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Prostate cancer (PCa) is a devastating malignant disease with a poor prognosis. The aim of
current study is to investigate the role of lncRNA-urothelial carcinoma associated 1 (UCA1)
in the progression of PCa. We evaluated the expression levels of UCA1 in a total of 16 benign
prostatic hyperplasia tissues (BPH) and 40 PCa tissues, as well as PCa cells. The functional
regulatory effects of UCA1 were investigated using a series of cell function approaches. Our
data showed that UCA1 is frequently overexpressed in PCa tissues compared with BPH
tissues (P<0.01). Moreover, the higher expression of UCA1 was observed in patients with
Gleason score ≥8 (P<0.05). In consistent, we found the expression levels of UCA1 was
higher in the PCa cell lines PC-3, LnCaP, and DU-145 than in the normal prostate epithelial
cell line RWPE-1 (P<0.01). Functionally, we found knockdown of UCA1 in PC-3 significantly
suppressed cell growth and invasion of PC-3, while overexpression of UCA1 in DU-145 cells
promote cell growth and invasion. Mechanistically, UCA1 overexpression permitted activa-
tion of CXCR4 oncogenes through inhibition of miR-204 activity, as evidenced by the posi-
tive association of these two genes with UCA1 levels and inverse correlation with miR-204
expression in PCa tissues. Luciferase activity assay further confirmed the targetting relation-
ship between UCA1 and miR-204, CXCR4, and miR-204. The up-regulation of UCA1 in PC-3
cells significantly impaired the inhibitory effect of miR-204 on CXCR4 expression. Taken to-
gether, our research revealed that UCA1 works as an oncogene by targetting miR-204. The
UCA1-miR-204-CXCR4 regulatory network regulated the growth and metastasis of PCa,
providing new insight in the management of patients with such malignancy.

Introduction
Prostate cancer (PCa) is the second most common malignancy and a major leading cause of cancer death
amongst men worldwide [1]. Although the 5-year survival rates of PCa steadily increase in the United
States, the mortality of PCa has been increasing every year globally, particularly in East Asia [2, 3]. While
there is considerable morbidity and mortality as a result of PCa, a significant population of men with
PCa have indolent and slow growing disease that does not require intervention. Distinguishing between
patients who would benefit from active surveillance, those who require definitive primary treatment, and
those who require treatment escalation is a challenging and evolving issue. Therefore, the discovery of
new molecular targets for PCa may help to understand the pathogenesis, prognosis, or treatment of PCa.

LncRNAs, a class of noncoding RNAs with the length ranging from 200 nts to almost 100 kilobases,
play vital roles in cancer development [4]. Moreover, accumulating evidences showed that dysregula-
tion of lncRNA expression attributes a tumor-suppressor or an oncogenic role to lncRNAs affecting
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the clinicopathological appearance, prognosis, and outcome of in the PCa [5, 6]. The lncRNA, urothelial
carcinoma-associated 1 (UCA1) has been identified as an oncogene that enhances cell proliferation, inhibits apop-
tosis and promotes cell cycle progression in several types of cancer [7]. For instance, UCA1 was shown to activate
Wnt/β-catenin signaling pathway to promote progression and epithelial-mesenchymal transition (EMT) in oral and
breast cancer [8, 9]. In gastric cancer, UCA1 has been shown as an early detection serum maker, and the induction
of UCA1 by TGF-β leads to the enhanced invasion and migration in gastric cancer cells [10, 11]. However, the role
of UCA1 in PCa remains largely unknown.

CXCR4 had gained tremendous attention over past decades since it was overexpressed in a multiple cancer types
and contributes to their malignant behaviors [12–15]. A recent meta-analysis has shown that higher positive rate of
CXCR4 was associated with T3/4 stage, the presence of lymph node or bone metastasis of PCa, and poor survival of
patients with PCa [16]. In line with clinical findings, in vitro studies showed high levels of CXCR4 induce a more
aggressive phenotype in PCa cells [17, 18]. Interestingly, the bone environment, in which CXCR4′ligand SDF1α is
particularly highly expressed, is also the most common metastatic site of PCa. Moreover, metastatic PCa cells localized
in the bone metastatic lesions express higher SDF1α/CXCR4 levels relative to the cells present in primary tumors and
lymph node metastatic lesions [19–23], suggesting that the activation of the SDF1α/CXCR4 pathway may play a
pivotal role in PCa bone metastases. In the present study, we found that UCA1 is overexpressed in PCa cancer tissues,
as well as PCa cells. In consistent, knockdown or overexpression of UCA1 is able to inhibit or promote the proliferation
and invasion of PCa cells. Mechanismly, we found that UCA1 functions as miR-204 sponge to up-regulate CXCR4
expression. Our study for the first time to show that UCA1-miR204-CXCR4 regulatory network plays is a key role in
the development of PCa, highlighting this pathway may serve as a potential therapeutic target in PCa patients.

