74 

manufacturer instructions approach and quantified using the Qubit dsDNA HS Kit.  RRBS-seq 75 

was performed as described in Gu et al18 with modifications. Briefly, 50 ng of purified DNA was 76 

digested with MspI (Fast digest MspI, Thermo Fisher Scientific FD0544) for 30 min at 37°C 77 

followed by heat inactivation at 65°C for 5 min. Lambda DNA (Thermo Fisher Scientific) was 78 

spiked into the DNA sample to serve as an internal control to calculate the bisulfite conversion 79 

efficiency. Library preparation was performed using NEBNext Ultra DNA library prep kit for 80 

Illumina (New England BioLabs) and ligated with methylated adapters for Illumina sequencing at 81 

a dilution of 1:10 (New England BioLabs). The adapter ligated DNA was subjected to bisulfite 82 

conversion with EpiTect fast bisulfite conversion kit (Qiagen) using the following cycling 83 

conditions: 2 cycles of (95°C; 5min, 60°C; 10min, 95°C; 5min, 60°C; 10min) and hold at 20°C. 84 

Bisulfite converted DNA was PCR amplified for 14-16 cycles using 2.5 U of Pfu Turbo Cx 85 

Hotstart DNA polymerase (Agilent Technologies, 600410) and size selected for fragments 86 

between 200 bp to 500 bp with Ampure Xp magnetic beads (Agencourt). Purified DNA was 87 

subjected to single end sequencing using the Illumina Hiseq 2500 at 1x 101 bp read length. 88 

 89 

RNA-seq Library Preparation and Data Analysis 90 

RNA was isolated from the left ventricle of RG108 cohort animals using rnEasy kits (Qiagen).  91 

RNA-seq was performed with 1µg of total RNA using the Illumina Truseq kit according to 92 

manufacturer’s protocol. The library was subjected to paired-end sequencing on the Illumina 93 

Hiseq2500 at 2x 101 bp read length. RNA-Seq libraries were aligned to the mouse reference 94 

genome, mm10, using Tophat2 (version 2.2.0.12)19 with default parameters. The quality of the 95 

mapping was assessed using RNASEQC20. Gene expressions were computed using Cufflinks2 96 
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(version 2.2.1)19. Gene expression level was reported in Fragment Per Kilobase per Million 97 

Reads (FPKM). 98 

  99 

DNA Methylation Data Processing 100 

RRBSseq reads were aligned to the mouse reference genome, mm10, using the BSseeker2 101 

algorithm21 with default parameters.  To ensure high data quality, CpGs with Q<30 and read 102 

depth of less than 3x were filtered out as well as CpGs in strains which had a detected SNP at 103 

the CpG site.  Batch effects in the data were identified and corrected using COMBATseq22 (see 104 

Supplemental Figure 1A and 1B).  To achieve an accurate estimate of methylation level, high 105 

read cutoffs were applied to eliminate PCR effects. CpGs having higher coverage than 99.9% 106 

percentile of other read counts were removed, using filterByCoverage function in methylKit23 107 

package. Because methylation occurs almost exclusively in the CpG context, we focused only 108 

on cytosines in CpG dinucleotides (CGs). 109 

Identification of Differentially Methylated Regions 110 

Percent methylation (PM) was calculated for each covered C by taking the ratio of methylated 111 

Cs divided by the total number of reads at that location.  We then further limited our study to 112 

regions with at least 5x CpG coverage detected in 70% or more of the HMDP strains and used 113 

the ggbiplot24 R package to remove obvious outliers. 114 

Differential methylation between Control and Isoproterenol-treated hearts.  For each remaining 115 

CpG site in the dataset, we calculated differential methylation with the Methylkit R package23, 116 

which uses a logistic model to ascertain whether or not ISO has had an effect on methylation 117 

levels by modeling the log odds ratio based on the methylation proportion of a CpG 𝜋𝑖 with or 118 

without the addition of a treatment term, or in other words whether 119 

log (
𝜋𝑖

1−𝜋𝑖
) =  𝛽0 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 is a better model than log (

𝜋𝑖

1−𝜋𝑖
) =  𝛽0.  We considered all sites 120 

with a minimal shift of methylation of 3% and FDR < 1% for further study. 121 

Differential methylation across the HDMP cohort.  We relied on hypervariability, a previously 122 

described measure of DNA methylation variability used in past methylation studies of the 123 

HMDP25,26 to identify CpGs for further study.  Briefly, hypervariable sites are CpGs in which the 124 

percent methylation shifts by over 25% in at least 5% of the affected strains.  We modeled this 125 

off of the standard use of a minor allele frequency cutoff of 5%, as we have used in prior SNP-126 

based studies5,6,27.  127 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.10.25.619688doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.619688
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

Epigenome Wide Association Studies 128 

We used the methylation-specific binomial mixed model package MACAU15 to test for 129 

association and account for population structure and relatedness between the mouse strains.  130 

MACAU models each CpG as 131 

𝑦𝑖~𝐵𝑖𝑛(𝑟𝑖, 𝜋𝑖) 132 

Where 𝑟𝑖 is the total read count for the ith individual, 𝑦𝑖 is the methylated read count for that 133 

individual, constrained to be an integer equal to or smaller than 𝑟𝑖, and 𝜋𝑖 is an unknown 134 

parameter that represents the true proportion of methylated reads for the individual at that site.   135 

MACAU then uses a logit link to model 𝜋𝑖 as a linear function of parameters 136 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = log(𝜆𝑖) =  𝒘𝒊
𝑻𝜶 + 𝑥𝑖𝛽 + 𝑔𝑖 + 𝑒𝑖 137 

𝑔 = 𝑐(𝑔1,⋯, 𝑔𝑛)𝑇~𝑀𝑉𝑁(0, 𝜎2ℎ2𝑲) 138 

𝑒 = 𝑐(𝑒1, ⋯ , 𝑒𝑛)𝑻~𝑀𝑉𝑁(0, 𝛼2(1 − ℎ2)𝑰𝑛𝑥𝑛) 139 

Where 𝒘𝒊 is a c-vector of covariates including an intercept and α is a c-vector of corresponding 140 

coefficients, 𝑥𝑖 is the predictor of interest and β is its coefficient.  g is a n-vector of genetic 141 

random effects that model correlation due to population structure and e is a n-vector of 142 

environmental residual errors that model independent variation.  K is a known n x n relatedness 143 

matrix based, in our case, on genotype data, and standardized to ensure that 𝑡𝑟(𝐾)/𝑛 =  1 (this 144 

ensures that ℎ2 lies between 0 and 1 and can be interpreted as heritability).  I is a n x n identity 145 

matrix, 𝜎2ℎ2 is the genetic variance component, 𝜎2(1 − ℎ2) is the environmental variance 146 

component, ℎ2 is the heritiability of the logit transformed methylation proportion (aka 𝑙𝑜𝑔𝑖𝑡(𝜋)) 147 

and MVN denotes the multivariate normal distribution.   148 

To test for association of a CpG to a trait, MACAU tests the null hypothesis H0 : β= 0 for each 149 

site.  It samples to compute an approximate maximum likelihood estimate 𝛽̂, its standard error 150 

