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INTRODUCTION 
 

Prostate cancer is the second most common cancer, and 

the fifth leading cause of death from cancer in men 

worldwide [1, 2]. However, the incidence and mortality 

of PCa were varied significantly from different races  

[3, 4]. African Americans were reported to have the 
highest incidence worldwide, while the White and Black 

people are at a higher risk than Asian people for 

suffering from PCa [2, 5]. Moreover, the White and 

Black people have poorer cancer specific survival (CSS) 

and overall survival (OS) for PCa than Asian people [6–

8]. Meanwhile, the incidence of prostate cancer has been 

in a rising trend amongst all races in recent years [9, 10]. 

However, the original mechanism for these differences 

among the races has still not been fully understood until 

recently. 

 

It is reported that dietary patterns and geographical 

environment differences may be the explanation for PCa 

incidence differences among ethnic groups [11–13]. 

However, the reasons for different treatment outcomes 
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ABSTRACT 
 

The drug response sensitivity and related prognosis of prostate cancer varied from races, while the original 
mechanism remains rarely understood. In this study, the comprehensive signature including transcriptomics, 
epigenome and single nucleotide polymorphisms (SNPs) of 485 PCa cases- including 415 Whites, 58 Blacks and 
12 Asians from the TCGA database were analyzed to investigate the drug metabolism differences between 
races. We found that Blacks and Whites had a more prominent drug metabolism, cytotoxic therapy resistance, 
and endocrine therapy resistance than Asians, while Whites were more prominent in drug metabolism, 
cytotoxic therapy resistance and endocrine therapy resistance than Blacks. Subsequently, the targeted 
regulation analysis indicated that the racial differences in cytotoxic therapy resistance, endocrine therapy 
resistance, might originate from drug metabolisms, and 19 drug metabolism-related core genes were confirmed 
in the multi-omics network for subsequent analysis. Furthermore, we verified that CYP1A1, CYP3A4, CYP2B6, 
UGT2B17, UGT2B7, UGT1A8, UGT2B11, GAS5, SNHG6, XIST significantly affected antineoplastic drugs 
sensitivities in PCa cell lines, and these genes also showed good predictive efficiency of drug response and 
treatment outcomes for PCa in this cohort of patients. These findings revealed a comprehensive signature of 
drug metabolism differences for the Whites, Blacks and Asians, and it may provide some evidence for making 
individualized treatment strategies. 
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amongst the ethnicities are still not entirely clear. There 

was a study that reported that racial differences in genetic 

variants have an impact on drug sensitivities, clinical 

signs of progress and treatment options for prostate 

cancer [14]. In addition, Bernard B. et al reported that 

Black, White, and Asian people have differences in their 

responses to chemotherapy and endocrine therapy, which 

lead to different survival benefits [15]. These results 

suggest that drug response and treatment outcomes for 

PCa differ between racial and ethnic groups. However, 

systematic comparisons of race differences in drug 

treatments (cytotoxic therapy, endocrine therapy, 

molecular targeting therapy, and so on) have not been 

reported yet, and the mechanisms of the treatment 

response differentiations amongst ethnicities are still not 

well understood.  

 

What drives racial differences in drug sensitivity and 

treatment outcomes of PCa patients, and are there any 

genetic differences amongst races that lead to the 

differences in drug metabolic capacity? In recent years, 

sequencing technology has provided new methods that 

allow researchers to easily review hundreds of tumor 

profiles and discover the genetic alterations responsible 

for drug metabolism. In our study, we aimed to 

investigate the drug metabolism differences in the White, 

Black and Asian ethnicities, using a comprehensive 

signature involving transcriptomics, epigenome and 

SNPs, so as to systematically compare the significant 

differences in drug metabolism-related pathways, drug 

sensitivities among ethnicities, and to account for the 

racial differences in treatment outcomes. Finding drug 

metabolism-related core genes in multi-omics and 

predicting treatment outcomes for PCa, these findings 

may provide effective and novel evidence for the 

personalized treatment of PCa. 

 

RESULTS 
 

Multi-omics genetic signatures differences in White, 

Black and Asian PCa patients 

 

Firstly, we compared the differences of transcriptomics, 

epigenome and SNPs among White, Black and Asian 

people. From a total of 19676 official mRNA gene 

symbols, 470 differentially expressed genes (DEGs) 

(including 253 up-regulated genes and 217 down-

regulated genes) were identified when comparing White 

people to Asian people, 396 DEGs were identified 

(including 204 up-regulated genes and 192 down-

regulated genes) when comparing Black people to Asian 

people, 483 DEGs were identified (including 307 up-

regulated genes and 176 down-regulated genes) when 

comparing White people to Black people, respectively 

(Figure 1A). From a total of 1881 official miRNA gene 

symbols, 51 DEGs were identified (including 14 up-

regulated genes and 37 down-regulated genes) when 

comparing White people to Asian people, 50 DEGs were 

 

 
 

Figure 1. Transcriptomics, epigenome and SNPs difference analysis for PCa of different RACES. mRNA expression (A) miRNA 

expression (B) lncRNA expression (C) DNA methylation level (D) differential analysis for White people and Asian people, Black people and 
Asian people, White people and Black people, respectively. (E) SNPs status differential analysis (such as mutation rate, mutation type .ect) for 
White, Black and Asian people in TCGA patients. 
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identified (including 10 up-regulated genes and 40 

down-regulated genes) when comparing Black people to 

Asian people, 45 DEGs were identified (including 25 

up-regulated genes and 20 down-regulated genes) when 

comparing White people to Black people, respectively 

(Figure 1B). From a total of 14447 official lncRNA gene 

symbols, 600 DEGs were identified (including 340 up-

regulated genes and 260 down-regulated genes) when 

comparing White people to Asian people, 618 DEGs 

were identified (including 354 up-regulated genes and 

264 down-regulated genes) when comparing Black 

people to Asian people, 648 DEGs were identified 

(including 317 up-regulated genes and 331 down-

regulated genes) when comparing White people to Black 

people, respectively (Figure 1C). From a total of 29004 

official methylation gene symbols, 3567 differential 

methylation genes were identified (including 3437 up-

regulated genes and 130 down-regulated genes) when 

comparing White people to Asian people, 2285 

differential methylation genes were identified (including 

2174 up-regulated genes and 111 down-regulated genes) 

when comparing Black people to Asian people, 3659 

differential methylation genes were identified (including 

1916 up-regulated genes and 1743 down-regulated 

genes) when comparing White people to Black people, 

respectively (Figure 1D). From a total of 11202 official 

SNP gene symbols, 10697 mutations were noted in 

White people, 1679 mutations in Black people, 320 

mutations in Asian people- of which White people had 

more prominent mutations of TP53, ATM; Black people 

had more prominent mutations in ATM, TP53, CDK12 

than Asian people; White people had more prominent 

mutations in TP53 than Black people (Figure 1E and 

Supplementary Figure 1). Surprisingly, we found that 

the mutations of TP53, ATM, CDK12 showed significant 

resistance to chemotherapy of pan-cancer cell lines in 

the GDSC database. For example, TP53 mutation 

showed significant resistance to paclitaxel, 5-

Fluorouracil, doxorubicin and gemcitabine. The details 

are summarized in Supplementary Tables 1, 2.  

 

Drug metabolism differences in White, Black and 

Asian PCa patients  

 

Enrichment analysis was carried out according to the 

differential genes in transcriptomics, epigenome and 

SNPs, to identify the differences in metabolism pathway 

for White, Black and Asian PCa patients. We found 

significant differences in drug metabolism, cytotoxic 

therapy, endocrine therapy, molecular targeting 

treatment, biological response modifiers and radiotherapy 

amongst the ethnicities. More precisely, Black people 

were more prominently enriched in DMP (hsa00982: 
drug metabolism - cytochrome P450, hsa00980: 

metabolism of xenobiotics by cytochrome P450, 

hsa00983:drug metabolism), GSEA: pretumor drug 

resistance, GSEA: docetaxel resistance, GSEA: 

doxorubicin resistance, GSEA: gemcitabine resistance, 

GSEA: gefitinib resistance, GSEA: endocrine therapy 

resistance, GSEA: response to androgens, GSEA: serum 

and rapamycin sensitive genes in mRNA level, GSEA: 

endocrine therapy resistance in lncRNA level, DMP, 

hsa01524:platinum drug resistance, GSEA: pretumor 

drug resistance in methylation level when compared with 

Asian people; White people were more prominently 

enriched in DMP, hsa00983: drug metabolism - other 

enzymes, GO:0017144 drug metabolic process, GSEA: 

doxorubicin resistance, GSEA: gemcitabine resistance, 

GSEA: gefitinib resistance, GSEA: endocrine therapy 

resistance in mRNA level, hsa01524:platinum resistance, 

GO:0010332 response to gamma radiation in miRNA 

level, GSEA: endocrine therapy resistance in lncRNA 

level, hsa00980: metabolism of xenobiotics by 

cytochrome P450, hsa01524: platinum drug resistance, 

GSEA: endocrine therapy resistance, GSEA: response to 

androgens pathways in methylation level when compared 

with Asian people; White people were more prominently 

enriched in DMP, hsa00983: drug metabolism - other 

enzymes, GO:0017144 drug metabolic process, 

GO:0042738 exogenous drug catabolic process, GSEA: 

doxorubicin resistance, GSEA: endocrine therapy 

resistance, GSEA: response to androgen, GSEA: 

rapamycin sensitive via tsc1 and tsc2 in mRNA level, 

GO:0009314 response to radiation pathway in miRNA 

level, GO:0017144 drug metabolic process, 

hsa01524:platinum resistance, GO:0009314 response  

to radiation in methylation level when compared with 

Black people. (Figure 2, and Supplementary Figure 4, 

Supplementary Tables 3–6);  

 

It was worth noting that Black people were also 

prominently enriched in hsa00983: drug metabolism, 

GO:0042738 exogenous drug catabolic process in 

methylation level when compared with White people 

(Figure 2), that is because parts of methylation level have 

an uncertain relationship with gene expression. 