Materials and methods
Clinical tissue samples
All tissues were collected at the Department of Urology, Shanghai Minhang Hospital between January 2015 and De-
cember 2017. Patients have received a detailed pathological assessment. All patients have accepted consent for the use
of all samples. The present study was also approved by the Medical Ethics and Human Clinical Trial Committee of
the Shanghai Minhang Hospital.

Cell culture and transfection
All cell lines, including PC-3, DU-145, LNCaP, and RWPE-1, were purchased from the American Type Culture Col-
lection. According to the manufacturer’s instructions, the cells were cultured in the RPMI1640 medium with 10%
FBS in 37◦C with 5% CO2.

Vectors and transfection
LncRNA UCA1 siRNA, CXCR4 siRNA, and miR-204 mimics were purchased from GenePharma (Shanghai,
China). UCA1 was amplified from the cDNA of PC3 cells using PrimerSTAR (TaKaRa) and cloned into the
pcDNA3.1(+) vector. All cells were transfected with 100 nM miR-204 mimics, UCA1 siRNA, CXCR4 siRNA, or 2
μg pcDNA3.1(+)-UCA1 expression vector using Lipofectamine 2000 reagent (Invitrogen) according to the manufac-
turer’s instructions. The WT and MT 3′UTR of CXCR4 or the UCA1 fragment containing the miR-204 binding sites
were synthesized and then cloned into the luciferase reporter vector p-Luc.

Cell viability assay
Cell viability was determined by CCK-8 assay. Different kinds of cells were seeded in 96-well plate with 5000 cells/well.
After 1, 2, 3, and 4 days, cells were treated with CCK-8 reagent for 1 h in the incubator. Then optical density was
detected by microplate reader at 450 nm in triplicate, and the mean value of absorbance was referred to the quantity
of viable cells.

Transwell cell migration/invasion matrigel assay
Transwell assay was performed to measure cell migration and invasion ability. Put Matrigel Matrix aliquot on ice at
4◦C to thaw. Mix Matrigel Matrix (final concentration of 1 mg/ml) with RPMI-1640 medium. Gently swirling to mix
the solution and place the tube on ice. Then add 100 μl of diluted Matrigel Matrix to Transwell insert. Incubate the
24-well plates with the coated Transwell inserts at 37◦C for at least 1 h. Carefully remove the remaining liquid from
the Transwell insert. Cells were suspended in serum-free DMEM medium containing 0.1% bovine serum albumin.
Total 500 μl complete medium was added to the 24-well plate. Then, 5 × 104 cells were seeded in Transwell chambers
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Table 1 Primer sequence

Name Sequence

UCA1-F CCACACCCAAAACAAAAAATCT

UCA1-R TCCCAAGCCCTCTAACAACAATGAC

miR-204-F TCGTGGACTTCCCTTTGCATTTGATG

miR-204-R GATGGTGCAAT

U6-F ATTGGAACGATACAGAGAAGATT

U6-R GGAACGCTTCACGAATTT

CXCR4-F ACATTGGGATCAGCATCGACTC

CXCR4-R GGCTCCAAGGAAAGCATAGAGG

E-cad-F TGCCCAGAAAATGAAAAAGG

E-cad-R GTGTATGTGGCAATGCGTTC

N-cad-F ACAGTGGCCACCTACAAAGG

N-cad-R CCGAGATGGGGTTGATAATG

Vimentin-F CAACCTACAGGAAGCTTCTGGA

Vimentin-R AGTCTTCAATTCTCTGGGTAGT

MMP9-F AAGGATGGGAAGTACTGGCGAT

MMP9-R GCGCCCAGAGAAGAAGAAAAGC

GAPDH-F GACTCATGACCACAGTCCATGC

GAPDH-R AGAGGCAGGGATGATGTTCTG

and incubated for 24 h. Cells on the upper surface of the filter were completely removed. Cells on the lower surfaces
of the membrane were washed two-times with PBS and fixed with 95% ethanol for 10 min, then stained with 0.1%
crystal blue solution for 10 min and taken pictures under a microscope.