𝑠𝑒(𝛽̂), and a corresponding p-value of significance as described15.  Significant loci were 151 

determined by first calculating a Bonferroni-corrected significance threshold by dividing our 152 

alpha of 0.05 by the estimated number of correlated units of methylation, calculated as 3,330 153 

(approximately 1 per 750 kb) in prior EWAS work in the HMDP25, resulting in a per-phenotype 154 

significance threshold of 1.5E-5.  Although we have measured a total of 69 phenotypes, many of 155 

these are not independent, either linked to one another through physiology (e.g. LVID at 156 

diastole vs systole) or at times directly derived from combinations of other phenotypes (e.g. 157 
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fractional shortening vs LVID).  Through principle component analysis using the ggbiplot R 158 

package24, we estimated that we had approximately 36 “independent” phenotypes across our 159 

entire study.  Therefore, to calculate our final threshold we performed another Bonferroni 160 

correction on our per-phenotype threshold to obtain a final threshold of 4.17E-7. 161 

Candidate Gene Selection 162 

Previous reporting on DNA methylation in the HDMP25 identified the average correlation block 163 

size of a methylation locus (equivalent to the Linkage Disequilibrium block of a SNP locus) to be 164 

approximately 750kb{Orozco, 2015 #29}.  To account for potentially larger loci, we extended our 165 

analysis to examine all genes that lay within 1 MB in either direction of the peak associated CpG 166 

in the locus, then leveraged other data from previously published HMDP cohorts to prioritize 167 

candidates5,6.  First, we looked for mutations present in or around the promoter or exons of each 168 

gene that were predicted to cause a change in gene expression or function via the Wellcome 169 

Trust Mouse Genomes Resource28,29 which has fully sequenced each of the founder lines of the 170 

HMDP.  Next, we looked whether the gene’s expression was significantly associated with the 171 

locus via eQTL5 or emQTL analyses.  Next we examined whether the gene’s expression 172 

correlated with the phenotype associated with the locus5,6, and finally, whether there was 173 

literature evidence for association of this gene with the phenotype of interest or with DNA 174 

methylation.  Genes with multiple lines of evidence, or strong evidence (e.g. very strong 175 

associations of gene expression with the locus) were prioritized for in vitro validation. 176 

In vitro Validation Studies 177 

Neonatal Rat Ventricular Cardiomyocytes (NRVMs) were isolated from 1-4 day old rat neonates 178 

using the Cellutron Neomyocyte isolation kit (Cellutron) with modifications.  Briefly, hearts were 179 

quickly removed and trimmed from neonatal rats and placed in ice cold PBS until 10 hearts had 180 

been isolated.  PBS was removed and then replaced with 4mL digestion buffer, then incubated 181 

for 12 minutes at 37C on a stir plate at 150rpm in a 25 mL beaker with a 1’’ stir bar.  This size 182 

beaker and stir bar was crucial for isolating large numbers of NRVMs.  Supernatant was 183 

transferred to a new 15 mL tube and spun at 2,200rpm for 2 minutes.  Supernatant was 184 

discarded and cells resuspended in digestion stop buffer with cell media at room temperature.  185 

Meanwhile, 4 mL of digestion buffer was added to the hearts and the entire process repeated 7-186 

9 times until the heart turned a pale whitish-pink and fewer cells were recovered after 187 

centrifugation.  All cells were centrifuge at 2,200 rpm for 2 minutes and then resuspended in 2 188 
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mL ADS buffer(12mM NaCl, 2mM HEPES, 1 mM NaH2PO4, 0.5mM Glucose, 0.5mM KCl, 0.1 189 

mM MgSO4). 190 

NRVMs were purified by passing them through a Percoll gradient, which was established by 191 

carefully layering 6mL of 1.059g/mL Percoll atop 3 mL of 1.082g/mL Percoll, both diluted in ADS 192 

buffer in a 15 mL conical tube.  Cell suspension was slowly added to not disturb the layers, then 193 

centrifuged at 3000 rpm for 30 minutes at the slowest possible ramp up speed and with the 194 

brake disabled.  Two bands of cells were visible, with cardiomyocytes concentrated in the lower 195 

band.  Other cells were aspirated off and the NRVMs carefully extracted and diluted in 10 mL of 196 

ADS buffer followed by centrifugation at 2200 rpm for 3 minutes and supernatant discarded. y.  197 

NRVM pellet was then resuspended in 2 mL of DMEM with 10% FBS and 1% pen/strep and 198 

counted using a Countess II cell counter (ThermoFisher).  Cells were plated onto gelatin-coated 199 

12-well plates at a density of 200-250k cells per well. 200 

We followed our previously established protocol for testing gene siRNAs in NRVMs (see 201 

Supplemental Table 2 for siRNAs).  24 hours after plating, DMEM media containing FBS and 202 

pen/strep was aspirated and wells washed 2x in PBS.  DMEM media containing 1% ITS 203 

supplement (SigmaAldrich) was added to each well.  That same day, siRNAs were transfected 204 

into cells using lipofectamine RNAiMax (Invitrogen) per manufacturer instructions.  For each 205 

siRNA experiment, 6 wells across 2 12-well plates each got either control (no siRNA), scramble 206 

siRNA, or a siRNA obtained from IDT (See Supplemental Table 2).  Transfections were allowed 207 

to proceed for 24 hours, then the media was refreshed and isoproterenol added to half of the 208 

wells at a final concentration of 60 mM.  After 48 hours, photographs of each well were taken at 209 

20x magnification and RNA isolated for qPCR validation of gene knockdown (see Supplemental 210 

Table S3).  Cell cross-sectional area and confluence were assessed for each well by trained 211 

users. 212 

Gene Ontology Enrichment 213 

Gene ontology enrichment was performed using the Gene Analytics Suite30 which uses a 214 

binomial test to test the null hypothesis that a defined set of genes is not over-represented 215 

within a given pathway and then corrected using the Benjamini-Hochberg correction (FDR).  216 

GeneAnalytics has several modules (e.g. a Gene Pathways module, a GO Terms module, etc.)  217 

We specify which module we use in the text as needed.  All p values reported are corrected p 218 

values. 219 

Results 220 
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HMDP Data Acquisition 221 

We performed reduced representational bisulfite sequencing (RRBS) on 90 inbred mouse 222 

strains from the Hybrid Mouse Diversity Panel (HMDP) which we had previously used in a 223 

systems genetics study of beta-adrenergic driven cardiac hypertrophy and failure5,6 (See 224 