Therefore, we screened methylation drivers genes for 

each race for further enrichment analysis (Supplementary 

Figure 2 and Supplementary Table 8), and the results 

verified that the Black people were more prominently 

enriched in hsa00982 drug metabolism, GO:0017144 

drug metabolic process, GO:0009314 response to 

radiation when compared with the Asian people; White 

people were more prominently enriched in hsa00982 

drug metabolism, GO:0017144 drug metabolic process, 

GO:0009314 response to radiation when compared with 

Asian people; White people were more prominently 

enriched in molecular targeting treatment when 

compared with Black people (Supplementary Figure 3 
and Supplementary Table 6); Further enrichment analysis 

of mutated genes of the different races showed that SNPs 

might relate to hsa00982:drug metabolism - cytochrome 
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P450 (p=0.096), GSEA: multiple drug resistance, 

GO:0097327 response to antineoplastic agent, GSEA: 

doxorubicin resistance, GSEA: endocrine therapy 

resistance, GSEA: response to androgen pathways in 

White people, GO:0042738 exogenous drug catabolic 

process(p=0.08), GO:0017144 drug metabolic 

process(p=0.08), GSEA: response to tsa and decitabine 

1b pathways in Black people, GO:0008144 drug binding 

pathway in Asian people, respectively (Figure 2 and 

Supplementary Table 7). Unless otherwise specified, all 

significant P value was < 0.05. 

 

Key functional modules with ethnic differences were 

identified for each omics  

 

We summarized the important functional modules, 

including drug metabolism, cytotoxic therapy, endocrine 

therapy, molecular targeting treatment, biological 

response modifiers, radiotherapy, and related genes set 

amongst the different races (Supplementary Table 9). We 

found that the differences of these important functional 

modules amongst the different ethnicities were caused by 

the combination of transcriptomics, epigenome and 

SNPs. Furthermore, we found that each omics had its 

own prominent functional module. We defined these 

prominent functional module as the key functional 

module for each omics, more precisely, drug metabolism, 

platinum resistance and antineoplastic agent response, 

endocrine therapy resistance, molecular targeted therapy, 

and response to radiation were identified as the key 

functional modules for mRNA, miRNA, lncRNA, DNA 

methylation, respectively. It is worth noting that DNA 

methylation and SNPs also significantly occurred in drug 

metabolism modules (Table 1 and Supplementary Table 

9). What’s more, we preliminarily identified the core 

genes or target genes in multi-omics key functional 

 

 
 

Figure 2. Metabolism pathway difference analysis according to multi-omics for races, of which drug metabolism, cytotoxic 
therapy, endocrine therapy, radiotherapy, molecular targeted therapy, biological response modifiers therapy differences 
were the main focus. Unless otherwise specified, all the significance P value < 0.05. 
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Table 1. Comparison of the multi-omics key functional modules and related core genes among RACES. 

Functional modules Omics Genes Comparison 
Expression 

significant 

Functional 

significant 

Drug metabolism 

mRNA UGT2B17 Asian VS Black Black Black 

mRNA UGT1A8 Asian VS Black Black Black 

mRNA UGT2B7 Asian VS Black Black Black 

mRNA UGT1A1 Black VS White White White 

mRNA CYP3A4 Black VS White White White 

mRNA UGT1A10 Black VS White White White 

mRNA UGT1A8 Black VS White White White 

mRNA CYP2B6 Black VS White White White 

mRNA UGT2B11 Black VS White White White 

mRNA UGT1A1 Asian VS White White White 

mRNA UGT2B17 Asian VS White White White 

mRNA UGT1A8 Asian VS White White White 

mRNA CYP1A1 Asian VS White White White 

mRNA UGT2B11 Asian VS White White White 

Methylation CYP2B6 White VS Asian White White 

Methylation CYP3A4 White VS Asian White White 

Methylation CYP2B6 White VS Black White White 

Methylation UGT1A1 White VS Black White White 

Mutations UGT2B7 —— White White 

Mutations CYP2B6 —— Black Black 

Mutations CYP1A1 —— Black Black 

Platinum drug 

resistance 

miRNA hsa-miR-1911-3p Asian VS White Asian White 

miRNA hsa-miR-612 Asian VS White Asian White 

miRNA hsa-miR-1237-3p Asian VS White Asian White 

miRNA hsa-miR-5698 Asian VS White Asian White 

miRNA hsa-miR-483-3p Asian VS White Asian White 

miRNA hsa-miR-6783-3p Asian VS White Asian White 

Response to 

antineoplastic agent 

miRNA hsa-miR-3130-3p Asian VS White White Asian 

miRNA hsa-miR-519a-3p Asian VS White White Asian 

Endocrine therapy 

resistance 

lncRNA LINC00052 Black VS Asian Black Black 

lncRNA LINC01087 Black VS Asian Black Black 

lncRNA JPX Black VS Asian Black Black 

lncRNA CCDC18-AS1 Black VS Asian Black Black 

lncRNA PVT1 Black VS Asian Black Black 

lncRNA SIAH2-AS1 Black VS Asian Black Black 

lncRNA SNHG7 Black VS Asian Black Black 

lncRNA LINC00992 Black VS Asian Black Black 

lncRNA SNHG6 Black VS Asian Black Black 

lncRNA GATA3-AS1 Black VS Asian Black Black 

lncRNA SP2-AS1 Black VS Asian Black Black 

lncRNA GAS5 Black VS Asian Black Black 

lncRNA ELOVL2-AS1 Black VS Asian Black Black 

lncRNA XIST Black VS Asian Black Black 

lncRNA AGAP2-AS1 Black VS Asian Black Black 

lncRNA LINC01087 White VS Asian White White 
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lncRNA JPX White VS Asian White White 

lncRNA PVT1 White VS Asian White White 

lncRNA SIAH2-AS1 White VS Asian White White 

lncRNA CCDC18-AS1 White VS Asian White White 

lncRNA SNHG7 White VS Asian White White 

lncRNA SNHG6 White VS Asian White White 

lncRNA LINC00992 White VS Asian White White 

lncRNA GAS5 White VS Asian White White 

lncRNA XIST White VS Asian White White 

lncRNA SP2-AS1 White VS Asian White White 

lncRNA GATA3-AS1 White VS Asian White White 

lncRNA AGAP2-AS1 White VS Asian White White 

lncRNA ELOVL2-AS1 White VS Black White White 

lncRNA LINC00052 White VS Black White White 

lncRNA AC103760.1 White VS Black White White 

lncRNA XIST White VS Black White White 

Molecular targeted 

therapy 

Methylation ORM1 White VS Asian Asian White 

Methylation ORM1 Black VS Asian Asian Black 

Response to 

radiation 

Methylation MIR155HG White VS Asian Asian White 

Methylation MIR155HG Black VS Asian Asian Black 

 

modules, and the DNA methylation and SNP genes, 

which occurred in the drug metabolism functional 

modules, were also included as the preliminary core 

genes. After screening, we affirmed 9 core mRNA which 

were related to drug metabolism, 8 core miRNA which 

were related to platinum resistance and antineoplastic 

agent response, 16 core lncRNA which were related to 

endocrine therapy resistance, 1 core methylation for 

molecular targeted therapy and 1 core methylation for 

response to radiation. In addition, 3 methylation and 3 

SNPs in the drug metabolism functional module were 

also included in the core genes of DNA methylation and 

SNPs. (Table1 and Supplementary Figure 5A–5C). In 

addition, multi-omics key functional modules core genes 

showed significant differences amongst White, Black and 

Asian people, as both single gene or total, the details of 

which are shown in Table 1 and Figure 3. 

 

Drug resistance differences amongst races might 

originate from drug metabolism  

 

Firstly, correlation analysis was adopted for multi-omics 

key functional modules that indicated that the endocrine 

therapy resistance functional module had a strong 

positive correlation with the drug metabolism module in 

this work. Meanwhile, the cytotoxic resistance genes 

(HMGB1, docetaxel resistance: SKP2, AXL, KDM5D, 

MDH2, PIM1, SPHK1, LDHA, SOX2, Hsa-mir-143, 
Hsa-mir-193a, Hsa-mir-195a, Hsa-mir-204, Hsa-mir-

216b, Hsa-mir-323a, Hsa-323b, Hsa-mir-34a, Hsa-mir-
375, platinum resistance: Hsa-mir-205, HOTAIR, 

NEAT1), endocrine therapy resistance genes (AR, FHL2, 

VAV3, LDHA, AKR1C3, KIF4A, KDM4B) reported in the 

literature also showed strong positive correlations with 

the drug metabolism functional module. Furthermore, the 

platinum resistance functional module showed positive 

correlations with cytotoxic treatment resistance genes 

reported in the literature, endocrine therapy resistance 

functional module showed positive correlations with 

endocrine therapy resistance genes reported in the 

literature (Figure 4A). These evidences suggested that the 

cytotoxic treatment resistance and endocrine therapy 

resistance showed good correlations to drug metabolism 

in PCa. Next, multi-omics key functional modules core 

genes or targets in this work, and cytotoxic resistance 

genes (HMGB1, docetaxel resistance: SKP2, AXL, 
MDH2, PIM1, SPHK1, LDHA, SOX2), endocrine therapy 

resistance genes (AR, FHL2, VAV3, LDHA, AKR1C3, 
KIF4A, KDM4B) reported in literature were taken for 

regulatory network analysis, which demonstrated that 

drug metabolism module, cytotoxic treatment resistance 

module, and endocrine therapy resistance module were 

well regulated with each other (Figure 4B, and 

Supplementary Figure 5F, Supplementary Table 10). 

