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Abstract: Background: Locked-In Syndrome (LIS) is a rare neurological condition in which patients’
ability to move, interact, and communicate is impaired despite their being conscious and awake. After
assessing the patient’s needs, we developed a customized device for an LIS patient, as the commercial
augmentative and alternative communication (AAC) devices could not be used. Methods: A 51-year-
old woman with incomplete LIS for 15 years came to our laboratory seeking a communication tool.
After excluding the available AAC devices, a careful evaluation led to the creation of a customized
device (hardware + software). Two years later, we assessed the patient’s satisfaction with the device.
Results: A switch-operated voice-scanning communicator, which the patient could control by residual
movement of her thumb without seeing the computer screen, was implemented, together with
postural strategies. The user and her family were generally satisfied with the customized device, with
a top rating for its effectiveness: it fit well the patient’s communication needs. Conclusions: Using
customized AAC and strategies provides greater opportunities for patients with LIS to resolve their
communication problems. Moreover, listening to the patient’s and family’s needs can help increase
the AAC’s potential. The presented switch-operated voice-scanning communicator is available for
free on request to the authors.

Keywords: interaction/communication competence; locked-in syndrome; motor control accessing;
single-switch scanning access; speech impairments

1. Introduction

Brain stem injuries caused by stroke, trauma, anoxia, or even neurodegenerative
diseases, e.g., amyotrophic lateral sclerosis (ALS), can lead to a state of Locked-In Syndrome
(LIS) [1]. The term was first used by Plum and Posner in 1966 [2] to identify a condition in
which a person is severely paralyzed but has intact cognitive skills [1]. The syndrome is a
consequence of traumatic or vascular damage that bilaterally disconnects the corticospinal
and corticobulbar tracts, and it can have different forms. The classification is based on the
amount of motor outputs affected. In the total form, no movement can be produced; in
the pure form, patients can move their eyes and blink but are unable to produce any other
movement; in the incomplete form, some voluntary movements other than with the eyes
remain [3]. LIS rarely shows any improvement. The most common form has a chronic
pattern [4–6].

The major challenge in LIS is communication, which is essential for the quality of life
(QOL) [7], emotional state, and sense of existence of the locked-in person. Communication
is not only vital for practical daily life activities, but it is also essential in enabling social
participation [8]. People with incomplete LIS can also benefit greatly from communication
aids, but the traditional augmentative and alternative communication (AAC) devices are
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not always a solution, particularly if the residual muscle activity is insufficient to control
the device [9].

Re-establishing a communication channel for people with LIS has always been a chal-
lenge. Starting with low-tech AAC, i.e., non-battery powered methods of communicating
that are usually cheaper to make, patients seek to overcome their communication barrier.
Some studies have reported the use of Morse code (by eye blinking) or other eye-coded
methods by these patients to transmit a message letter by letter to their interlocutor [10].
Another system is partner-assisted scanning (PAS), in which the caregiver (partner) is in
front of the subject and verbally “scans” the sequential items to select [11]. Alternatively,
the partner can point out the letters on a visual scanning device (i.e., stating “this row” and
scanning through each letter). The patient is only required to look up or down, the easiest
way to indicate the letter chosen [12].

In addition, there is high-tech AAC, which includes various technologies and devices
to restore the ability to communicate, such as ETCDs (eye-tracking computer devices for
communication) [13], BCIs (brain-computer interfaces) [14], ERP (event-related potentials)-
based BCIs [15], motor imagery BCIs [16], SSVEP (steady-state visual evoked potential)
BCIs [15,17,18], hybrid BCIs [18] combining several techniques (e.g., eye-tracking and
electrooculography), and electromyographic (EMG) switches [14]. More recently, a new
high-tech approach, experimented in a LIS patient, utilized the intracortical signals to select
letters and, thus, write words [19]. Although very exciting, this new approach has so far
been used in only one case report where it was invasive, requiring a surgical procedure
conducted by an ultra-specialized team with a specific instrumentation.

Communicating with AAC requires strategies for the formulation, storage, and re-
trieval of words, codes, and messages [20]. A wide variety of software options exist for
generating messages, e.g., spelling words letter-by-letter, use of symbols or sequence icons
to represent words/messages, selecting words from a display to compose a message, or
use of programmed messages that can be retrieved. Each option suits some individuals
more than others. Thus, careful consideration is required to match the individual with
the most appropriate system [21–27]. Moreover, the management of the message can be
done in different ways. Most AAC technologies use aided symbols with visual displays of
pictures, alphabet, pictorial symbols, or codes from which the individual selects [20]. For
people with visual impairments, AAC technologies can present spoken messages or tactile
representation [28].