Supplemental Table 1 for mouse strains used in this study).  8-10 week old mice were divided 225 

into control and ISO-treated cohorts (30 mg/kg body weight/day via Alzet osmotic pumps).  226 

Three weeks later, mice were sacrificed and isolated left ventricular DNA was cut with MspI, 227 

bisulfite converted, and size selected, followed by library prep and sequencing on an Illumina 228 

HiSeq2500 resulting in 174 100-bp single end libraries averaging 70.2 million reads per sample.  229 

Data was aligned to the mouse genome (mm10) using BSSeeker221 with an average of 41.3 230 

aligned reads across 2.8 million CpGs for an average mappability of 58.8% and an average 231 

coverage of 38x.  We filtered out all (7,230) CpGs which had a polymorphism in the HMDP as 232 

detected by BSSeeker2.  We then corrected for batch effects using COMBATseq22.  We then 233 

limited our analysis to CpGs that were detected in at least 70% of the strains at 5x coverage, 234 

leaving us with a final number of 1.8 million CpGs for downstream analysis.  The mouse 235 

genome consists of approximately 21.3 million CpGs, therefore we observed approximately 236 

8.4% of all CpGs using RRBS.   237 

Global methylation levels at CpGs shifted by  -0.07% (standard deviation 1.8%, Figure 1B) in 238 

response to ISO challenge, suggesting that, at least globally, DNA methylation is not 239 

significantly affected by ISO.  We identified a set of 168,251 hypervariable CpGs (>25% 240 

absolute change in variation in at least 5% (9) samples) for use in EWAS and other analyses.   241 

For the same mouse strains, we measured 69 clinical traits, including heart and other organ 242 

weights, echocardiographic measurements and cardiac fibrosis, as well as gene expression 243 

using Illumina Mouse Ref 8.0 RNA microarrays as previously reported in our prior work on this 244 

cohort5,6 (see, for example, the variation observed in heart weights across the panel in Figure 245 

1A).      246 

Observed Methylation Patterns Across the HMDP 247 

Next, we examined the effects of ISO on our animals from a global perspective. (Figure 1B)  We 248 

calculated the average methylation shift for each CpG between control and treated animals as 249 

well as the significance of this shift.  We observe 27,603 CpGs that are nominally significant at 250 

p<0.05, and 1,413 CpGs which remain significant at an FDR of 1%.  Overlapping these 251 

significant CpGs with the 18,723 CpGs which show an average shift of at least 3% between ISO 252 
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and Control samples, we find 231 CpGs which are globally hypomethylated in response to ISO 253 

treatment and 166 CpGs which are globally hypermethylated in response to ISO at an FDR of 254 

1% (Figure 1B).  The nearest gene to each CpG was annotated using the genotate R package31 255 

and gene ontology enrichments calculated using the GeneAnalytics platform’s Gene Ontology 256 

module30.  Hypermethylated genes were enriched for, among other terms, Apoptosis (P=1.8E-257 

6), oxidative stress (P=1.2E-5) and the unfolded protein response (P= 9.5E-5), while 258 

hypomethylated genes were enriched for RNA transcription (P=1.3E-5), Abnormal cardiac 259 

morphology (P=2.7E-5), and the P38MAPK cascade (P=3.2E-5) (Figure 1C, See Supplemental 260 

Table 4 for complete details).   261 

Wanting a better sense of how genetic and environmental effects affected DNA methylation 262 

across the HMDP, we extracted the top 1% (1,623) hypervariable CpGs which showed the 263 

largest standard deviation across the HMDP (not necessarily between the Iso and Control 264 

cohorts) (Figure 2).  Echoing what we observed when specifically focusing on CpGs which were 265 

affected by ISO treatment, we observe far stronger strain (genetic) effects on the methylome 266 

than environmental effects as evidenced by hierarchical clustering of the strain methylomes 267 

largely separating by genetic cohort rather than experimental condition.  That is, we observe 268 

that each of the three Recombinant Inbred panels that make up the majority of the HMDP 269 

clustered independently, while the other inbred lines and the C57-associated lines formed their 270 

own clades in the strain dendrogram (Figure 2, bottom edge).  By contrast, no clustering could 271 

be detected for isoproterenol status, with isoproterenol and control treated mice from the same 272 

strain tending to cluster together rather than separately (Figure 2 top edge).  Among these top 273 

1% varying CpGs, we observe 10 clusters across the HMDP panel.  For each CpG, we 274 

identified the closest gene (if any) within 500kb of the CpG and then submitted these gene lists 275 

to the Pathway module of the Gene Analytics enrichment suite30 (Figure 2, right edge).  Each 276 

cluster of CpGs we observed were enriched for one or more pathways, many of which are 277 

crucial to cardiac function.  For example, we observe clusters involved in β adrenergic signaling 278 

(P=1.4E-6), Collagen Production (P=7.6E-5) and other major signaling or cytoskeleton-279 

associated pathways (Full details in Supplemental Table 5). 280 

Variation in CpG Methylation is Associated with and Predictive of Heart-Failure-Associated 281 

Phenotypes 282 

In order to identify associations between natural variation in CpG methylation across the HMDP 283 

and complex clinical traits, we performed a set of EWAS studies between Hypervariable CpG 284 

methylation and 69 traits, including heart and chamber weights, other organ weights, cardiac 285 
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fibrosis, and echocardiographic parameters in control and ISO-treated animals as well as the 286 

change between ISO and control conditions (23 phenotypes each, see Supplemental Table 6).  287 

In contrast to our work with SNP-based GWAS in the HMDP, we elected to use a binomial 288 

mixed-model approach, MACAU, which was specifically designed for unsupervised 289 

determination of associations between CpGs and traits in WGBS and RRBS contexts.  In 290 

keeping with best practices, we used a kinship matrix based on CpG methylation in contrast to a 291 

SNP-based kinship matrix25, which not only corrects for false associations caused by 292 

populations structure7,27,32,33 but also partially accounts for changes in tissue heterogeneity 293 

found in our RRBS data34. 294 

Prior work in the realized HMDP has identified an average correlation structure in CpG 295 

methylation data (roughly equivalent to the concept of ‘linkage disequilibrium’ in SNP data) of 296 

750kb25.  We used this as a basis for determining a significance threshold in our data, 297 

performing Bonferroni-corrections on our initial alpha of 0.05 based on the approximately 3,330 298 

‘blocks’ across the genome and our estimate of approximately 36 independent traits as 299 

determined by PCA on our phenotypes, resulting in a final genome-wide significance threshold 300 

of P=4.17E-7 and suggestive threshold of P=4.17E-6. 301 

At our suggestive threshold we observe 72 loci across 25 distinct phenotypes for control CpG 302 

methylation affecting control traits, 39 loci across 16 phenotypes for isoproterenol-treated CpG 303 

methylation affected ISO-treated traits, 36 loci across 24 traits in which the change in CpG 304 

methylation was associated with a change in clinical traits and 32 loci across 19 phenotypes in 305 

which control CpG methylation levels were predictive of eventual ISO-treated clinical traits (All 306 

suggestive loci are detailed in Supplemental Table 7).   At our genome wide significance 307 

threshold, we observe 12 loci across 8 phenotypes for untreated CpG and control phenotypes, 308 