Therefore, we have reason to think that the differences in 

cytotoxic treatment resistance, endocrine therapy 

resistance amongst the different races might have 

originated from drug metabolism (Figure 4A, 4B and 

Supplementary Figure 5D–5F). Regulatory network 
analysis identified that mRNA (UGT2B17, UGT1A8, 

UGT2B7, UGT1A1, CYP3A4, UGT1A10, CYP2B6, 
UGT2B11, CYP1A1), miRNA (hsa-miR-1237-3p, 
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Figure 3. Key functional modules with ethnic differences were identified for each omics. (A) Multi-omics key functional modules 

core genes differences analysis for races, as both single gene or total, which were shown in hot map. (B) The core genes of mRNA key 
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functional module (drug metabolism) differences analysis for RACES as both single gene or total. (C) The core genes of miRNA key functional 
module (platinum resistance and antineoplastic agent response) differences analysis for RACES as both single gene or total. (D) The core 
genes of lncRNA key functional module (endocrine therapy resistance) differences analysis for RACES as both single gene or total. (E) The core 
genes of methylation key functional modules (drug metabolism, molecular targeted therapy and response to radiation) differences analysis 
for RACES as both single gene or total. (Notes: mRNA, miRNA, lncRNA, methylation expressed as the mean value of the core genes of each 
key functional module, methylation-DM expressed as the mean value of drug mentalism-related methylations, miRNA 1 expressed as the 
mean value of antineoplastic agent response related core miRNAs, miRNA 2 expressed as the mean value of platinum resistance related core 
miRNAs, B-A, W-A, W-B expressed as the mean value of core genes of each key functional modules which significant in Black people VS Asian 
people, White people VS Asian people, White people VS Black people, respectively). 

 

hsa-miR-1911-3p, hsa-miR-3130-3p, hsa-miR-612), 

lncRNA (XIST, CCDC18-AS1, GAS5, JPX, SNHG6, 
LINC00992), SNPs (UGT2B7, CYP2B6, CYP1A1), 

methylation (UGT1A1, CYP3A4, CYP2B6) were well 

regulated to each other, and to cytotoxic resistance 

genes or endocrine therapy resistance genes reported 

in literature, and these genes were deemed as drug 

metabolism-related core genes in further studies 

(Supplementary Table 11). We also found that drug 

metabolism-related core genes showed differences  

in transcriptomics, epigenome and SNPs, as both 

single gene or total, amongst the different races,  

which lead to drug metabolism, and drug resistance 

differences amongst the White, Black and Asian 

patients. (Figure 4C, 4D and Table 1).  

 

Drug metabolism-related core genes affected drug 

sensitivities in PCa cell lines 

 

Multi-platform data was used to verify the correlations 

between multi-omics drug metabolism-related core 

genes and drug sensitivities of those antineoplastic 

compounds in prostate cancer cell lines. In other words, 

we want to further confirm the changes of IC50, EC50 

or AUCs when targeting drug metabolism-related core 

genes in PCa treatment. Combined with CCLE, GDSC 

and CTRP database, results showed that mRNA 

(CYP1A1, CYP3A4, UGT1A1, UGT1A8, UGT1A10, 
UGT2B7, UGT2B11, UGT2B17), miRNA (hsa-miR-

612), lncRNA (GAS5, JPX, XIST, CCDC18-AS1), 

methylation (CYP1A1, CYP2B6, GAS5, SNH6) affected 

the IC50, EC50 and AUCs of antineoplastic drugs in 

prostate cancer cell lines. It was encouraging that the 

expression of CYP3A4 and GAS5, methylation levels of 

CYP1A1 had strong correlations to paclitaxel 

resistance, and UGT2B7 had strong correlations to 

doxorubicin resistance in PCa treatment. In addition, we 

unexpectedly found that the methylation SNH6 was 

closely related to paclitaxel resistance in PCa treatment. 

These details are summarized in Table 2. These genes 

are expected to be effective targets for the treatment of 

prostate cancer. Furthermore, we found that CYP1A1, 

CYP2B6, CYP3A4, UGT1A8, UGT2B11, UGT2B17, 

UGT2B7, XIST, SNHG6 were also well affected the 

chemotherapy or endocrine therapy drug sensitivities 

(which define as (1−AUC) in GDSC and define as 

[1−(AUC/30)] in CTRP) of antineoplastic drugs in pan-

cancer cell lines according to GDSC and CTRP 

database; For example, CYP1A1, CYP2B6, CYP3A4, 

UGT2B11, UGT2B17, UGT2B7, XIST showed 

resistance to docetaxel, CYP1A1, CYP2B6, CYP3A4, 
UGT2B11, UGT2B17, XIST showed resistance to 

cisplatin, CYP2B6, UGT1A8, UGT2B11, XIST, SNHG6 

showed resistance to abiraterone, and so on. We will not 

enumerate them all here, but the details are summarized 

in Supplementary Table 12. Considering the above 

results, we have taken CYP1A1, CYP2B6, CYP3A4, 

UGT1A8, UGT2B11, UGT2B17, UGT2B7, GAS5, XIST, 

SNHG6, which might be more relevant to chemotherapy 

or endocrine therapy resistance in PCa treatment, for 

subsequent study. 

 

Drug metabolism-related core genes predict drug 

response and treatment outcomes for PCa patients  

 

Later, we combined CYP1A1, CYP2B6, CYP3A4, 

UGT1A8, UGT2B11, UGT2B17, UGT2B7, GAS5,  
XIST, SNHG6, which showed good correlations to 

chemotherapy or endocrine therapy resistance, to predict 

drug response and treatment outcomes in 69 PCa patients 

who have previously received chemotherapy or 

endocrine therapy. The result of ROC prediction model 

showed that these genes have a good predictive power of 

primary treatment outcome success (AUC =0.808, 

P<0.001, SD=0.059), treatment success (AUC =0.776, 

P=0.001, SD=0.067), drug response(AUC =0.896, 

P=0.001, SD=0.066), stage event PSA value (AUC 

=0.842, P=0.003, SD=0.061), biochemical recurrence 

(AUC =0.702, P=0.022, SD=0.075), new tumor event 

after initial treatment(AUC =0.662, P=0.025, SD=0.068), 

for TCGA PCa patients, after receiving chemotherapy or 

hormone therapy (Figure 5). These models demonstrate 

that these genes were potential biomarkers for predicting 

the drug response and treatment outcomes of prostate 

cancer. These genes also showed significant racial 

differences- specifically, CYP1A1, CYP3A4, UGT1A8, 

UGT2B11, UGT2B17, GAS5, XIST, SNHG6 were more 

significant in White people in comparison to Asian 

people, UGT1A8, UGT2B17, UGT2B7, GAS5, XIST, 

SNHG6 were more significant in Black people in 

comparison to Asian people, and CYP2B6, UGT1A8, 

UGT2B11, CYP3A4 were more significant in White 
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Figure 4. (A) The correlations of the core genes of each key functional modules to each other and the correlations of the core genes of each 

key functional modules to cytotoxic resistance genes (HMGB1, docetaxel resistance: SKP2, AXL, KDM5D, MDH2, PIM1, SPHK1, LDHA, SOX2, 
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Hsa-mir-143, Hsa-mir-193a, Hsa-mir-195a, Hsa-mir-204, Hsa-mir-216b, Hsa-mir-323a, Hsa-323b, Hsa-mir-34a, Hsa-mir-375, platinum 
resistance: Hsa-mir-205, HOTAIR, NEAT1), endocrine therapy resistance genes (AR, FHL2, VAV3, LDHA, AKR1C3, KIF4A, KDM4B) reported the 
in literature. (B) The core genes or targets of each key functional modules in this work and cytotoxic resistance genes (HMGB1, docetaxel 
resistance: SKP2, AXL, MDH2, PIM1, SPHK1, LDHA, SOX2), endocrine therapy resistance genes (AR, FHL2, VAV3, LDHA, AKR1C3, KIF4A, 
KDM4B) reported in the literature, were taken for regulatory network analysis, the genes which regulated well from each other in network 
were identified as drug metabolism-related core genes for further study. (C, D) Drug metabolism-related core genes differences analysis for 
RACES as both single gene or total, which were shown in the hot map and box plots. (Notes: mRNA, miRNA, lncRNA, methylation expressed 
as the mean value of the core genes of each key functional modules in network, miRNA 1 expressed as the mean value of antineoplastic 
agent response related core miRNAs in network, miRNA 2 expressed as the mean value of platinum resistance related core miRNAs in 
network). 