RNA immunoprecipitation assay
RNA-IP was performed using a kit from Active Motif (Carlsbad, CA, U.S.A.) following the manufacturer’s protocol.
PC-3 and DU-145 cells were collected and lysed in RIPA lysis buffer. The total cell protein extract was then incubated
with RIP wash buffer containing magnetic beads conjugated with human anti-Ago2 antibody (Millipore) or mouse
immunoglobulin G (IgG) control. Then the samples were digested with proteinase K, and RNA was extracted from
the beads using TRIzol. Then performed qRT-PCR analysis to measure the presence of the miR-204 and UCA1. The
primers are available in the Table 1.

RNA isolation and quantitative real-time PCR
Total RNA was isolated using TRIzol reagent (Invitrogen). cDNA was synthesized using the PrimeScript™ RT Master
Mix Kit (TaKaRa, RR037A) or TIANGEN®miRcute Kit (KR211). Quantitative RT-PCR was measured using SYBR®

Premix Ex Taq™ (TaKaRa, RR420A) or TIANGEN®miRcute Plus miRNA qPCR Kit (FP411). The relative expression
of UCA1 and miR-204 was calculated by the 2−��C

T method.

Western blot analysis
For WB, all cells were collected and lysed in RIPA lysis buffer. Proteins were resolved on SDS-PAGE gels and transferrd
proteins to negative controls (NC) membranes and then followed by standard WB protocols. The primary antibodies
used were: CXCR4 (Abcam, ab124824), β-actin (Abcam, ab8226). β-Catenin (Abcam, ab32575), ERK1/2 (Abcam,
ab184699), pERK1/2 (Abcam, ab223500), pAKT (Abcam, ab38449), and AKT1/2/3 (Abcam, ab179463).

Luciference reporter assay
HEK-293T cells were cultured in 96-well plates and cotransfected with 50 nM miR-204 mimic (or NC), 50 ng of
luciferase reporter vector (containing UCA1-WT, UCA1-MT, CXCR4 3′UTR WT, or CXCR4 3′-UTR MT), and 5 ng
of renilla luciferase plasmidusing Lipofectamine 2000 (Invitron). After 48 h, the luciferase activity was determined by
using Dual Luciferase Assay System (Promega, Madison, WI, U.S.A.) following to the manufacturer’s information.

Statistical analysis
All results are performed as the mean +− S.E.M. Student’s t test, the Mann–Whitney U test, the Kruskal–Wallis test and
the χ2 test were used to measure the differences amongst different groups. The Kaplan–Meier method and log-rank
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test were conducted to determine differences in survival rates. A Cox proportional hazard analysis was used to eval-
uate the prognostic factors in univariate and multivariate analyses. A P value <0.05 was considered statistically sig-
nificant.

Results
UCA1 is up-regulated in PCa tissues and cell lines
To explore the biological function of UCA1 in PCa, we initially measured relative expression of UCA1 in PCa and
benign prostatic hyperplasia (BPH) tissues. The results clearly showed that the expression level of UCA1 was higher
in PCa tissues than in BPH tissues (P<0.01, Figure 1A). Moreover, the higher expression of UCA1 was observed in
patients with Gleason score ≥8 (P<0.05), suggesting that the up-regulation of UCA1 was associated with disease
progression.

We subsequently examined UCA1 expression in three human PCa cell lines and in the normal prostate epithelial
cell line RWPE-1. In consistent, we found the expression levels of UCA1 was higher in the PCa cell lines than in the
normal prostate epithelial cell line (P<0.01, Figure 1B). These findings indicated that UCA1 is up-regulated in PCa
tissues and cell lines and may play an important role in the development of PCa.