All in all, it can be difficult to determine the advantages of one method over another,
given the complexity of the individual factors involved (e.g., fatigue, medication, pain,
alertness, mood) [29]. This can also make it difficult to determine when and if it is ap-
propriate to change methods; to date, there is still no software that can provide dynamic
recognition of these factors, so clinicians and caregivers play a fundamental role in spotting,
evaluating, and reporting changes in a patient’s needs. Given the unique characteristics of
each individual, the available technology might not be able to meet their needs and it may
be necessary to modify existing commercial devices [30].

Our study’s participant was in the locked-in state due to a ponto-cerebellar stroke. At
the time of the study, she was using a no-tech AAC [31] that allowed her to communicate
with her caregivers but in a very energy-expensive way; she had not been using such
technology previously. Her family contacted us because she had read about the integrated
Laboratory of Assistive Solutions and Translational Research in which physiotherapists
study the possibility of using customized AAC methods. Although she could still communi-
cate via eyebrow movements, she wanted to test other methods as an alternative, since she
had a slight voluntary control and repeatable movements of the left thumb (that appeared
a few months after the stroke). Hence, the aim of our study was to test a high-tech AAC
that she could control without the caregiver’s help, as an alternative to her current method.
After comparing various AAC interfaces using different modes for signals acquisition, we
found that the most effective AAC method for this user was actually the least expensive.
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2. Material and Methods
2.1. Participant

At the time of the study, the patient (a 51-year old Italian woman, under the pseudonym
of Lisa) had been in the locked-in state for 15 years. Lisa was paralyzed since the birth of
her daughter, due to a ponto-cerebellar hemorrhage that occurred shortly after the birth.
The diagnosis of incomplete LIS [3] was made a few weeks after the stroke, when Lisa
showed an ability to answer closed questions by elevating her left eyebrow. A few months
later, slight voluntary and repeatable movements of the left thumb appeared. The strength
of the thumb was assessed with Kendall’s scale [32]: both the flexion and extension move-
ments had a strength of 3/10 (i.e., movement through a moderate execution range). She
was able to sit in a wheelchair, but trembled, had difficulty controlling her head, and was
not able to control her upper body. She could voluntarily move the left eyebrow and the
distal phalange of the left thumb. Her eyes moved only vertically with continuous and
uncontrolled movements, not functional for communication. She was fully assisted 24 h
a day.

2.2. Conventional Communication

Lisa began to communicate entire words and sentences a few months after the vascular
injury by slightly twitching her left eyebrow, choosing the desired letters of the alphabet
which were spelt out vocally by her caregiver. This acoustic scanning method, though, was
highly demanding both for Lisa and the caregiver, without whom this approach would
not have been possible. Lisa’s dad began looking for a solution that would improve his
daughter’s ability to communicate with others.

From an Internet search, he contacted different professionals—without good feedback—before
he found the integrated Laboratory of Assistive Solutions and Translational Research of the
Istituti Clinici Scientifici Maugeri and decided to pursue the matter with them immediately.
Lisa and her family were invited to the Institute, where they explained the strategy she
used for communicating and her desire to find a better method of communication. The
laboratory team was enthusiastic about accompanying her and exploring a possible solution;
the decision to write this case report was based on Lisa’s satisfaction with the solution
found and her written words. Moreover, based on Lisa’s needs, we created a software that
today we wish to make available to all free of charge, considering it an intuitive tool, easy
to manage, and immediately available, without excessive instrumentation. Therefore, Lisa
gave her informed consent to the present report and to give her testimony. All experimental
procedures were conducted in accordance with the Declaration of Helsinki, and with ethical
approval of the institutional review board.

2.3. Procedure

The researchers began by testing some commercial AAC devices that were avail-
able in the Laboratory. Obviously, low technology systems (i.e., non-electronic) were a
priori discarded.

High-technology systems include voice output communication aids (called “speech-
generating devices”), software on personal computers or laptops, tablet touch-screen
devices and mobile phones, which provide multiple access strategies, customizable content,
and voice output function [33]. However, these mainstream aids with a relatively low cost
and high accessibility are not useful for people with severe motor impairments unable to
use standard interfaces [34].