 

people in comparison to Black people (Supplementary 

Figure 6). 

 

DISCUSSION 
 

Several studies have shown racial differences in the 

genetic background of prostate cancer patients. For 

example, Brandon A Mahal. et al have revealed racial 

differences in the mutational profiles of 2393 prostate 

cancer patients, which including 2109 White, 204 Black, 

and 80 Asian [16], Timothy R Rebbeck. et al have also 

proposed that individuals of European/Asian ancestry 

have different risk alleles than individuals of African 

ancestry in PCa patients [17]. In our study, we provide a 

more complete and novel finding of racial differences in 

prostate cancer among White, Black, and Asian men, 

especially for drug treatment and drug metabolism, based 

on transcriptome, epigenome and SNPs, and these results 

may increase the contributions to this field.  

 

Recently, NATURE published the latest results based  

on whole-genome, whole-transcriptome and DNA 

methylation data, revealing the genomic changes in 

Chinese patients were markedly different from those in 

Western patients (41% FOXA1 mutation in PCa as the 

most prominent signature in the Chinese population), and 

emphasized the importance of individualized treatment 

based on ethnic genetic background [18]. Meanwhile, 

Mahal BA. et al reported that FOXA1 has the highest 

mutation frequency in the Asian population when 

compared with Blacks and Whites in both primary and 

metastatic prostate cancer patients [16]. These findings 

further supported our results. We know that FOXA1 has 

been reported to help shape AR signaling and drives 

growth and survival of prostate cancer cells [19], Which 

may be a potential explanation for the differences in 

prognosis among White, Black, and Asian PCa patients. 

What’s more, it was reported that ATM, PTEN in 

metastatic prostate cancer had a higher mutation 

frequency in Blacks and Whites than in Asians, and 

TP53, CDK12 in primary prostate cancer had a higher 

mutation frequency in Whites and Asians than in Blacks 
[16]. Most of these results are in line with ours, we also 

found different mutations in ATM, TP53 and CDK12 

among White, Black, and Asian PCa populations. It’s 

reported that TP53, PTEN, ATM and CDK12 were more 

mutated in metastatic castration-resistant prostate cancer 

(mCRPC) [20]. And we found that TP53, ATM and 

CDK12 mutations showed significant resistance to 

chemotherapy of pan-cancer cell lines. Therefore, the 

differences in gene mutations may be related to drug 

sensitivity and prognosis among different ethnic groups. 

 

Several studies have shown that overall survival (OS) of 

the Black populations is shorter than the White 

populations in PCa, but the Black OS was almost equal 

with the White OS after the docetaxel treatment [21], 

which might be due to the racial differences in drug 

sensitivities. There were studies that claimed that the 

differences in survival rates between Black and White 

people might due to selection bias or a possible biological 

difference between PCa. In addition, there may be ethnic 

differences in pharmacological and pharmacokinetic 

criteria that may affect the performance of therapeutic 

drugs such as docetaxel. In addition, many genes, 

including KDM5D, have been shown to modulate 

docetaxel sensitivity in prostate cancer [22–23]. In our 

study, many new genes were also found to modulate 

docetaxel sensitivity, such as CYP1A1, CYP3A4, GAS5, 

SHN6, etc, and race differences in the expression 

modulation of these genes may be a potential explanation 

for these observations. What’s more, we found that these 

genes contribute well to drug metabolic pathways and 

differ significantly among ethnic groups, and ethnic 

differences in resistance to cytotoxic therapy and 

endocrine therapy might result from the differences in 

drug metabolism. 

 

Recent research claimed that treatments of prostate 

cancer reflect unexpected ethnic disparities [24]. Moses 

et al. showed that African American (AA) men were 

less likely than Whites to receive treatment for radical 

prostatectomy, external beam radiation therapy, or 

brachytherapy [25]. This preference may influence 

prognosis or outcome for each race. Moreover, a few 

studies have compared the response effects of 

chemotherapy or endocrine therapy for prostate cancer 

of different races, but no consistent and systematic 

conclusions have been drawn [15]. To this end, we 

systematically compared the differences of White, 
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Table 2. The correlations between multi-omics drug metabolism-related core genes to IC50, EC50 or AUCs of 
antineoplastic drugs in CCLE/GDSC/CTRP database for PCa cell lines. 

Omics Platform Genes Effect Compounds Correlations Pvalue 

mRNA CCLE CYP1A1 IC50 Panobinostat -0.999 0.024 

mRNA CCLE CYP1A1 IC50 Paclitaxel -0.997 0.049 

mRNA CCLE CYP3A4 IC50 Panobinostat 0.999 0.033 

mRNA CCLE CYP3A4 IC50 Paclitaxel 1 0.008 

mRNA CCLE UGT1A8 IC50 Sorafenib -1 0.001 

mRNA CCLE UGT1A8 IC50 AZD0530 0.999 0.033 

mRNA CCLE UGT1A8 IC50 Lapatinib -1 0.001 

mRNA CCLE UGT2B17 IC50 Sorafenib -0.999 0.026 

mRNA CCLE UGT2B17 IC50 AZD0530 1 0.008 

mRNA CCLE UGT2B17 IC50 Lapatinib -0.997 0.026 

mRNA CCLE UGT2B11 IC50 Sorafenib -1 0.004 

mRNA CCLE UGT2B11 IC50 AZD0530 0.999 0.034 

mRNA CCLE UGT2B11 IC50 Lapatinib -1 <0.001 

miRNA CCLE hsa-miR-612 IC50 Crizotinib 1 0.019 

miRNA CCLE hsa-miR-612 IC50 AEW541 0.999 0.033 

lncRNA CCLE GAS5 IC50 Paclitaxel 0.997 0.047 

lncRNA CCLE JPX IC50 RAF265 -1 0.004 

methylation CCLE GAS5 IC50 Erlotinib -1 <0.001 

methylation CCLE GAS5 IC50 Paclitaxel -0.999 0.021 

methylation CCLE GAS5 IC50 Panobinostat -0.997 0.046 

methylation CCLE SNH6 IC50 Paclitaxel 0.999 0.021 

methylation CCLE SNH6 IC50 Panobinostat -0.997 0.049 

methylation CCLE CYP1A1 IC50 PF2341066 1 <0.001 

methylation CCLE CYP1A1 IC50 AEW541 1 0.014 

mRNA CCLE UGT1A10 EC50 17-AAG -0.998 0.041 

mRNA CCLE UGT1A10 EC50 PLX4720 1 0.017 

lncRNA CCLE XIST EC50 17-AAG -0.998 0.036 

lncRNA CCLE CCDC18-AS1 EC50 17-AAG -1 0.012 

lncRNA CCLE CCDC18-AS1 EC50 PLX4720 1 0.012 

methylation CCLE GAS5 EC50 Lapatinib -1 0.007 

methylation CCLE GAS5 EC50 PF2341066 1 0.017 

methylation CCLE GAS5 EC50 TKI258 -0.999 0.020 

methylation CCLE GAS5 EC50 RAF265 -1 0.017 

methylation CCLE SNH6 EC50 Lapatinib 0.999 0.028 

methylation CCLE SNH6 EC50 PF2341066 -0.998 0.038 

methylation CCLE SNH6 EC50 Panobinostat 0.999 0.034 

methylation CCLE SNH6 EC50 RAF265 1 0.004 

methylation CCLE SNH6 EC50 TKI258 0.998 0.042 

methylation CCLE CYP1A1 EC50 Topotecan 1 0.002 

methylation CCLE CYP1A1 EC50 Paclitaxel 1 0.013 

methylation CCLE CYP2B6 EC50 PLX4720 0.998 0.041 

mRNA GDSC UGT2B11 IC50 PLX4720 -1 0.011 

mRNA GDSC UGT2B7 AUCs Doxorubicin 1 0.014 

mRNA GDSC UGT2B17 AUCs Nutlin-3a -1 0.011 

lncRNA GDSC XIST AUCs PLX4720 1 0.020 

mRNA CTRP CYP1A1 AUCs Lapatinib -1 0.012 

mRNA CTRP CYP3A4 AUCs Lapatinib 0.997 0.046 

mRNA CTRP CYP3A4 AUCs Gefitinib 0.997 0.049 
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mRNA CTRP UGT2B7 AUCs Sorafenib 1 0.002 

mRNA CTRP UGT1A1 AUCs Nutlin-3a -0.999 0.022 

mRNA CTRP hsa-miR-612 AUCs Nutlin-3a 1 0.012 

lncRNA CTRP JPX AUCs Erlotinib -0.998 0.041 

lncRNA CTRP GAS5 AUCs Gefitinib -1 0.009 

methylation CTRP GAS5 AUCs Gefitinib -0.997 0.049 

methylation CTRP GAS5 AUCs Lapatinib -0.997 0.046 

methylation CTRP SNH6 AUCs Lapatinib 0.998 0.036 

methylation CTRP CYP1A1 AUCs Tamoxifen 0.998 0.041 

methylation CTRP CYP1A1 AUCs Nutlin-3a 0.999 0.031 

IC50: half-maximal inhibitory concentration. EC50: half-maximal effect concentration. AUCs: Area under the dose–response 
curve. 

 

Black and Asian people in chemotherapy, endocrine 

therapy, radiotherapy and molecular targeted therapy. et 

al, and further found that the differences in drug 

resistance might originate from drug metabolism among 

different races. 