18 loci across 12 phenotypes for untreated CpG and ISO phenotypes, 25 loci across 12 309 

phenotypes for treated CPG and ISO phenotypes and only 1 locus for delta CpGs and delta 310 

phenotypes (Table 1, Figure 3).    311 

EWAS replicates previously identified GWAS loci and identifies novel associations. 312 

We have previously performed a GWAS for HF-associated phenotypes in this same panel of 313 

mice5,6.  In prior studies in the HMDP, we have identified the average LD block size for the 314 

HMDP to have a resolution of approximately 2 Mb33.  As such, to look for overlaps between 315 

GWAS and EWAS associations, we looked for any pair of GWAS/EWAS terms which lay within 316 

2 Mb of one another.  At our suggestive threshold for both GWAS and EWAS, we observe 209 317 
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EWAS loci and 41 GWAS loci for phenotypes analyzed by both approaches.  Of these, 20 318 

EWAS loci (9.6%) were within 2 Mb of a GWAS locus, suggesting possible co-regulation at that 319 

locus.  This represents a modest, but significant enrichment over what would be expected by 320 

chance (P=0.0132). 321 

One example of an overlapping EWAS/GWAS locus is found on chromosome 5 at 322 

approximately 136.7Mb.  This locus is significantly associated with isoproterenol-treated RV 323 

weight by GWAS (P=3.49E-10)5 and isoproterenol-treated adrenal gland weight by EWAS on 324 

treated CpGs (P=8.95E-8).  The best candidate gene at this locus is Mospd3.  Mospd3 is a 325 

poorly characterized gene that was first described in a manuscript that suggested that its 326 

knockout leads to a not fully penetrant thinning and occasional rupturing of the right ventricular 327 

cardiac wall during development35.  Since 2020, additional reports have suggested that Mospd3 328 

may play a role in the regulation of mitochondria-ER binding and may help modulate 329 

mitochondrial membrane refreshment36. 330 

Another example is Prkag2, also found on chromosome 5 at approximately 25.0Mb.  Like 331 

Mospd3, this gene is also associated with both RV weight in GWAS (P=1.23E-6)5 and adrenal 332 

gland weight in EWAS (P=1.33E-7) after isoproterenol stimulation.   Prkag2 mutations cause an 333 

autosomal dominant glycogen storage disorder characterized by significant cardiac hypertrophy 334 

and subsequent heart failure37.  335 

EWAS loci contain known and novel candidate genes  336 

In addition to the overlapping loci detailed above, we also identified a number of novel loci for 337 

this study (Figure 3, Table 1).  To move from loci to candidate genes, we leverage the extensive 338 

‘omics resources that our group has developed for the HMDP, including information at the 339 

genomic, transcriptomic, and phenotypic levels to identify and prioritize genes within our loci for 340 

downstream in vitro confirmation studies.  We began by identifying all genes with 1 Mb 341 

upstream or downstream of the peak CpG in each EWAS locus.  We next examined these 342 

genes to identify features that increase their likelihood of being causally involved with our 343 

phenotype, such as mis-sense or non-sense mutations as captured by the sequencing efforts of 344 

the Wellcome Trust Mouse Genomes Resource28,29, changes in gene expression associated to 345 

either SNP5 or methylation changes at the locus across the HMDP population, and whether prior 346 

literature supports the role of the gene in regulating changes in the phenotype and/or DNA 347 

methylation.  Using these criteria, we were able to identify at least one gene per genome-wide 348 
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significant CpG locus that showed sufficient evidence for further study, with many loci containing 349 

several genes implicated by multiple forms of evidence.   350 

Contained within these loci are a number of genes which have already been associated with 351 

heart failure or other cardiomyopathies by other researchers.  These include Nfatc2, the only 352 

candidate genes within a locus associated with cardiac fibrosis (P=1.4E-9) on chromosome 2 353 

and reported to be a necessary mediator of calcineurin-dependent heart failure39.  This connects 354 

with our prior research which linked multiple subunits of calcineurin to cardiac dysfunction in the 355 

HMDP5.  We also observe Celf2, located on chromosome 2 and associated with atrial weight 356 

(P=1.4E-7).  Celf2, also known as Cugbp2, works in opposition to Celf1 to regulate mRNA 357 

stability and splicing40 and the Celf family has been implicated in multiple forms of 358 

cardiomyopathies and dysfunction41,42.  Finally,  knockout of our candidate gene, Mapt, at the 359 

most significant locus for Relative Wall Thickness after treatment (P=4.2E-10) has been shown 360 

to lead to diastolic heart failure43.  361 

A number of loci contain genes which show clear involvement in the heart and make excellent 362 

candidates for further analysis.  Several of these promising candidates are channel proteins, 363 

including our candidate gene in our single significant delta locus, where change in DNA 364 

methylation after ISO is associated with changes in phenotypic traits.  Kcnj2, which is 365 

associated (P=2.5E-7) with changes in atrial weight, is a subunit of the sodium-potassium 366 

channel Kir2.1, and is the only known causal gene for Andersen-Tawil syndrome, which is 367 

characterized by ventricular arrythmias and other dysfunctions driven by an inability to properly 368 

process adrenergic stimuli44.  We also observe Akap2, a gene which acts to slow deleterious 369 

cardiac remodeling by promoting angiogenesis and blocking apoptosis through the 370 

Akap2/Pka/Src3 complex45 as well as regulating the migration of activated myofibroblasts in the 371 

establishment of cardiac fibrosis46 and which is associated in our data with cardiac fibrosis 372 

(P=2.2E-8).  We further observe Mapk8, associated with Vcf (3.4E-7), that we previously 373 

showed was transcriptionally associated with right ventricular hypertrophy in a swine model of 374 

HFpEF47. 375 

Still other genes represent novel targets with minimal evidence or associated mechanisms 376 

related to heart failure which our research highlights for potential downstream investigation.  For 377 

the sake of brevity, we will only focus on a few interesting candidates.  These include our best 378 

candidate for our most significant control-treated locus for fibrosis (8.6E-12) on chromosome 11, 379 

Gngt2.  Gngt2 is canonically a regulatory subunit of transducin, and was originally reported as 380 

playing a key role in phototransduction48.  More recently, it has also been highlighted as a 381 
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potential SNP for dilated cardiomyopathy in a Chinese population49 while its knockout in mice by 382 

the International Mouse Phenotyping Consortium (IMPC) leads to increased anterior wall 383 

thickness50.  Similarly, knockout of Anks1, associated with posterior wall thickening (P=8.2E-8), 384 

is reported to lead to reduced posterior wall thickness in the IMPC50, but its role has never been 385 

reported on in the broader literature, although its family of Ankyrins has been implicated in 386 

cardiomyopathies more generally51.   387 

In vitro knockdown of candidate genes results in altered cellular dynamics in NRVMs. 388 