Consequently, for Lisa, the first trial we carried out was with an eye-tracking computer
device (Mytobii P10 Eye Tracker1), designed as an aid to communication for individuals
with minimal movement [35]. However, this eye-tracking was immediately discarded
because Lisa, like many patients with LIS, had no horizontal eye movements [3] and
her vertical movements were strongly disturbed by continuous involuntary movements.
She could not point or keep her gaze fixed on a target for more than 0.5 s, which made
interaction with the eye tracker impossible. Next, a sensorized headset for BCI (EMOTIV
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EPOC®2) [1] was tried, in search of some useful signal for communication. Continuous
involuntary head movements and facial and cranial muscle spasms created high levels of
electroencephalogram contamination; as a result, the BCI option was also abandoned.

Then, the decision was made to use a method that conceptually came very close to
the communication system that Lisa and her caregiver were currently using: an auditory
scanning AAC. BCIs using the auditory steady state response (ASSR) or the auditory P300
for interaction with BCI devices [36] were excluded for the above-mentioned reasons. The
conceptually similar commercially available software required a payment, and we were
not sure that they were appropriate for Lisa. Therefore, we decided to develop a custom-
designed (both hardware and software) scanning communicator, controlled by a switch
that Lisa could move with her left thumb to command a computer screen.

2.4. Assessment

To evaluate Lisa’s effective ability to interact with a switch, a single session of the
click-test [37] was administered by a physiotherapist with experience in the AAC field. The
test required to click (activate/deactivate) the control switch as many times as possible in
30 s, and then count the number of activations. Lisa was able to click the switch 41 times in
the given time, well above the minimum required level of 15 clicks. Because Lisa could not
control her hand or arm, the instability of the trunk initially caused many dysfunctional
movements of the thumb and provoked loss of contact and unintentional activation of
the switch. To solve this problem, the limb was stabilized on a foam pad shaped to
accommodate the arm and hand, and the switch used for the click test was fixed in the
most suitable position with double-sided tape. All devices and aids, including the laptop,
were placed on the wheelchair table for the test (Figure 1).
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Figure 1. Finding the most suitable arm position for Lisa. In order to satisfy Lisa’s needs, different
upper limb positions were tested. Finally, Lisa’s arm and hand were set in a foam pad with the thumb
placed on the control switch. Lisa can voluntarily move only her left thumb; the table and the foam
allow her to maintain her arms in a comfortable and stable position.

2.5. Custom-Device Development
2.5.1. Hardware

To allow Lisa to interact with the computer, we opted for a mechanical switch, based
on a lever system and previously created for patients with ALS [37] (see Appendix A). The
switch needed to be both easy to activate voluntarily and at the same time have a certain
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resistance to unintentional micro-movements that could activate it at the wrong time. This
meant positioning the thumb on the lever arm about 80% of the way down distally from
the fulcrum.

2.5.2. Software

The initial idea was to utilize the same method as a typical scanning grid communi-
cator, in which the user selects letters and commands highlighted on a screen; however,
the main obstacle was to provide information about the real time position of the scanning
marker without using the heavily compromised visual channel. Thus, we decided to use
the auditory channel (the computer’s speech synthesis) but no software or application
for this existed. Therefore, we created a new alphabetical virtual keyboard with a vocal
scanning-access, starting from a scanning-access keyboard previously designed for patients
with severe motor disabilities. First, letters and commands were grouped into six sets, from
“A1” to “A6”. The speech synthesis was programmed to sequentially pronounce the names
assigned to each set (“A1, A2, [...], A6”) cyclically, and then each item of the group selected
by the user. The message the user wants to transmit gradually appears in a dedicated text
box (see Appendix A).

Figure 2 shows the dashboard of the software, written in Italian, Lisa’s language. Vow-
els were positioned in the first set followed by consonants, generally respecting alphabetical
order to improve the software’s usability and make it easier for the user to remember the
position of each letter. For the same reason, the more uncommon Italian letters were placed
at the end of the sets, to avoid spelling them out in vain. Moreover, in accordance with
Lisa’s preferences, commands were placed in various sets (i.e., “space” in A1, “speak” in
A4, etc.). A practice trial is presented in video-format in Supplementary Materials.
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Figure 2. Lisa writes her opinion on her new AAC. The computer writes in response to Lisa’s
commands with her left thumb click. Lisa cannot see the scanning marker, she can only hear the
corresponding code: “A1” for group 1 (‘gruppo’ means group in Italian), “A2” for group 2, and so
on. After the first click (group selection) by pressing the control switch, she hears the letters of the
selected set, spelt out one after another (e.g., A-E-I-O-U-J-X-Y). A second click chooses the desired
letter. This screenshot shows one of the first sentences written by Lisa (translated from Italian “If it
works for me, it works for everyone”), who motivated this present article.
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3. Results