In order to provide an effective target for the personalized 

treatment of prostate cancer, we identified drug 

metabolism-related core genes which related to drug 

metabolism, drug sensitivities, and related treatment 

outcomes in multi-omics, such as CYP1A1, CYP2B6, 

 

 
 

Figure 5. ROC prediction models were established for “primary therapy outcome success, treatment success, drug response, 
stage event. PSA value, biochemical recurrence, new tumor event after initial treatment” based on drug metabolism-related core genes 

which with good correlations to chemotherapy or endocrine therapy drugs sensitivities. (A) ROC prediction model for primary treatment 
outcome success (AUC=0.808, P=0, SD=0.059). (B) ROC prediction model for treatment success (AUC =0.776, P=0.001, SD=0.067). (C) ROC 
prediction model for drug response (AUC =0.896, P=0.001, SD=0.066). (D) ROC prediction model for stage event. PSA value (AUC =0.842, 
P=0.003, SD=0.061). (E) ROC prediction model for biochemical recurrence (AUC =0.702, P=0.022, SD=0.075). (F) ROC prediction model for 
new tumor event after initial treatment (AUC =0.662, P=0.025, SD=0.068). 



 

www.aging-us.com 16328 AGING 

CYP3A4, UGT1A8, UGT2B11, UGT2B17, UGT2B7, 
GAS5, XIST, SNHG6. et al. Several studies have shown 

that GAS5, SNH6, UGT1A10, UGT2B17 were well 

related to clinical prognosis, CYP3A4 related to paclitaxel 

resistance and therapeutic effects of abiraterone and 

enzalutamide in PCa [26–32]. Which supported our 

results, and these findings based on the multi-omics 

genetic structure of races could better guide the 

individualized treatment for PCa. 

 

In conclusion, transcriptomics, epigenome and SNPs 

were significant differences in Whites, Blacks and Asians 

of PCa, which directly lead to the differences in drug 

metabolism, drug resistance pathways. What’s more, 

drug metabolism promoted drug resistance differences 

among races, which lead to the differences in drug 

responses and treatment outcomes of PCa. Therefore, 

these findings can help us to understand the mechanisms 

of the difference in drug metabolism among prostate 

cancer patients in different races and help us in making 

individualized treatment strategies. 

 

MATERIALS AND METHODS 
 

Data sources 

 

In our study, 485 PCa samples including 415  

White people(85.6%), 58 Black people (12.0%) and  

12 Asian people (2.5%) were acquired from the TCGA 

data portal (https://tcga-data.nci.nih.gov/tcga/), of  

which transcriptomics, epigenome, SNPs data and 

corresponding clinical information were included. After 

being matched with clinical data, 479 samples with 

mRNA count (including 411 White, 56 Black and 12 

Asian people), 477 samples with microRNA count 

(including 407 White, 58 Black and 12 Asian people), 

476 samples with lncRNA count (including 408 White, 

56 Black and 12 Asian people), 469 samples with SNPs 

(including 402 White, 55 Black and 12 Asian people), 

483 samples with DNA methylation FPKM (including 

414 White, 57 Black and 12 Asian people) were 

contained. In these patients, 69 samples (14.2%) have 

received hormone therapy or chemotherapy (Figure 

4A). Meanwhile, transcriptomics, epigenome, SNPs, 

half-maximal inhibitory concentration (IC50), and half-

maximal effect concentration (EC50) of 24 antineoplastic 

compounds for 22RV1, DU145 and PC3 were downloads 

from the CCLE database (https://portals.broadinstitute. 

org/ccle/data). Transcriptomics, epigenome, SNPs  

and the area under the dose response curve (AUCs)  

of 24 antineoplastic compounds for pan-cancer  

cell lines were acquired from the CTRP database 

(http://portals.broadinstitute.org/ctrp/?page=#ctd2Bod

yHome). Transcriptome, the half-maximal inhibitory 

concentration (IC50), and the area under the dose-

response curve (AUCs) of 22 antineoplastic compounds 

for pan-cancer cell lines were acquired from the GDSC 

database (https://www.cancerrxgene.org/gdsc1000/ 

GDSC1000_WebResources//Home.html). Authorization 

was not requested from a local ethics committee, as all 

data were available on an open-access platform. 

 

Multi-omics difference analysis  

 

Differentially expressed genes of mRNAs, microRNAs, 

and lncRNAs were identified by the edge R package  

and differentially expressed DNA methylation genes 

were identified by the limma package for all races. The 

setting cutoffs for upregulated and downregulated  

genes were included in the fold change feature |logFC| > 

1 for mRNAs, microRNA and lncRNAs, and |logFC| > 

0.01 for DNA methylation, with a significant P value  

of < 0.05. 

 

Identification of DNA methylation driven genes 

 

The R package MethylMix was applied to identify 

methylation-driven genes, which are defined as 

differential DNA methylation genes that negatively 

correlation to gene expression.  

 

Target gene prediction analysis 

 

Target genes were predicted for miRNA and lncRNA, 

the targets of miRNA were identified by Mirwalk 

(http://mirwalk.umm.uni-heidelberg.de/), and the  

targets of lncRNA were identified by Encori 

(http://starbase.sysu.edu.cn/index.php). 

 

Enrichment analysis 

 

Enrichment analysis was used to investigate differential 

functions or signaling pathways for the different races, 

which was completed by GSEA, DAVID and webgestalt 

together to increase the credibility of the results. mRNA, 

lncRNA, DNA methylation, and SNPs were enriched  

by GSEA (http://www.broadinstitute.org/gsea). mRNA, 

miRNA target genes, DNA methylation and SNPs were 

enriched by DAVID (https://david.ncifcrf.gov/summary. 

jsp) and webgestalt (http://www.webgestalt.org/). 

 

Multi-omics key functional modules and core genes 

identify  

 

We identified the most significant pathways in  

each omics as the key functional modules. The  

results showed that drug metabolism, platinum 

resistance and antineoplastic agent response, endocrine 

therapy resistance, molecular targeted therapy, and 
response to radiation were the most key functional 

modules for mRNA, miRNA, lncRNA, and DNA 

methylation respectively. Next, the STRING database 

https://tcga-data.nci.nih.gov/tcga/
http://portals.broadinstitute.org/ctrp/?page=#ctd2BodyHome
http://portals.broadinstitute.org/ctrp/?page=#ctd2BodyHome
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html
http://mirwalk.umm.uni-heidelberg.de/
http://starbase.sysu.edu.cn/index.php
http://www.broadinstitute.org/gsea
https://david.ncifcrf.gov/summary.jsp
https://david.ncifcrf.gov/summary.jsp
http://www.webgestalt.org/
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(https://string-db.org) was used to identify the core 

genes or targets of mRNA and miRNA functional 

modules. The core genes of lncRNA functional 

module were identified according to GSEA gene set. 

Additionally, we also included the methylation and 

SNPs that occurred in drug metabolism functional 

module as the core genes for DNA methylation and 

SNPs. 

 

Multi-omics key functional modules regulatory 

network and drug metabolism-related core genes 

identification 

 

Regulatory network was established according to multi-

omics key functional modules related core genes in this 

work, and cytotoxic resistance genes, endocrine therapy 

resistance genes reported in the literature. The target 

relationships of these genes were affirmed by target 

prediction and protein-protein interaction (PPI) 

network, and we visualized the target relationships 

using Cytoscape software. Drug metabolism-related 

core genes were defined as the multi-omics key 

functional modules related core genes which regulated 

well with each other in the network. 

 

Statistical analysis  

 

Transcriptomics, epigenome data were standardized by 

log2(x+1) before analysis. Hot map, box plots, volcano 

map, nomogram and waterfall map and correlation 

analysis were plotted by R version 3.5.1. Receiver 

operating characteristic curve (ROC) and all statistical 

analyses were performed by SPSS 19.0 software (SPSS. 

Inc., Chicago, IL, USA). In this study, all significant  

P value was < 0.05.  

 

Data availability statement 

 

The datasets generated and analyzed during the current 

study are available in the TCGA, https://portal.gdc. 

cancer.gov/, CCLE, https://portals.broadinstitute.org/ 

ccle/data, CTRP, http://portals.broadinstitute.org/ctrp/ 

?page=#ctd2BodyHome, and GDSC https://www. 

cancerrxgene.org/gdsc1000/GDSC1000_WebResource

s//Home.html. 

 

Abbreviations 
 

M: methylation; MUT: mutations; SNP: single nucleotide 

polymorphism; DMP: drug metabolism pathways; IC50: 

half-maximal inhibitory concentration; EC50: half-

maximal effect concentration; AUC: area under curve; 

AUCs: area under the dose-response curve; ROC: receiver 

operating characteristic curve; SD: standard deviation; 

PCa: prostate cancer; OS: overall survival; CSS: cancer 

specific survival; Black: Black or Black American. 

AUTHOR CONTRIBUTIONS 
 

Ming-Kun Chen and Shan-Chao Zhao designed this 

study and revised the manuscript. Yang Liu wrote the 

manuscript. Jian-Kun Yang, De-Ying Liao, Zhi-Jian 

Liang, Xiao Xie, Qi-Zhao Zhou, Kang-Yi Xue, Wen-

Bing Guo, Ming Xia, Jun-Hao Zhou, Ji-Ming Bao, 

Cheng Yang, Hai-Feng Duan, Hong-Yi Wang, Zhi-Peng 

Huang collected the data. Yang Liu, Jia-Wei Zhou and 

Cun-dong Liu analyzed and interpreted the data. All the 

listed authors have participated actively in the study. All 

authors read and approved the final manuscript. 