After identifying a number of promising candidate genes for cardiac phenotypes through ‘omics 389 

analyses of our identified loci, we sought to validate several of our candidate genes in vitro 390 

through siRNA-mediated knockdown of these candidate genes in Neonatal Rat Ventricular 391 

Cardiomyocytes (NRVMs).    392 

As a proof of concept, we first targeted Anks1, whose knockout is associated with reduced wall 393 

thickness in the IMPC as discussed above, but whose role in the heart beyond this phenotyping 394 

report is unclear.  We knocked out Anks1 with a siRNA (IDTDNA, see Supplemental Table 2) in 395 

NRVMs, observing a ~60% reduction in gene expression compared to scramble control. (Figure 396 

4B).  We are able to confirm the IMPC results, showing a 24% reduction in NVRM cross-397 

sectional area (P=3.4E-8) at baseline and a 33% reduction after ISO treatment (P=9.3E-14) 398 

(Figure 4C).  Anks1 knockdown also blunted the effects of ISO, which increased Anks1 KD 399 

NRVM cross-sectional areas by only 8% (P=0.06) whereas scramble+ISO cross-sectional areas 400 

increased 23% (P=2.7E-5).   401 

Next, we examined Mospd3, described above as the candidate gene within a locus that was 402 

discovered twice – once for treated right ventricular weight in GWAS5, and again in this study 403 

through EWAS for treated methylation to treated adrenal weight (Table 1).  Knockdown of 404 

Mospd3 via siRNA(IDTDNA, X, Supplemental Table 2) in NRVMs resulted in 80% and 68% 405 

knockdown in control and treated conditions, respectively (Figure 4B).  We observe that Mopsd3 406 

knockdown results in 14.5% smaller cardiomyocyte cross-sectional areas at baseline compared 407 

to scramble controls (P=3.3E-4) and 18% smaller areas after ISO treatment (P=2.4E-4).  408 

Mospd3 knockdown also appears to diminish but not eliminate the effects of ISO (17 vs 11% 409 

increase, P=1.6E-3 to P=0.026) (Figure 4D).   410 

The third in vitro result we highlight features Tsc2, which is a candidate for change in atrial 411 

weight after ISO treatment on chromosome 17 (P=2.11E-6).  Tsc2, or Tuberous Sclerosis 412 

Complex 2, is associated with cardiac rhabdomyomas, benign tumors present in 0.02% of 413 
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children52.  Of children with a rhabdomyoma, approximately 80% of them will have either a 414 

mutation in Tsc1 or Tsc252.  Although rhabdomyomas have been associated with heart failure52, 415 

the effects of Tsc2 knockdown alone is less clear, with a single article suggesting a possible role 416 

in cardiac hypertrophy consistent with our GWAS locus53.  Unlike Anks1 or Mospd3 knockdown, 417 

knockdown of Tsc2 (~61% in both control and treated conditions (Figure 4B)) did not result in 418 

any significant change in cell size in untreated cells compared to scramble (1.1% increase, 419 

P=0.68), but instead exacerbated the effect of ISO on cross-sectional area compared to 420 

scramble (21% increase with knockdown, P=3.9E-9 vs 11% increase without, P=2.5E-5, Figure 421 

4E). 422 

We further performed in vitro knockdown of two additional genes (Supplemental Figure 3)  423 

Knockdown of Coro1a, a gene associated with Relative Wall Thickness at diastole on 424 

chromosome 7 (P=1.44E-7) that acts as an actin regulator and may play a role in cell shape and 425 

adhesion54, was associated with an insignificant effect on cross-sectional area in control NRVMs 426 

(P=.16), but a significant blunting of the effect of ISO (19% smaller than scramble treated cells, 427 

P=2.9E-5).  Also, Slit2, associated with change in LV weight after ISO on chromosome 5 428 

(P=3.04E-6).  Slit2 is a cell migration gene with a known role in cardiac development55  We 429 

observe after Slit2 knockdown a global reduction in NRVM cross-sectional area (10% in control, 430 

P=7.3E-6, 8% in ISO, P=4.3E-7), but no observed effect of gene knockdown on the efficacy of 431 

ISO (34% increase in scramble cells, 37% in Slit2 KD cells). 432 

DNMT inhibitor reverses effects of hypermethylation on gene expression in a susceptible mouse 433 

strain 434 

Finally, we investigated whether pharmacological inhibition of DNA methyltransferase using N-435 

phthalyl-L-tryptophan (RG108), a non-nucleoside inhibitor of DNA methylation56,57 would alter 436 

the phenotypic and transcriptional response to ISO stimulation.  We selected the BTBRT<+>tf/J 437 

(BTBRT) strain as our significant responder strain as it showed a 57% increase in heart weight 438 

and 30% increase in ejection fraction after 3 weeks of ISO stimulation, with C57BL/6J (B6) as 439 

our control with a 22% increase in heart weight and a 1.5% decrease in EF.  We set up three 440 

experimental conditions: 1) Saline 2) ISO (30mg/kg/day) and 3) ISO (30mg/kg/day) + RG108 441 

(12.5 mg/kg/day) administered through Alzet osmotic minipump for 21 days using the original 442 

experimental setup5.  At day 21, we observe that BTBRT mice given only ISO once again 443 

showed a severe HF response compared to saline control which was significantly rescued by 444 

RG108 administration (Figure 5A+B).  In contrast, B6 showed a more modest shift in LVIDd and 445 

%EF after ISO only and no significant effect at the phenotypic level caused by the addition of 446 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 26, 2024. ; https://doi.org/10.1101/2024.10.25.619688doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.25.619688
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

RG108 (Figure 5A+B).  Intriguingly, global DNA methylation for both strains was reduced in ISO 447 

+ RG108 vs ISO alone by a similar degree (Supplemental Table 8), suggesting, as detailed in 448 

our EWAS results above, the likelihood that important phenotype-methylation changes are locus 449 

specific as opposed to pan-genomic. 450 

To gain additional insights, we examined the effect of RG108 treatment on gene expression by 451 

performing differential expression (DE) analyses of RNAseq data gathered from ISO vs 452 

ISO+RG108 mice from both strains with the DESEQ R package58.  In our significant responder 453 

strain, BTBRT, we observe 241 DE genes (q <0.05 & absolute LogFC >1.3) while in B6 we 454 

observe 327 DE genes at the same threshold (Supplemental Table 9, Figure 5C and 455 

Supplemental Figure 4).  In both cases, most genes were upregulated after RG108 456 

administration, although at a greater degree in in B6 (84% of all DE genes) compared to BTRBT 457 