The device was run, and Lisa listened to the synthetic voice describing the content of
each group for 2 min, so as to make a mental map of the position of each letter or command.
As a first trial, in order to verify that the system as a whole worked properly, we asked
her to write her name and those of her children and she did so immediately. Then we
asked her what she thought about the device overall. She typed, in about 3 min, without
making any typing mistakes: “Se funziona per me funziona per tutti” (If it works for me,
it works for everyone) (Figure 2). While her answers were being video-documented, Lisa
typed, on her own initiative “Può andare più veloce?” (Can it go any faster?), referring to
the advancement speed of the scanning marker. Through a trial-and-error process using
different timings, we were able to reduce the scanning pause from 1200 to 800 milliseconds;
with this speed, Lisa could comfortably type letters, without too-long a latency time. The
new setting did not result in any typing errors, and Lisa confirmed that this was the setting
she preferred.

Effectiveness of the Custom Device

Two years after development of the switch-based communicator, Lisa returned to the
laboratory for a follow-up regarding use of the device. She reported that she was able to
use the device for just over 1

2 an hour at a time, after which she found it tiring. She used the
communicator 2–3 days a week on average, not every day due to problems mostly related
to health or assistance. The communicator was usually placed on a table with wheels so
it could be easily moved and used both when in bed and in her wheelchair. During her
daily routine, the time required for the caregiver to position Lisa’s arm on the foam pad,
her thumb on the control switch, and set up the device for use was approximately 2–3 min.
The scanning pause Lisa used was 800 milliseconds, and she was able to write over 2 words
per min: one character every 4.55 s on average. She generally wrote messages to those who
assisted her, especially her family members and children. Even though the time taken was
slightly longer than with the previous communication modality, she could write by herself
and choose her words without suggestions, i.e., she was more autonomous.

In order to determine the overall usability of the device, including Lisa’s confidence
with it for daily living activities, we asked Lisa and her father (the main caregiver) to
complete the following questionnaires:

• Global Rating of Change scale (GRC). This single-item scale assesses the perceived
improvement in quality of life with use of the new device. The subject grades the
perceived improvement (or lack of improvement) on a 15-point scale from −7 (lack of
improvement) to +7 (excellent improvement) [38].

• Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) ques-
tionnaire. This 12-item scale assesses user satisfaction with an assistive technology
device. The scale investigates two dimensions: satisfaction with the device and sat-
isfaction with the service. Item scores range from 1 (not satisfied at all) to 5 (very
satisfied) [39]. Only the eight items related to satisfaction with the device (QUEST
2.0-Dev) were reported for this study.

In the GCR, Lisa’s rating on how much the communicator had changed her quality of
life was 3, while her father rated it 5. Regarding satisfaction with the communicator, Table 1
reports the results on QUEST 2.0. Even if other future improvements might be possible,
Lisa and her father were generally satisfied about the characteristics of the customized
device. In particular, Lisa gave the top score (5) for the effectiveness of the device; she
found it well suited to her communication needs.



Brain Sci. 2022, 12, 1523 7 of 14

Table 1. Quebec User Evaluation of Satisfaction with Assistive Technology.

Assistive Device Lisa Father

1. How satisfied are you with the dimensions (size, height,
length, width) of your assistive device? 5 4

2. How satisfied are you with the weight of your assistive device? NA 5

3. How satisfied are you with the ease in adjusting (fixing,
fastening) the parts of your assistive device? 3 3

4. How safe and secure your assistive device is? 4 4

5. How satisfied are you with the durability (endurance,
resistance to wear) of your assistive device? 5 5

6. How easy it is to use your assistive device? 4 NA
7. How comfortable your assistive device is? 3 NA

8. How effective your assistive device is (the degree to which
your device meets your needs)? 5 NA

Item scores are: 1 = not satisfied at all, 2 = not very satisfied, 3 = more or less satisfied, 4 = quite satisfied, 5 = very
satisfied. NA (non-applicable) was used for items in which Lisa or her father could not answer (i.e., Lisa regarding
the weight of the device).