 

ACKNOWLEDGMENTS 
 

We are grateful to the TCGA database, CCLE database, 

GDSC database and CTRP database for their data 

supports. We are grateful to CAI Lin for her 

modification of our manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare that they have no conflicts of 

interest. 

 

FUNDING 
 

This study was supported by the National Natural 

Science Foundation of China (NSFC 81602248 to 

Ming-Kun Chen) and the Natural Science Foundation of 

Guangdong Province (No. 2017A030313686 to Ming-

Kun Chen). 

 

REFERENCES 
 
1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, 

Rebelo M, Parkin DM, Forman D, Bray F. Cancer 
incidence and mortality worldwide: sources, methods 
and major patterns in GLOBOCAN 2012. Int J Cancer. 
2015; 136:E359–86. 

 https://doi.org/10.1002/ijc.29210 PMID:25220842 

2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, 
Jemal A. Global cancer statistics 2018: GLOBOCAN 
estimates of incidence and mortality worldwide for 36 
cancers in 185 countries. CA Cancer J Clin. 2018; 
68:394–424. 

 https://doi.org/10.3322/caac.21492 PMID:30207593 

3. Rebbeck TR. Prostate Cancer Disparities by Race and 
Ethnicity: From Nucleotide to Neighborhood. Cold 
Spring Harb Perspect Med. 2018; 8:a030387. 

 https://doi.org/10.1101/cshperspect.a030387 
PMID:29229666 

4. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. 
CA Cancer J Clin. 2018; 68:7–30. 

https://string-db.org/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portals.broadinstitute.org/ccle/data
https://portals.broadinstitute.org/ccle/data
http://portals.broadinstitute.org/ctrp/?page=#ctd2BodyHome
http://portals.broadinstitute.org/ctrp/?page=#ctd2BodyHome
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/Home.html
https://doi.org/10.1002/ijc.29210
https://pubmed.ncbi.nlm.nih.gov/25220842
https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593
https://doi.org/10.1101/cshperspect.a030387
https://pubmed.ncbi.nlm.nih.gov/29229666


 

www.aging-us.com 16330 AGING 

 https://doi.org/10.3322/caac.21442  
PMID:29313949 

5. Greiman AK, Rosoff JS, Prasad SM. Association of 
Human Development Index with global bladder, 
kidney, prostate and testis cancer incidence and 
mortality. BJU Int. 2017; 120:799–807. 

 https://doi.org/10.1111/bju.13875 PMID:28480994 

6. Zhang C, Zhang C, Wang Q, Li Z, Lin J, Wang H. 
Differences in Stage of Cancer at Diagnosis, Treatment, 
and Survival by Race and Ethnicity Among Leading 
Cancer Types. JAMA Netw Open. 2020; 3:e202950. 

 https://doi.org/10.1001/jamanetworkopen.2020.2950 
PMID:32267515 

7. DeSantis CE, Miller KD, Goding Sauer A, Jemal A, Siegel 
RL. Cancer statistics for African Americans, 2019. CA 
Cancer J Clin. 2019; 69:211–33. 

 https://doi.org/10.3322/caac.21555 PMID:30762872 

8. Cronin KA, Lake AJ, Scott S, Sherman RL, Noone AM, 
Howlader N, Henley SJ, Anderson RN, Firth AU, Ma J, 
Kohler BA, Jemal A. Annual Report to the Nation on the 
Status of Cancer, part I: National cancer statistics. 
Cancer. 2018; 124:2785–800. 

 https://doi.org/10.1002/cncr.31551  
PMID:29786848 

9. Zhou CK, Check DP, Lortet-Tieulent J, Laversanne M, 
Jemal A, Ferlay J, Bray F, Cook MB, Devesa SS. Prostate 
cancer incidence in 43 populations worldwide: An 
analysis of time trends overall and by age group. Int J 
Cancer. 2016; 138:1388–400. 

 https://doi.org/10.1002/ijc.29894 PMID:26488767 

10. Dall’Era MA, deVere-White R, Rodriguez D, Cress R. 
Changing Incidence of Metastatic Prostate Cancer by 
Race and Age, 1988-2015. Eur Urol Focus. 2019; 
5:1014–21. 

 https://doi.org/10.1016/j.euf.2018.04.016 
PMID:29735368 

11. Iyengar S, Hall IJ, Sabatino SA. Racial/Ethnic Disparities 
in Prostate Cancer Incidence, Distant Stage Diagnosis, 
and Mortality by U.S. Census Region and Age Group, 
2012-2015. Cancer Epidemiol Biomarkers Prev. 2020; 
29:1357–64. 

 https://doi.org/10.1158/1055-9965.EPI-19-1344 
PMID:32303533 

12. Park SY, Haiman CA, Cheng I, Park SL, Wilkens LR, 
Kolonel LN, Le Marchand L, Henderson BE. 
Racial/ethnic differences in lifestyle-related factors and 
prostate cancer risk: the Multiethnic Cohort Study. 
Cancer Causes Control. 2015; 26:1507–15. 

 https://doi.org/10.1007/s10552-015-0644-y 
PMID:26243447 

13. Layne TM, Graubard BI, Ma X, Mayne ST, Albanes D. 
Prostate cancer risk factors in black and white men in 

the NIH-AARP Diet and Health Study. Prostate Cancer 
Prostatic Dis. 2019; 22:91–100. 

 https://doi.org/10.1038/s41391-018-0070-9 
PMID:30108373 

14. Ateeq B, Bhatia V, Goel S. Molecular Discriminators of 
Racial Disparities in Prostate Cancer. Trends Cancer. 
2016; 2:116–20. 

 https://doi.org/10.1016/j.trecan.2016.01.005 
PMID:28741531 

15. Bernard B, Muralidhar V, Chen YH, Sridhar SS, Mitchell 
EP, Pettaway CA, Carducci MA, Nguyen PL, Sweeney CJ. 
Impact of ethnicity on the outcome of men with 
metastatic, hormone-sensitive prostate cancer. 
Cancer. 2017; 123:1536–44. 

 https://doi.org/10.1002/cncr.30503 PMID:28055108 

16. Mahal BA, Alshalalfa M, Kensler KH, Chowdhury-
Paulino I, Kantoff P, Mucci LA, Schaeffer EM, Spratt D, 
Yamoah K, Nguyen PL, Rebbeck TR. Racial Differences 
in Genomic Profiling of Prostate Cancer. N Engl J Med. 
2020; 383:1083–85. 

 https://doi.org/10.1056/NEJMc2000069 
PMID:32905685 

17. Rebbeck TR. Prostate Cancer Genetics: Variation by 
Race, Ethnicity, and Geography. Semin Radiat Oncol. 
2017; 27:3–10. 

 https://doi.org/10.1016/j.semradonc.2016.08.002 
PMID:27986209 

18. Li J, Xu C, Lee HJ, Ren S, Zi X, Zhang Z, Wang H, Yu Y, 
Yang C, Gao X, Hou J, Wang L, Yang B, et al. A genomic 
and epigenomic atlas of prostate cancer in Asian 
populations. Nature. 2020; 580:93–99. 

 https://doi.org/10.1038/s41586-020-2135-x 
PMID:32238934 

19. Teng M, Zhou S, Cai C, Lupien M, He HH. Pioneer of 
prostate cancer: past, present and the future of 
FOXA1. Protein Cell. 2021; 12:29–38. 

 https://doi.org/10.1007/s13238-020-00786-8 
PMID:32946061 

20. Abida W, Armenia J, Gopalan A, Brennan R, Walsh M, 
Barron D, Danila D, Rathkopf D, Morris M, Slovin S, 
McLaughlin B, Curtis K, Hyman DM, et al. Prospective 
Genomic Profiling of Prostate Cancer Across Disease 
States Reveals Germline and Somatic Alterations That 
May Affect Clinical Decision Making. JCO Precis Oncol. 
2017; 1: 1–16. 

 https://doi.org/10.1200/PO.17.00029 PMID:28825054 

21. Halabi S, Dutta S, Tangen CM, Rosenthal M, Petrylak 
DP, Thompson IM Jr, Chi KN, Araujo JC, Logothetis C, 
Quinn DI, Fizazi K, Morris MJ, Eisenberger MA, et al. 
Overall Survival of Black and White Men With 
Metastatic Castration-Resistant Prostate Cancer 
Treated With Docetaxel. J Clin Oncol. 2019; 37:403–10. 