(71%).  104 (43%) of the BTBRT DE genes are also observed in B6.  Each of these genes show 458 

the same direction of fold change.  Overlapping these DE genes with our EWAS hits revealed 459 

three EWAS candidate genes whose expression was affected by RG108 in both strains:  460 

Mospd3, which we describe above, along with Lars2, a tRNA synthetase with infrequent case 461 

reports suggesting a potential cardiac role59 and Card10, whose role in the heart is unclear but 462 

may be involved in pyroptosis60.  No EWAS hits were unique to B6 mice, however we observed 463 

that Akap2, which we discuss above as a previously validated hit for regulating cardiac 464 

malformation45,46 was downregulated in BTBRT ISO vs Saline animals (log2FC -0.43), but 465 

restored in BTBRT ISO+RG108 mice (log2FC 1.75 vs ISO, 1.3 vs Saline).  This suggests that 466 

Akap2 may be a driving factor in the differential response to ISO in BTBRT compared to B6.  467 

We sought to determine whether upregulation of these genes was the result of hypomethylation 468 

after RG108 treatment.  We calculated the methylation levels of all the DE genes at their 469 

promoter, gene body, and intergenic regions across the three treatment conditions (Saline, ISO, 470 

ISO+RG108).  At the promoter region, the downregulated genes in ISO were upregulated in 471 

RG108, displaying a contrasting distribution of increased methylation in ISO and a reduction in 472 

RG108 (Figure 5D).  This finding is concordant with past studies where promoter methylation 473 

was found to be anti-correlated with gene expression11,61,62.  In contrast, we observed minimal 474 

changes in DNA methylation at the genome body and intergenic regions across the three 475 

treatment conditions (Figure 5D). 476 

 477 

Discussion 478 
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In this study, we have performed a large-scale, genome-wide single-base resolution analysis of 479 

DNA methylation of hearts taken from 90 strains of the Hybrid Mouse Diversity Panel (HMDP), 480 

which consists of both classical inbred and recombinant inbred (RI) mouse lines under both 481 

control and isoproterenol-treated (30 g/kg/day for 21 days) conditions.  Isoproterenol, a beta-482 

adrenergic agonist administered through an implantable osmotic minipump in the abdominal 483 

cavity of these mice affords us a consistent means to induce cardiac hypertrophy and eventual 484 

heart failure while avoiding the effects of experimenter variability in models that rely on physical 485 

interventions such as coronary artery ligation to induce an infarction or trans-aortic constriction.  486 

In this study, we use tissue from the same animals we previously analyzed to study the role of 487 

DNA CpG methylation on hypertrophy and failure5,6,16.  488 

To study the methylome of these animals, we performed reduced representational bisulfite 489 

sequencing (RRBS).  RRBS is an affordable alternative to whole genome bisulfite sequencing 490 

(WGBS) that reduces the necessary number of reads per sample by limiting sequencing to 491 

regions of 200-500 basepairs flanked by Msp1 digestion sites, enriching for CpG islands and 492 

sites near promoters and enhancers where DNA methylation is most likely to have an effect on 493 

gene expression and phenotypes15,18.  We averaged 41.3 million uniquely aligned reads per 494 

sample across approximately 2.8 million CpGs.  Filtering for CpGs present in at least 70% of the 495 

strains and at at least 5x coverage left us with 1.8 million CpGs, or approximately 8.4% of all 496 

CpGs in the mouse genome.  This contrasts with a RRBS study performed in the livers of a 497 

different set of HMDP mice25 in which, despite reporting similar numbers for total aligned reads 498 

per sample (41.3 vs 41.0 Million), the prior study was able to capture 2 million CpGs at 10x 499 

coverage in at least 90% of the samples, a recovery rate of 9.6% despite a more stringent cutoff 500 

for inclusion.  This relaxation of stringency is due to the increase in the number of samples (174 501 

in our study vs 90 in theirs).  As each RRBS outputs only a representative sampling of CpG 502 

sites rather than the full complement of sites which would be observed with WGBS or through 503 

the human-only Illumina Infinium methylome platform, increasing the number of samples by 504 

necessity decreases the number of CpGs which will reach a given coverage threshold.  505 

Although this reduction in stringency does represent a limitation of our approach in that low-506 

coverage CpGs have greater uncertainty compared to high-coverage CpGs, we were still able 507 

to identify a number of interesting candidates. In the future, deeper sequencing of these libraries 508 

may allow us to improve the rigor of our results. 509 

For our first analysis, we limited ourselves to 168,251 ‘hypervariable’ CpGs – sites which 510 

differed by at least 25% absolute methylation in at least 5% of samples.  We observe that only 511 
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397 (0.2%) of these hypervariable SNPs show a universal shift of at least 3% between control 512 

and treated mice at an FDR of 1% (Figure 1B).  While the genes proximate to these sites are 513 

enriched for GO terms pertaining to apoptosis (P=1.8E-6) and abnormal cardiac morphology 514 

(P=2.7E-5) (Figure 1C), it is striking that so few CpGs show a universal response across all of 515 

our tested strains, suggesting that genetics rather than environment is a major driving factor of 516 

DNA methylation, at least in the context of our mice, whose differences in environmental 517 

exposure is limited to the presence or absence of ISO.  Further supporting this is our analysis of 518 

the top 1,683 (1%) of varying CpGs across the HMDP regardless of the effects of ISO, where 519 

we observe that genetics, as shown by the RI panels and known related strains separating into 520 

distinct branches after hierarchical clustering (Figure 2, bottom edge) is much more apparent 521 

than the effects of ISO, which are not responsible for any sub-branch of the tree (Figure 2, top 522 

edge). 523 

Motivated by our confirmation that genetic background plays a strong role in determining DNA 524 

methylation shifts, we queried whether these shifts were linked to cardiac phenotypes through 525 

an Epigenome-wide Association Study (EWAS) using the binomial mixed model approach 526 

MACAU which was specifically designed to work with RRBS count data15.   We observe (Figure 527 

3, Table 1) 56 significant loci in our study – 12 loci where untreated DNA methylation is linked to 528 

untreated phenotypes, 25 loci where treated methylation is linked to treated phenotypes, a 529 

single significant locus where the change in methylation is predictive of a change in phenotype, 530 

and, of greatest interest to us, 18 loci where untreated methylation levels were predictive of 531 

treated phenotypes.  These predictive loci are a unique feature of EWAS when compared to 532 