UCA1 promotes proliferation and invasion of PCa cells
To investigate the biological functions of UCA1 in PCa cells, we performed cell viability and transwell-invasion as-
say. Since PC-3 cells have highest level of UCA1, while DU-145 have lower level of UCA1, we constructed UCA1
siRNA and overexpression plasmids to manipulate UCA1 expression in PC-3 cells and DU-145 cells. As shown in
Figure 1C, knockdown of UCA1 significantly suppressed cell growth of PC-3 cells (P<0.05). In contrast, overex-
pression of UCA1 in DU-145 remarkably promote cell growth (P<0.05, Figure 1D). Similarly, we found the capacity
of cell invasion was impaired in UCA1 knockdown PC-3 cells but enhanced in UCA1 overexpression DU-145 cells
(P<0.01, Figure 1E). To confirm the effect of UCA1 on cell invasion, we also measured several metastases associated
markers in UCA1 knockdown or overexpression PCa cells by using qPCR (Figure 1F). In line with invasion assay,
we found E-cadherine is up-regulated, while Vimentin, MMP-9 and N-cadherin is down-regulated in UCA1 knock-
down PC-3 cells (P<0.05). In contrast, the overexpression of UCA1 in DU-145 showed increased level of E-cadherin
but decreased level of Vimentin, MMP-9 and N-cadherin (P<0.01), validating the aggressive role of UCA1 in cancer
metastases.

UCA1 regulates CXCR4 expression in PCa cells
Since UCA1 was overexpressed in PCa tissues and cells lines and associated with malignant biologic phenotype, we
next interrogate its mechanisms for the oncogenic role of UCA1 in PCa. Recent study showed that UCA1 is able
to regulate CXCR4 in osteosarcoma cells [12]. However, the exact mechanisms for the interaction between UCA1
and CXCR4 remain unclear. Since CXCR4 plays a central role in the development of PCa, particular in PCa bone
metastasis, we therefore investigated the regulatory effect of UCA1 on CXCR4 expression. Interestingly, similar to
UCA1, the expression of CXCR4 was higher in PC-3 cells, but lower in DU-145 cells (Figure 2A). The knockdown of
UCA1 leads to the inhibition of CXCR4 expression in PC-3 cells (Figure 2B), while overexpression of UCA1 results in
the significant up-regulation of CXCR4 in DU-145 cells (Figure 2C), suggesting that UCA1 is able to regulate CXCR4
in PCa.

To further understand the biological impact of UCA1 on CXCR4, we successfully inhibited CXCR4 by siRNA
interference in PC-3 (Figure 2D). We confirmed that knockdown of CXCR4 in PC-3 leads to the suppressed cell
viability and invasion (Figure 2E,F), suggesting that UCA1 may exert its oncogenic function, at least in part, through
CXCR4.

UCA1 functions as a competing endogenous RNA of CXCR4
Based on previous reports that UCA1 has the capacity to regulate RNA molecules by sponging several miRNAs such
as miR-193a[13], miR-195[14], miR-143[15], miR-204[16], miR-182[17], we presumed that UCA1 might regulate
CXCR4 expression by inhibiting miRNA function. By utilizing microRNA.org algorithm (www.microRNA.org), we
searched several UCA1 targetted miRNAs in the 3′-UTR region of CXCR4 and identified miR-204as candidate with
highest mirSVR score amongst predicted targets (Figure 3A), suggesting that UCA1 may promote CXCR4 expression
through inhibiting miR-204.

To confirm our hypothesis, we first validated that miR-204 can functionally bind to 3′-UTR region of UCA1 in
PCa cells. As shown in Figure 3B and C, we cloned miR-204 binding region of UCA1 into luciferase report plasmid
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Figure 1. UCA1 plays an oncogenic role in PCa

(A) The expression level of UCA1 in BPH and PCa tissues. *P<0.05, **P<0.01, Mann–Whitney U test was used to PCa and

BPH tissues. (B) The expression level of UCA1 in normal prostate epithelial cell line RWPE-1 and PCa cell lines LnCaP, PC-3,

and DU-145 cells. **P<0.01, Mann–Whitney U test was used to compare PCa cells and normal cells. The treated or control

cells were harvested 24 h after transfection with siRNA or plasmids. (C) The relative expression level of UCA1 in PC-3 after

treatment of siUCA1 (left figure, n=3). The growth curve for UCA1 knockdown PC-3 cells and control cells were evaluated by