https://doi.org/10.3322/caac.21442
https://pubmed.ncbi.nlm.nih.gov/29313949
https://doi.org/10.1111/bju.13875
https://pubmed.ncbi.nlm.nih.gov/28480994
https://doi.org/10.1001/jamanetworkopen.2020.2950
https://pubmed.ncbi.nlm.nih.gov/32267515
https://doi.org/10.3322/caac.21555
https://pubmed.ncbi.nlm.nih.gov/30762872
https://doi.org/10.1002/cncr.31551
https://pubmed.ncbi.nlm.nih.gov/29786848
https://doi.org/10.1002/ijc.29894
https://pubmed.ncbi.nlm.nih.gov/26488767
https://doi.org/10.1016/j.euf.2018.04.016
https://pubmed.ncbi.nlm.nih.gov/29735368
https://doi.org/10.1158/1055-9965.EPI-19-1344
https://pubmed.ncbi.nlm.nih.gov/32303533
https://doi.org/10.1007/s10552-015-0644-y
https://pubmed.ncbi.nlm.nih.gov/26243447
https://doi.org/10.1038/s41391-018-0070-9
https://pubmed.ncbi.nlm.nih.gov/30108373
https://doi.org/10.1016/j.trecan.2016.01.005
https://pubmed.ncbi.nlm.nih.gov/28741531
https://doi.org/10.1002/cncr.30503
https://pubmed.ncbi.nlm.nih.gov/28055108
https://doi.org/10.1056/NEJMc2000069
https://pubmed.ncbi.nlm.nih.gov/32905685
https://doi.org/10.1016/j.semradonc.2016.08.002
https://pubmed.ncbi.nlm.nih.gov/27986209
https://doi.org/10.1038/s41586-020-2135-x
https://pubmed.ncbi.nlm.nih.gov/32238934
https://doi.org/10.1007/s13238-020-00786-8
https://pubmed.ncbi.nlm.nih.gov/32946061
https://doi.org/10.1200/PO.17.00029
https://pubmed.ncbi.nlm.nih.gov/28825054


 

www.aging-us.com 16331 AGING 

 https://doi.org/10.1200/JCO.18.01279  
PMID:30576268 

22. Komura K, Jeong SH, Hinohara K, Qu F, Wang X, Hiraki 
M, Azuma H, Lee GS, Kantoff PW, Sweeney CJ. 
Resistance to docetaxel in prostate cancer is 
associated with androgen receptor activation and loss 
of KDM5D expression. Proc Natl Acad Sci USA. 2016; 
113:6259–64. 

 https://doi.org/10.1073/pnas.1600420113 
PMID:27185910 

23. de Morrée ES, Böttcher R, van Soest RJ, Aghai A, de 
Ridder CM, Gibson AA, Mathijssen RH, Burger H, 
Wiemer EA, Sparreboom A, de Wit R, van Weerden 
WM. Loss of SLCO1B3 drives taxane resistance in 
prostate cancer. Br J Cancer. 2016; 115:674–81. 

 https://doi.org/10.1038/bjc.2016.251 PMID:27537383 

24. Spratt DE, Osborne JR. Disparities in castration-
resistant prostate cancer trials. J Clin Oncol. 2015; 
33:1101–03. 

 https://doi.org/10.1200/JCO.2014.58.1751 
PMID:25691679 

25. Moses KA, Orom H, Brasel A, Gaddy J, Underwood W 
3rd. Racial/Ethnic Disparity in Treatment for Prostate 
Cancer: Does Cancer Severity Matter? Urology. 2017; 
99:76–83. 

 https://doi.org/10.1016/j.urology.2016.07.045 
PMID:27667157 

26. Deng ZH, Yu GS, Pan B, Feng ZH, Huang Q, Deng JZ, 
Chen B, Yang SK. Rs145204276 and rs4759314 affect 
the prognosis of prostate cancer by modulating the 
GAS5/miR-1284/HMGB1 and HOTAIR/miR-22/HMGB1 
signalling pathways. Artif Cells Nanomed Biotechnol. 
2020; 48:435–42. 

 https://doi.org/10.1080/21691401.2019.1709859 
PMID:31916466 

27. Yan Y, Chen Z, Xiao Y, Wang X, Qian K. Long non-
coding RNA SNHG6 is upregulated in prostate cancer 
and predicts poor prognosis. Mol Biol Rep. 2019; 
46:2771–78. 

 https://doi.org/10.1007/s11033-019-04723-9 
PMID:30911973 

28. Lévesque E, Labriet A, Hovington H, Allain ÉP, Melo-
Garcia L, Rouleau M, Brisson H, Turcotte V, Caron P, 
Villeneuve L, Leclercq M, Droit A, Audet-Walsh E,  
et al. Alternative promoters control UGT2B17-
dependent androgen catabolism in prostate cancer 
and its influence on progression. Br J Cancer. 2020; 
122:1068–76. 

 https://doi.org/10.1038/s41416-020-0749-2 
PMID:32047296 

29. Laverdière I, Flageole C, Audet-Walsh É, Caron P, 
Fradet Y, Lacombe L, Lévesque É, Guillemette C. The 
UGT1 locus is a determinant of prostate cancer 
recurrence after prostatectomy. Endocr Relat Cancer. 
2015; 22:77–85. 

 https://doi.org/10.1530/ERC-14-0423  
PMID:25452636 

30. Weiss J, Kocher J, Mueller C, Rosenzweig S, Theile D. 
Impact of enzalutamide and its main metabolite N-
desmethyl enzalutamide on pharmacokinetically 
important drug metabolizing enzymes and drug 
transporters. Biopharm Drug Dispos. 2017; 38:517–25. 

 https://doi.org/10.1002/bdd.2103 PMID:28865089 

31. Qin S, Liu D, Kohli M, Wang L, Vedell PT, Hillman DW, 
Niu N, Yu J, Weinshilboum RM, Wang L. TSPYL Family 
Regulates CYP17A1 and CYP3A4 Expression: Potential 
Mechanism Contributing to Abiraterone Response in 
Metastatic Castration-Resistant Prostate Cancer. Clin 
Pharmacol Ther. 2018; 104:201–10. 

 https://doi.org/10.1002/cpt.907 PMID:29027195 

32. van Eijk M, Boosman RJ, Schinkel AH, Huitema AD, 
Beijnen JH. Cytochrome P450 3A4, 3A5, and 2C8 
expression in breast, prostate, lung, endometrial, and 
ovarian tumors: relevance for resistance to taxanes. 
Cancer Chemother Pharmacol. 2019; 84:487–99. 

 https://doi.org/10.1007/s00280-019-03905-3 
PMID:31309254 

  

https://doi.org/10.1200/JCO.18.01279
https://pubmed.ncbi.nlm.nih.gov/30576268
https://doi.org/10.1073/pnas.1600420113
https://pubmed.ncbi.nlm.nih.gov/27185910
https://doi.org/10.1038/bjc.2016.251
https://pubmed.ncbi.nlm.nih.gov/27537383
https://doi.org/10.1200/JCO.2014.58.1751
https://pubmed.ncbi.nlm.nih.gov/25691679
https://doi.org/10.1016/j.urology.2016.07.045
https://pubmed.ncbi.nlm.nih.gov/27667157
https://doi.org/10.1080/21691401.2019.1709859
https://pubmed.ncbi.nlm.nih.gov/31916466
https://doi.org/10.1007/s11033-019-04723-9
https://pubmed.ncbi.nlm.nih.gov/30911973
https://doi.org/10.1038/s41416-020-0749-2
https://pubmed.ncbi.nlm.nih.gov/32047296
https://doi.org/10.1530/ERC-14-0423
https://pubmed.ncbi.nlm.nih.gov/25452636
https://doi.org/10.1002/bdd.2103
https://pubmed.ncbi.nlm.nih.gov/28865089
https://doi.org/10.1002/cpt.907
https://pubmed.ncbi.nlm.nih.gov/29027195
https://doi.org/10.1007/s00280-019-03905-3
https://pubmed.ncbi.nlm.nih.gov/31309254


 

www.aging-us.com 16332 AGING 

SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 

 
 

Supplementary Figure 1. SNPs status differential analysis (such as mutation rate, mutation type .ect) for White people (A), Black people 
(B) and Asian people (C), respectively.  
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Supplementary Figure 2. Methylation drives genes of prostate cancer identified for RACES (A–C has shown methylation drivers genes in 
methylation key functional modules). (A1) Regression analysis between the mRNA level and DNA methylation level of MIR155HG in Black 
people; (A2) Differential methylation statuses for Black and Asian people. The histogram demonstrates the distribution of MIR155HG 
methylation in Black people. Beta values represent the methylation level (range from 0 to 1), and the horizontal black bar indicates the 
distribution of methylation values in the Asian people. (B1) Regression analysis between the mRNA level and DNA methylation level of 
MIR155HG in White people; (B2) Differential methylation statuses for White and Asian people. (C1) Regression analysis between the mRNA 
level and DNA methylation level of ORM1in White people; (C2) Differential methylation statuses for White and Black people, White and Asian 
people. 
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Supplementary Figure 3. Metabolism pathways difference analysis according to methylation drives genes for Black and 
Asian people, White and Asian people, White and Black people, respectively. 
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Supplementary Figure 4. GSEA metabolism pathways differences analysis for RACES. (A–C) Doxorubicin resistance differences 
analysis based on mRNA for Black and Asian people(p=0.025), White and Asian people (p=0.013), White and Black people(p<0.001), 
respectively. (D–F) Endocrine therapy resistance differences analysis based on lncRNA for Black and Asian people(p=0.002), White and Asian 
people(p=0.002), White and Black people(p=0.073), respectively. 
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Supplementary Figure 5. Protein-protein interaction (PPI) networks for multi-omics key functional modules. (A) PPI network of 

the core mRNAs of drug metabolism functional module; (B) PPI network of the core miRNA target genes of platinum resistance and 
antineoplastic agent response functional module; (C) PPI network of the core lncRNA target genes of endocrine therapy resistance functional 
module. (D) PPI network for the core mRNAs of drug metabolism functional module and the core miRNA target genes of platinum resistance, 
antineoplastic agent response functional module. (E) PPI network for the core mRNAs of drug metabolism functional module and the core 
lncRNA target genes of endocrine therapy resistance functional module. (F) PPI network for the core mRNAs of drug metabolism functional 
module, the core miRNA target genes of platinum resistance, antineoplastic agent response functional module, the core lncRNA target genes 
of endocrine therapy resistance functional module and cytotoxic resistance genes (HMGB1, docetaxel resistance: SKP2, AXL, MDH2, PIM1, 
SPHK1, LDHA, SOX2), endocrine therapy resistance genes (AR, FHL2, VAV3, LDHA, AKR1C3, KIF4A, KDM4B) reported in literature. 
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Supplementary Figure 6. The race differences analysis for drug metabolism-related core genes, which more associated with 

chemotherapy or endocrine therapy resistance in PCa treatment, were shown in the hot map (A) and box plots (B). 
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1A–1E, 3A–3C, 4A–4B, 5, 6A–6E, 7A–7C, 9, 

10, 12. 