GWAS studies.  As DNA methylation can shift in response to environmental stimuli, being able 533 

to identify methylation states before environmental challenges that can then predict phenotypic 534 

responses after that challenge is a powerful tool for understanding potential mechanisms for the 535 

candidate genes identified in the more predictive (untreated CpGs to treated phenotypes) and 536 

more reactive (treated CpGs to treated phenotypes) loci.   537 

In contrast to our GWAS hits5,6 in which we reported several loci that associated with the 538 

change of phenotypes after ISO stimulation, we observe only a single significant locus that links 539 

a change in methylation to a change in phenotype (Table 1).  We view this as likely due to the 540 

increased levels of uncertainty in our measurements, where not only do we observe variability 541 

and noise in our phenotypic data at both control and treated conditions, but also in our 542 

methylation percentages.  This significantly reduces the power we have to observe these sorts 543 

of loci.  Additional strains of mice, characterization at the CpG and phenotypic level of additional 544 
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mice per strain, and/or more precise means to measure DNA methylation may help to increase 545 

the number of change loci which researchers are able to recover.  546 

We examined whether we observed GWAS/EWAS co-localization in our study, comparing the 547 

suggestive GWAS hits in our original studies5,6 to the suggestive EWAS hits from this study.  548 

We observe only a 9.6% overlap between our EWAS and GWAS loci, a result that, while 549 

technically significant (P=0.014), does not represent a broad consensus between our EWAS 550 

and GWAS hits.  9.6% is similar to the approximately 15% of EWAS/GWAS co-localizations that 551 

were observed in a prior HMDP EWAS/GWAS study in the liver{Orozco, 2015 #29;Bennett, 552 

2010 #178}.  This low overlap is likely due to a lack of statistical power in either our GWAS 553 

and/or EWAS studies to detect associations with small effect sizes.  Orozco et al25 was able to 554 

show with gene expression EWAS and GWAS that molecular traits, whose regulation is 555 

significantly simpler than clinical traits, had a much larger overlap (77%) compared to their 556 

reported 15% for clinical traits.  Of the sites that do overlap in our study, we observe a number 557 

of highly relevant candidate genes, such as Prkag2, or the gamma-2 subunit of the AMPK 558 

complex.  Associated with right ventricular weight in the GWAS and adrenal gland weight in the 559 

EWAS after ISO stimulation, Prkag2 mutations are known to be causal for an autosomal 560 

dominant form of cardiac hypertrophy37,63.  Although we do not observe any evidence of full 561 

knockout of Prkag2 in our cohort, our results do suggest that natural variation in Prkag2 levels 562 

may be predictive of cardiac maladaptation to stressors independent of its KO-associated 563 

phenotype. 564 

Beyond these overlapping loci, we also identified a number of loci which were unique to our 565 

EWAS study of heart failure.  In many studies, moving from an identified locus to a list of likely 566 

candidate genes within that locus can prove challenging.  In our study, however, we were 567 

broadly successful at identifying interesting candidates due to both the smaller ‘linkage’ blocks 568 

of correlated CpGs compared to SNPs (approximately 750kb in width compared to 2mb)25,33, the 569 

short range-of-action proposed for most CpGs64, as well as our ability to layer on additional 570 

forms of ‘omics data taken from the same mice that included detailed transcriptomics as well as 571 

sequencing data for each of the founder strains of the RI panels as well as other classically 572 

inbred lines28.  Layering these data sources on top of one another highlights a few genes per 573 

locus as needing additional scrutiny (Table 3), greatly assisting in the identification of candidate 574 

genes within each locus.  Several of the genes we flag within our loci have strong previous 575 

associations with cardiomyopathies, such as Prkag2, Nfatc2, Akap2, Celf2 and Mapt.  The 576 

presence of these genes increases confidence in our results.  Our loci also contain candidate 577 
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genes whose links to hypertrophy and heart failure are more tenuous, such as Mospd3, Gngt2, 578 

or Anks1 and which deserve further scrutiny based on our findings.   579 

We used primary neonatal rat ventricular cardiomyocytes (NRVMs) and siRNA-mediated gene 580 

knockdowns to study the role of several of our candidate genes in vitro.  In some cases, we 581 

were able to replicate prior reported knockout or knockdown phenotypes.  For example, we 582 

were able to show that Anks1 knockdown reduced cardiomyocyte size in a manner similar to the 583 

reduced vessel wall thickness reported by the IMPC50, and extend these results by showing that 584 

Anks1 knockdown also significantly blunted the effects of catecholamine stimulation in addition 585 

to its effects at baseline.  Likewise, we validated the vessel wall thinning phenotype which is one 586 

of the only known features of Mopsd3 knockout35, while suggesting a role for the gene in the 587 

regulation of heart failure beyond its previously reported role in heart development35,36.  In other 588 

cases, such as with Tsc2, classically associated with cardiac rhabdomyomas53, we were able to 589 

show that gene knockdown was specifically associated with blunting the effects of ISO on cell 590 

size without affecting baseline cell size in untreated cells, suggesting a new avenue of 591 

functionality for this gene in the regulation of catecholamine-driven hypertrophy. 592 

Finally, we asked what the effect of blocking the action of DNA methyltransferases (DNMTs) 593 

before catecholamine challenge using the methyltransferase inhibitor N-phthalyl-L-tryptophan 594 

(RG108) would have on cardiac phenotypes.  We observe in our paired model of a severe 595 

responder to ISO challenge (BTBRT) and a more resistant strain (B6).  We observe that DNMT 596 

knockdown in BTBRT was able to limit the effects of catecholamine-induced stress on the heart, 597 

maintaining Ejection Fraction and preventing chamber dilation, while the effects of RG108 on 598 

the resistant strain, B6, were not significant.  As DNA methylation acts through the regulation of 599 

genes to affect phenotype, we next focused on the differentially methylated genes in both 600 

strains, observing similar numbers of DE genes in each with a 43% overlap.  GO enrichment of 601 

these genes highlighted enrichment for cardiac contraction genes (Supplemental Table 10) and 602 

analysis of changes in promoter methylation status of the DE genes in the BTBRT strain 603 

showed that RG108 prevented the hypermethylation seen in ISO animals.  Overlapping these 604 

DE genes with our EWAS hits highlighted three genes in common to both B6 and BTBRT, 605 

namely Lars2, Card10 and Mospd3, further highlighting the latter’s need for further study, while 606 

Akap2, a gene that acts to reduce cardiac remodeling through control of angiogenesis and 607 

apoptosis through the Akap2/Pka/Src3 complex45,46, is downregulated in BRTBT ISO vs BRTBT 608 

saline (log2 fold change -0.43) and restored in BRTBT ISO+RG108 (log2 fold change 1.75 vs 609 

ISO, 1.3 vs saline), suggesting that changes in Akap2 methylation and subsequent gene 610 
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expression changes may be directly related to BTBRT’s more significant response to ISO 611 

stimulation. 612 

Our study has some limitations.  Firstly, our use of only female mice hinders our ability to easily 613 

extend our findings to male mice.  Due to cost constraints, during our pilot study we observed 614 

that there was a greater variation of response to ISO in female mice among the parental lines of 615 

the RI panel that makes up the majority of the HMDP (A/J, C57BL/6J, C3H/HeJ, DBA/2J) and 616 

chose to maximize our ability to recover loci of interest by focusing only on female mice.  While 617 

this is a limitation, past studies in the HMDP65,66 suggest that many loci identified in female mice 618 

are also observable in male mice.  A second limitation concerns the variability of cell type 619 

proportions within the mammalian heart and its effects on DNA methylation.  Multiple reviews67-620 