CCK-8 assay (right figure, n=6). **P<0.01, Mann–Whitney U test was used to compare control (NC) and UCA1 knockdown

cells. (D) The relative expression level of UCA1 in DU-145 after overexpression of UCA1 (left figure, n=3). The growth curve

for UCA1 overexpression cells and control cells were evaluated by CCK-8 assay (right figure, n=6). **P<0.01, Mann–Whitney

U test was used to compare control (EV: empty vector) and UCA1 overexpression cells. (E) The transwell-matigeal invasion as-

says were performed to evaluate the effect of down-regulation (upper figure) or up-regulation (bottom figure) of UCA1 on the

capacity of invasion in PCa cells. **P<0.01,Mann-Whitney U test was used to compare control and treated cells. EV: empty vec-

tor. (F) qPCR was performed to evaluated the several metastasis-associated genes expression in the UCA1 knockdown PC-3

cells or UCA1 expressing DU-145 cells. * P<0.05,**P<0.01,Mann-Whitney U test was used to compare control and treated cells.

EV, empty vector.
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Figure 2. UCA1 regulates CXCR4 expression in PCa cells

(A) The expression level of CXCR4 in normal prostate epithelial cell line RWPE-1 and PCa cell lines LnCaP, PC-3 and DU-145 cells (n

= 3). **P<0.01,Mann-Whitney U test was used to compare PCa cells and normal cells. (B) The mRNA (left figure) and protein (right

figure) level of CXCR4 in NC and UCA1 knockdown PC-3 cells (n = 3). **P<0.01,Mann-Whitney U test was used to compare NC

cells and UCA1 knockdown cells. (C) The mRNA (left figure) and protein (right figure) level of CXCR4 in the control (NC) and UCA1

overexpression DU-145 cells (n = 3). **P<0.01, Mann–Whitney U test was used to compare NC cells and UCA1 overexpression

cells. (D) The mRNA (left figure) and protein (right figure) level of CXCR4 in the control (NC) and CXCR4 knockdown PC-3 cells (n=3).

**P<0.01, Mann–Whitney U test was used to compare NC cells and CXCR4 knockdown cells. (E) The CCK-8 assay (n=6) and (F)

transwell-matrigeal assay (n=3) was performed to evaluate the biological effect of CXCR4 knockdown in PC-3 cells. **P<0.01,

Mann–Whitney U test was used to compare NC cells and CXCR4 knockdown cells.

to establish wild type of 3′-UTR report plasmids. In addition, we also mutated miR-204 binding sites and established
mutant 3′-UTR regions of UCA1. PC-3 and DU-145 cells were transiently transfected with these constructs along with
miR-204 mimics or negative controls (NC). In line with our previous results, miR-204 mimics treatment significantly
suppressed luciferase activity of the reporter genes containing wild-type 3′-UTR regions of UCA1, but no inhibitory
effects were observed in mutated sequence, supporting that miR-204 can bind to 3′-UTR of UCA1.
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Figure 3. miR-204 binds to both UCA1 and CXCR4 in vitro and in vivo

(A) Schematic representation of luciferase reporter constructs. The PGK promoter drives constitutive transcription of a chimeric

mRNA containing the firefly luciferase coding sequence fused to the wild-type or mutated UCA1 and CXCR4 3′-UTRs. (B) and

(C) Relative activity of the luciferase gene fused with the wild-type or mutant UCA1 3′-UTR in PC-3 and DU-145 cells. (D) Rela-

tive activity of the luciferase gene fused with wild-type of CXCR4 in PC-3 and DU-145 cells. The data was normalized to renilla

luciferase activity. The data are represented as means +− S.D. from separate transfections (n=3). Statistical analysis was per-

formed using Mann–Whitney U test to compare fold changes between transfection and control groups. All statistical tests were

two-sided. **P<0.01. (E) RNA binding protein immunoprecipitation (RIP) assay was performed to investigate the interaction between

UCA1, miR-204, and Ago2 protein. The pull-downed RNA was used to analyzed relative expression of miR-204 and UCA1 in PC-3

and DU-145 cells (n=3). **P<0.01. Mann–Whitney U test was used to compare fold changes between control and Ago2 groups.