 

Supplementary Table 1A. Race differences in mRNA level. 

Supplementary Table 1B. Race differences in miRNA level. 

Supplementary Table 1C. Race differences in lncRNA level. 

Supplementary Table 1D. Race differences in DNA methylation level. 

Supplementary Table 1E. Race differences in SNPs. 

 

Supplementary Table 2. The relationships between mutations and drugs resistance for RACES in the GDSC database. 

RACES FEATURE Drug name 
N_FEATURE 

_pos 

N_FEATURE 

_neg 

FEATUREpos_ 

logIC50_MEAN 

FEATUREneg_ 

logIC50_MEAN 

FEATURE_delta

MEAN_IC50 
p-value 

WHITE/BLACK ATM_mut AKT inhibitor VIII 23 855 2.9901 2.2621 0.7281 3.7956E-05 

BLACK CDK12_mut AR-42 3 42 2.8850 -0.4480 3.3330 8.7294E-06 

BLACK CDK12_mut PXD101, Belinostat 3 41 2.5424 -0.0143 2.5568 2.1420E-04 

WHITE PTEN_mut GSK690693 6 40 1.8138 4.4415 -2.6278 3.4885E-06 

WHITE PTEN_mut GSK690693 89 830 2.5859 3.6637 -1.0777 1.3738E-08 

WHITE PTEN_mut KU-55933 5 37 2.9444 4.3950 -1.4506 4.5000E-04 

WHITE/BLACK TP53_mut Dabrafenib 577 293 3.5861 2.6293 0.9568 2.0493E-05 

WHITE/BLACK TP53_mut CGP-60474 13 13 -1.5947 -2.8274 1.2327 3.0085E-04 

WHITE/BLACK TP53_mut 5-Fluorouracil 12 13 2.3299 0.4615 1.8684 8.3505E-04 

WHITE/BLACK TP53_mut Mitomycin C 15 4 -1.8361 1.1059 -2.9420 9.9406E-05 

WHITE/BLACK TP53_mut Bleomycin (50 uM) 616 316 2.5522 1.8817 0.6705 1.7369E-05 

WHITE/BLACK TP53_mut Doxorubicin 15 4 -2.6881 0.2206 -2.9086 7.1336E-04 

WHITE/BLACK TP53_mut Doxorubicin 12 13 -0.8158 -2.7925 1.9768 3.4452E-04 

WHITE/BLACK TP53_mut Gemcitabine 15 4 -3.3618 1.4586 -4.8203 7.2685E-04 

WHITE/BLACK TP53_mut (5Z)-7-Oxozeaenol 602 311 1.0937 0.3198 0.7740 4.1941E-07 

WHITE/BLACK TP53_mut Nutlin-3a 12 11 3.6414 1.7152 1.9261 1.6219E-06 

WHITE/BLACK TP53_mut Nutlin-3a 19 13 3.2950 1.3950 1.9000 7.5961E-08 

WHITE/BLACK TP53_mut Nutlin-3a 14 29 3.8555 2.1006 1.7549 2.1254E-06 

WHITE/BLACK TP53_mut Nutlin-3a 23 10 4.3914 2.2671 2.1243 1.3080E-05 

WHITE/BLACK TP53_mut Nutlin-3a 19 14 4.3994 2.6616 1.7378 1.4118E-04 

WHITE/BLACK TP53_mut Nutlin-3a 554 292 4.0582 2.5171 1.5411 1.0561E-54 

WHITE/BLACK TP53_mut Paclitaxel 13 13 -2.1812 -4.4205 2.2393 1.9381E-04 

WHITE/BLACK TP53_mut EHT 1864 37 4 3.4858 4.8728 -1.3870 5.6949E-05 

WHITE/BLACK TP53_mut Etoposide 13 13 2.0083 -0.2722 2.2805 7.8310E-04 

N:number; pos: positive; neg: negative; FEATUREpos_logIC50_MEAN: Average log IC50 of the postive feature population of 
pan-cancer cell lines;FEATUREneg_logIC50_MEAN: Average log IC50 of the negative feature population of pan-cancer cell 
lines;FEATURE_deltaMEAN_IC50: Difference of average natural log IC50 values between the postive and negative feature 
population of pan-cancer cell lines. In column G, negative value indicates interaction for drug sensitivity, whereas positive 
value indicates interaction for drug resistance. 

 

Supplementary Table 3A. GSEA enrichment analysis of mRNA for White, Black and Asian PCa patients. 

Supplementary Table 3B. Webgestalt enrichment analysis of mRNA for White, Black and Asian PCa patients. 

Supplementary Table 3C. DAVID enrichment analysis of mRNA for White, Black and Asian PCa patients. 

 

Supplementary Table 4A. Webgestalt enrichment analysis of miRNA for White, Black and Asian PCa patients. 

Supplementary Table 4B. DAVID enrichment analysis of miRNA for White, Black and Asian PCa patients. 

 

Supplementary Table 5. GSEA enrichment analysis of lncRNA for White, Black and Asian PCa patients. 
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Supplementary Table 6A. GSEA enrichment analysis of DNA methylation for White, Black and Asian PCa patients. 

Supplementary Table 6B. Webgestalt enrichment analysis of DNA methylation for White, Black and Asian PCa 
patients. 

Supplementary Table 6C. DAVID enrichment analysis of DNA methylation for White, Black and Asian PCa patients. 

Supplementary Table 6D. Webgestalt enrichment analysis of protein coding DNA methylation drives genes for 
White, Black and Asian PCa patients. 

Supplementary Table 6E. Enrichment analysis of non-protein coding DNA methylation drives gene MIR155HG which 
significant in White/Black PCa patients when compared to Asian PCa patients. 

 

Supplementary Table 7A. GSEA enrichment analysis of mutations for White, Black and Asian PCa patients. 

Supplementary Table 7B. DAVID enrichment analysis of mutations for White, Black and Asian PCa patients. 

Supplementary Table 7C. Webgestalt enrichment analysis of mutations for White, Black and Asian PCa patients. 

 

Supplementary Table 8. Methylation drives genes of prostate cancer for races. 

Races Genes 

White (compared to Asian) 
GALR1, FABP5, OXGR1, DRC1, CSAG1, HRASLS5, SIAH3, DAPL1, MIR155HG, 

ACY3, CXCL5, SLURP1, MIA2, RP11-272D20.2, CT83, ADH6, ORM1 

Black (compared to Asian) 
43535, DDX53, CSAG1, DCAF4L2, RLN1, CLK3P2, WIF1, FBLL1, TMEM26, 

PEX10, MIR155HG, SNX31, C1orf64, MAOB, MIA2 

White (compared to Black) 

SNX31, MAGEA3, CLK3P2, DDX53, CSAG1, MAGEC1, RP3-407E4.4, DCAF4L2, 

DAPL1, C20orf85, MAGEC2, MAGEA6, CALML3, ACY3, CXCL5, C3orf30, 

CTAG2, CT83, ORM1 

 

Supplementary Table 9. Comparison of multi-omics key functional modules with races differences. 

 

Supplementary Table 10. The regulatory relationship of multi-omics drug metabolism-related core genes to each 
other and to cytotoxic therapy or endocrine therapy resistance genes reported in the literature. 
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Supplementary Table 11. Multi-omics drug metabolism-
related core genes in regulatory network. 

Omics Core SNPs DNA methylation 

mRNA UGT2B17   

mRNA UGT1A8   

mRNA UGT2B7 yes  

mRNA UGT1A1  yes 

mRNA CYP3A4  yes 

mRNA UGT1A10   

mRNA CYP2B6 yes yes 

mRNA UGT2B11   

mRNA CYP1A1 yes  

miRNA hsa-miR-1237-3p   

miRNA hsa-miR-1911-3p   

miRNA hsa-miR-3130-3p   

miRNA hsa-miR-612   

lncRNA XIST   

lncRNA CCDC18-AS1   

lncRNA GAS5   

lncRNA JPX   

lncRNA   SNHG6   

lncRNA LINC00992   

 

Supplementary Table 12. Spearman correlation values between drug sensitivities and gene expression of 22 
antineoplastic drugs in the GDSC dataset and 24 antineoplastic drugs in the CTRP for pan-cancer cell lines. 