69 have highlighted the difficulty in accurately measuring the proportion of cell types (e.g. 621 

Cardiomyocytes, Fibroblasts, Endothelial Cells, etc.) within the heart, with significantly different 622 

results based on species, location within the heart, method of study, individual analyzed, etc.  623 

There is no good understanding of the variability of cell type proportions in the heart within a 624 

population, for example.  Additionally, disease processes shift these proportions in unequal 625 

ways depending on genetic background.  For example, we observed in our GWAS that 626 

mutations in the Abcc6 gene led to significant apoptosis of cardiomyocytes and replacement 627 

with fibrotic tissue5.  Differences in DNA methylation are one of the major ways in which cell 628 

types are differentiated from one another8,25,70,71.  Shifts in cell-type proportion are a known and 629 

appreciated confounder to EWAS approaches34, typically addressed by introducing covariates 630 

that account for the relative proportions of cell types to one another across the cohort.  While 631 

this is easily achieved in some tissues (e.g. blood), it has proven very difficult to ascertain in the 632 

heart, and likely affects our identified loci through both amplifying the signal of loci associated 633 

with genes involved in specific cell types, while suppressing other signals.  We feel this is one of 634 

the major reasons why many of the most significant loci we recovered were for cardiac fibrosis, 635 

whose link to increased or decreased relative numbers of fibroblasts is clear.  Finally, the use of 636 

RRBS instead of WGBS likely led to sampling error and reduced power which could be 637 

counteracted through an increased depth of sequencing or the addition of more strains.   638 

Cardiac hypertrophy and remodeling are major determinants of HF progression.  Our results 639 

represent new avenues of investigation into the genomic locations and gene transcripts which 640 

drive these phenotypes.  Our use of cardiac tissue and careful high-throughput integration of 641 

molecular phenotypes such as cardiac transcriptome and methylome data has highlighted a 642 

number of interesting and novel candidate genes and represents a powerful alternative to 643 
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human studies which are frequently limited in terms of sample size, environmental noise, and 644 

multi-omic integration.  Further refinement of our loci and the addition of additional data such as 645 

cardiac cell composition will further shed light on the role of the methylome in the progression of 646 

heart failure with the ultimate goal of improved personal therapies for patients. 647 

Data Availability 648 

RRBS data from the HMDP is available at the Sequence Read Archive at accession 649 
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Archive at accession PRJNA945923.  Gene Expression from the HMDP is available at the Gene 651 

Expression Omnibus at accession GSE48760.  HMDP Phenotypic data is available through 652 
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Figure 1.  DNA Methylation Changes from ISO in the HMDP.  A)  Total Heart Weight as a 

percentage of day 0 body weight across 90 strains of the HMDP.   B)  Volcano plot showing 

differential methylation of CpGs with and without ISO.  Green points are CpGs whose 

methylation shifts by at least 3% between conditions, while blue are CpGs that pass a 1% FDR 

threshold and red points are the 397 CpGs that meet both criteria.  C)  Gene Set Enrichment of 

genes proximal to significantly differentially methylated CpGs, with blue representing sites that 

are hypermethylated while red reflects sites that are hypomethylated. 
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Figure 2.  Heatmap of the top 1% of Differentially Methylated Loci across the HMDP 

Cohort.   X axis is organized by hierarchical clustering and shows the separation of the panel 

into distinct cohorts based on their sub-panel origin, with the BXD, AXB/BXA and BxC RI panels 

clustering together (see bottom edge) while ISO treatment was not a major driver of clustering 

(top edge).  CpGs were clustered along the Y axis based on similarity and genes proximal to 

these CpGs were analyzed for GO enrichments, seen along the right edge of the heatmap and 

annotated in the legend.  Larger version available as Supplemental Figure 2. 
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Figure 3.  Representative Manhattan Plots from the EWAS Study.  In each case, the X axis 

represents the position of a CpG across the genome and the Y axis is the negative log10 of the 

association p-value as determined by the MACAU algorithm.  The red line indicates our 

calculated genome-wide significance threshold of P=4.17E-7, while the blue line denotes our 

suggestive threshold of P=4.17E-6.   Genes of interest are highlighted and detailed further in 

Table 3.  A)  Treated CpGs affecting Isoproterenol Cardiac Fibrosis  B)  Treated CpGs affecting 

Isoproterenol Posterior Wall Thickness.  C)  Untreated CpGs affecting Control Adrenal Gland 

Weight  D)  Treated CpGs affecting Treated Adrenal Gland Weight. 
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Figure 4.  in vitro NRVM studies of candidate gene knockdown.  A) Representative image 

of 20x resolution NRVMs   B)  percentage of siRNA-targeted gene expression compared to 

scramble controls. N=9, representing 3 independent trials with 3 technical replicates each  C-E)  

NRVM cross-sectional areas for scramble and siRNA-treated cells in both control and ISO-

treated (60 uM) conditions.  P values are indicated, with greyed-out p values deemed not 

significant.  N for Anks1 and Mospd3 studies was 60 cells per siRNA/condition combination.  N 

for Tsc2 was 200 for Scramble Control and Scramble ISO, 175 for Tsc2 Control and Tsc2 ISO. 
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Figure 5. Concomitant DNMT inhibitor (RG108) treatment in ISO-treated mice de-methylates 

hypermethylated genes in severe-responder mouse strain BTBRT and is associated with an 

improvement in phenotype response. A) H&E cross-sections of hearts from “mild-responder” C57BL/6 

and “severe-responder” BTBRT mice treated with SAL, ISO and ISO+RG108 for 3 weeks. B) Boxplot on 

C57BL/6 and BTBRT mice cardiac phenotype measurements LVIDd and %Ejection fraction after 3 

weeks of RG108 treatment. C) Most significantly differentially expressed genes in BTRBT strain after 

RG108 treatment. Downregulated genes in ISO (blue) were upregulated in saline and ISO+RG108 

(yellow). Similarly, the upregulated genes in ISO showed the opposite with downregulation in saline and 

ISO+RG108. D) Global DNA methylation distribution at the promoter, gene body and intergenic regions 

of the differentially expressed genes detected in Figure 3C.  Corresponding images for B6 can be found in 

Supplemental Figure 4.  N=12 per group. 
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Table 1.  Methylome Loci in the HMDP Heart Failure Study.  Genome-wide Significance 

Threshold – 4.18E-7, Suggestive Threshold 4.18E-6.  IVS – Intraventricular Septum  MNSER – 

Mean Normalized Systolic Ejection Rate PW - Posterior Wall PTH - Posterior Wall Thickness 

RWT – Relative Wall Thickness  Vcf – Velocity of Centrifugal Force 
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