4. Discussion

Facilitating communication for individuals with severe motor impairments such as
LIS can be extremely difficult either because an access solution is unavailable or it is unreli-
able, causing frustration and limited use of the technology [40]. When both vertical and
horizontal ocular movements are present (e.g., in many cases of advanced-stage ALS), AAC
devices using gaze pointing should be used to recover communication [3] and to improve
life quality. More often, in traumatic or vascular Locked-In Syndrome, BCIs can provide
a muscle-independent communication channel [41]. In 1988, researchers proposed a BCI
based on ERPs in the electroencephalogram (EEG) such as P300 [42]. Today, many kinds of
BCIs exist, such as motor imagery BCIs [16], SSVEP BCIs [15,17,18,43], or Hybrid BCIs [18]
that conjugate several techniques (such as eye tracking and electrooculography) with the
aim of improving reliability and speed in human-machine interaction. BCI techniques
first need to acquire EEG signals from the user’s brain. The most non-invasive methods
of EEG detection use helmets or a headset with dry or wet surface electrodes placed on
the scalp [44,45]. The acquisition of EEG signals is a critical operation that can be affected
by disturbances and artefacts [46]. EEG contamination from the cranial muscles is often
present in the early stages of BCI training but it gradually wanes [14]. Some users never
acquire EEG control. In these cases, electromyography (EMG) may be used to move the
cursor toward the target [14]; for example, the EMG signal can be used as a trigger to control
a scanning communicator with an alphabetical onscreen keyboard [47] or to select virtual
directional arrows that move the cursor across the screen [43]. However, dystonic move-
ments, eye blinking, clenching of teeth, or continuous facial or cranial muscle spasms lead
to a high rate of EMG contamination [48], which represents the main cause of failure [14].
This situation occurred in our case: due to continuous artefacts, Lisa would not have been
able to use either a BCI-based communication system or the EMG signal acquired from the
scalp as a trigger to control a scanning communication system.

Some studies [10] have reported use of the Morse code or other eye-coded methods by
LIS patients to transmit a message letter by letter to the interlocutor, even if the patient’s
eye movements may be inconsistent, very small, and easily exhausted [49]. In 1997, Jean-
Dominique Bauby wrote an entire (and successful) book, “The diving bell and the butterfly”,
dictating it to a typist only by eye blink [50]. A study conducted in 2012 described a patient
with LIS who was able to communicate, after 3 weeks of training, through a virtual
scanning keyboard thanks to detection of the eye blink by an infrared sensor mounted
on a pair of glasses [51]. This method requires the ability to observe the screen, follow
the progress of the scanning cursor over the items, and wink with precision at the right
time—skills that are not always available in patients with LIS. In another recent study,
an electrooculogram-based auditory communication system was used by a small group
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of patients with incomplete LIS [52]. They had no gait fixation but were able to partially
control the eye movements. Nevertheless, only 1 patient had sufficiently good oculomotor
control, as reflected in electrooculogram signals, to use this AAC aid. Therefore, the biggest
issue is the fact that each patient has a unique clinical picture, with distinct abilities and
disabilities; Lisa could in no way use her eyes to communicate.

The multiplicity of clinical manifestations makes it difficult to find an easy, standard
solution to help these patients interact with their environment and to lay the foundations
for further research to find ways to suit their varied needs. This is what we accomplished
for Lisa by creating a customized device specifically for her, but which could also serve
other patients with LIS with similar characteristics.

First, we created a software program with a specific application describing the progress
of the scanning marker with speech feedback. Then, we discussed and defined some issues
for the practical implementation of the scanning-based communicator. We considered
whether it was better to adopt an automatic scanning engine (requiring only one user
movement to select the desired item) or a manual one (faster but requiring more than
one switch and many clicks for one selection). Then, we had to choose the hardware,
in particular the control switch. There are many switches on the market with different
activation modes: mechanical, capacitive, electromyographic, optical, sound, blowing, or
suctioning. It was necessary to identify which part of the body to use to interact with the
switch, which kind of button to use, how to stabilize it, and how to posture the patient to
ensure comfort and minimize fatigue.

Furthermore, in order to use an alphabetical communication device with scanning
access, the patient must have adequate cognitive skills, together with very good mnemonic
abilities. In addition, the capacity to interact with the command switch with a certain
reactivity and reliability is required; otherwise, the user might press the switch when the
scanning marker has already moved on to the next item. In our intervention, the click
test confirmed that Lisa was able to control the switch. Moreover, among the first written
sentences Lisa declared “If it works for me, it works for everyone” (translated from Italian);
this remark appeared as an invitation to spread her story to give other people in the same
condition a new possibility for communicating.