Luc%, percentage of relative luminescence; Mut, mutant type; WT, wild type.

Furthermore, we investigated that whether miR-204 can bind to 3′-UTR regions of CXCR4, and whether such in-
teraction will be inhibited by UCA1 in PCa. Similar to UCA1, we cloned miR-204 binding region of CXCR4 into
luciferase report plasmid. In line with our assumption, the treatment of miR-204 mimics inhibited luciferase activity
of the reporter genes that containing 3′-UTR regions of CXCR4 in PC-3 and DU-145 cells. Moreover, coexpressed
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UCA1 and miR-204 has no inhibitory effects on luciferase activity in PCa cells, indicating that UCA1 may sponge
miR-204 to inhibit its inhibitory effects on CXCR4 (Figure 3D). In human, Ago2 (Argonaute-2) has been revealed
as the only member of Argonaute family that can binds to miRNAs and their complementary RNA targets, and has
catalytic activity to regulate small RNAs guided gene silencing processes, highlighting its essential role in RISC com-
plex [24]. Therefore, to further confirm the physical interaction between UCA and miR-204, we performed RNA
immunoprecipitation (RIP) assay. As shown in Figure 3E, both miR-204 and UCA1 are able to bind to Ago2 protein
in PCa cells.

UCA1 up-regulates CXCR4 expression via suppression of miR-204 activity
To test our hypothesis, we measured CXCR4 expression in PC-3 cells transfected with miR-204 alone or together with
CXCR4. In line with our assumption, treatment with miR-204 mimics led to decreased mRNA and protein expression
levels of CXCR4, while UCA1 overexpression attenuated this inhibitory effect of miR-204 on CXCR4 expression
(Figure 4A). Furthermore, we have found that treatment with miR-204 mimics could not only significantly inhibit
CXCR4 expression but as well suppressed its downstream signaling pathway, including Wnt, MAPK, and AKT in
PC-3 cells (Figure 4B). However, such inhibitory effect of miR-204 was impaired by UCA1 overexpression.

To further validate our in vitro results that UCA1 regulated CXCR4 through miR-204 sponge activity, we inves-
tigated the expression correlation between miR-204, UCA1, and CXCR4 in PCa tissues. We noticed that UCA1 ex-
pression was negatively correlated with miR-204 expression in PCa (r = −0.2865, P=0.0431), suggesting that the
loss of function of miR-204 may be not only due to its lowered expression but also due to intimate association
with up-regulated UCA1 expression in this malignancy (Figure 4C). As expected, we also found miR-204 expres-
sion negatively correlated with CXCR4 (r = −0.5636, P=0.0002) in cancer tissues, indicating that miR-204 could
suppress CXCR4 expression in vivo. Notably, we observed UCA1 overexpression was significantly associated with
up-regulation of CXCR4 in PCa (r = 0.5033, P=0.0009), highlighting the clinical significance of these results, as
these suggest that the up-regulation of UCA1 abrogates the tumor suppressive effect of miR-204 on its downstream
target CXCR4 in PCa.

Discussion
PCa is one of the most common causes of cancer death in the male population in the world. Despite of signifi-
cant improvement in outcomes of patients with early stage by surgical prostatectomy, radiotherapy, hormone ther-
apy, or immunotherapy, the treatments for the advanced patients are still challenging. High rates of metastasis and
cancer-associated mortality are major cause of poor prognosis in PCa patients. Hence, there is an urgent need to find
novel mechanisms involved in PCa, which may provide new perspectives on management of PCa patients.

In the present study, we, for the first time, describe UCA1-miR204-CXCR4 regulatory network as a novel pathway
that contributes to development of PCa (Figure 4C). We have made several novel observations. First, we discovered
that UCA1 is frequently up-regulated in PCa, and this significantly correlated with disease progression. Second, from
a biological perspective, we demonstrated that UCA1 and promoted aggressiveness of PCa cell lines. Third, we un-
raveled a novel mechanism that UCA1 acts as a competing endogenous RNA (ceRNA) of CXCR4 by competing for
miR-204. Considering the crucial role of CXCR4 in development of PCa, our results for the first time revealed the
therapeutic importance of UCA1 in this malignancy.

Recent work showed lncRNA began to emerge as natural miRNA decoys. Although we have witnessed the discovery
of numerous lncRNAs in the past two decades, only a small portion of them have been identified functionally, and very
few of them have been validated to function as ceRNAs in cancers [25]. In PCa, the up-regulation of lncRNA GAS5
was reported to inactivate the AKT/mTOR signaling pathway through targetting miR-103. HOTAIR can target HER2
mRNA by binding miR-331-3p and then modulates the depression of HER2 to promote the development of PCa [26].
In addition, lncRNA PVT1 was shown to promote EMT via suppressing miR-186 to activate Twist1 in PCa. UCA1 has
been extensively reported as a miRNA sponge in various cancer. For example, Wu et al., showed that UCA1 promotes
lung cancer cell proliferation and migration through miRNA-193a/HMGB1 axis [27]. Moreover, UCA1 promotes
mitochondrial function of bladder cancer via the miR-195/ARL2 signaling pathway [28]. In addition, UCA1 can
interact with miR-182 to modulate glioma proliferation and migration by targetting iASPP [29]. In the present study,
we used online prediction program to find candidate miRNAs, which reported previously as UCA1 target miRNA,
in the 3′-UTR region of CXCR4. We identified miR-204 as potential miRNAs that links UCA1 and CXCR4. MiR-204
was demonstrated as tumor suppressor in various kind of cancer, and its functions involves cell growth, apoptosis,
migration, and invasion [30, 31]. Therefore, UCA1 may function, in part, through inhibition of miR-204 in PCa.
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Figure 4. The up-regulation of UCA1 impairs the inhibitory effect of miR-204 on CXCR4 expression

(A) The left panel showed the expression level of UCA1 in the PC-3 treated with 1 μg, 10 μg of UCA1 plasmids or control plasmids.

The right panel showed mRNA level of CXCR4 in control and PC-3 cells treated with miR-204 alone or together with UCA1 plasmids

(1 or 10 μg). (B) The protein level of β-catenin, pERK1/2, pAKT in control and PC-3 cells treated with miR-204 alone or together

with 1 μg of UCA1 plasmids. Mann–Whitney U test was used to compare relative ratio between control and treated groups. (C)

The expression correlation of UCA, CXCR4, and miR-204 in PCa tissues (n=40). Spearman’s rank correlation (r) was used for the

correlation analysis. (D) A proposed mechanistic model as to how UCA1 functions as a miR-204 sponge and regulates CXCR4 via

inhibiting miR-204 activity. The persistent up-regulation of UCA1 sequestered miR-204 and thereby lead to the accumulation of

CXCR4 signaling to drive colorectal tumor growth.

To better appreciate the biological significance of UCA1 for its contribution to prostate carcinogenesis, we modu-
lated expression level of UCA1 and CXCR4 in PCa cells. Our functional assays clearly showed that UCA1 and CXCR4
exerts oncogenic effect, such as promotion of proliferation and cell invasion. To decipher the ceRNA mechanism be-
tween UCA1, miR-204 and its downstream targets CXCR4. We first construct several luciferase report plasmids that
contains miR-204 binding sites in the 3′-UTR region of UCA1 and CXCR4. In consistent to our hypothesis, miR-204
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is able to regulate luciferase activity that containing the binding sites in UCA1 and CXCR4. Most importantly, we
found overexpression of UCA1 in PCa cells completely abolished the inhibitory effect of miR-204 on CXCR4, sup-
porting that UCA1 enhances CXCR4 through inhibition of miR-204 activity. Therefore, dual targetting UCA1 and
miR-204 could provide a new therapeutic strategy to suppress this oncogenic pathway for PCa patients.

In summary, this is the first study to systematically interrogate the functional and clinical significance of UCA1
in prostate cancer, and we provide comprehensive evidence that it acts as a novel oncogenic lncRNA in PCa. From a
functional perspective, UCA1 impairs tumor suppressive effects of miR-204 in PCa cells. Mechanistically, overexpres-
sion of UCA1 enhanced CXCR4 through inhibition of miR-204 activity. Therapeutic targetting of miR-204 maybe a
potential treatment option for patients with PCa.
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