5. Conclusions

The intervention described in this case study was successful for several reasons. First, it
is thanks to Lisa’s excellent intact cognitive skills that she is able to write and communicate
with the world around her. Indeed, she has no difficulty in understanding; thanks to her
10-year long experience in vocal scanning-writing with the caregiver, she was able to easily
start using the computer vocal scanning. Moreover, Lisa has a good memory and learnt the
letter distribution in each box without problems.

Second, it is thanks to her father, who did not give up the search for a solution, as well
as to her family and friends, who organized for Lisa the most suitable conditions in which
to use the communicator. Finally, the fact of being able to modify the whole device—both
its hardware and software components—enabled us to create a solution that was well
suited to Lisa’s needs.

Another reason for the overall success was the close involvement of Lisa and her father
in the development of the device. We believe that it is very important to involve users
themselves in the development process in order to customize the device to their needs.
For example, Lisa asked us to speed up the scanning marker and then to insert recurring
courtesy phrases in the communicator interface (“Thanks”, “Please”, “I love you”, and
others). The laboratory team would not have been able to conceive this sort of detail; only
a real user can suggest such improvements to optimize the result personally. Moreover,
after using the device for about 1 month, Lisa requested that Arabic numerals be added
and that the layout of the keyboard be modified, moving some letters and commands from
one position to another so as to speed up the writing process and make use easier. The
fact that she is still using the device after over 2 years is a sign that it is technically reliable
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and sufficiently functional and effective to meet her communication needs, an assumption
confirmed by our follow-up assessment.

The limitation of our device appears to lie in the cognitive load it requires and produces:
Lisa can use the communicator for only about 1/2 an hour at a time, after which she gets
tired and has to stop. However, practice and habit might improve ability in using the
device and so reduce fatigue, decreasing the cognitive load. It seems clear that a good
cognitive level is crucial to access this communicative channel, as it is demanding on
time, attention, and concentration. In fact, patients who have significant linguistic and
cognitive limitations (e.g., persons with dementia) often have difficulty learning to use
traditional AAC technologies [53]. Moreover, there is no validated evaluation to assess the
psycho-physiological states of patients with LIS [54].

In our case study, the tests that we carried out with the most common communication
systems and facilitated access methods (eye tracker, BCIs, scanning with visual feedback)
failed. This implies that, in the field of AAC, one cannot rely on standard solutions despite
the advantages that each AAC method may offer. For instance, Lisa’s complex needs (the
LIS condition coupled with her specific involuntary eye movements, and trembling) ruled
out interaction with BCI or eye-tracking computer devices. We should point out that we
did not test all AAC devices on the market, for budget reasons (both ours and Lisa’s): the
more sophisticated the instrument, the higher the cost. In our clinical setting, we did not
have at our disposal the full range of commercial devices available on the market. However,
even if it were possible for our Institute to purchase a specific tool, the same would not be
true for a “normal” family. Thus, we preferred to develop a custom-made tool, which was
very cheap and fitted well Lisa’s needs.

We agree that there is need for continuing research to develop new alternative or
facilitated access methods and provide more customized AAC devices. The design process
we followed was person-centered, in line with theoretical frameworks for medical device
and assistive technology development [55]. The challenge is to ensure that all individuals
have access to effective means of communication and can participate in social relations to
the fullest extent possible.

Finally, if the reader is interested in testing and using our AAC tool, please contact
the authors. We will be pleased to share free of charge this software, as our contribution to
the field.
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Appendix A. Vocal-Scan Software and Hardware Details

Appendix A.1. Software

VOCAL-Scan (M-VOCAL.exe, version 1.1, Italy) is a AAC application for Windows,
developed in VB6, designed for writing by a switch-operated voice-scanning communicator—it
is intended for users suffering from severe motor disabilities who have visual problems.
The interaction between user and communicator takes place through a switch command.
The user clicks it to validate the scanned items, and so is able to compose messages letter
by letter without having to see them on the screen.

The app has several options that can be adapted to the user’s needs: (1) adjustable
scan progress speed from 400 to 4000 ms; (2) speech synthesis in various languages (Mi-
crosoft localized according to the user’s country is the default, but others can be selected);
(3) volume and speed of pronunciation of the elements scanned; (4) speed and volume of
speech synthesis that reads messages. It is also possible to turn word prediction on/off or
automatically enter a space after typing a punctuation character.

Acoustic feedback: As the scan advances, a synthetic voice verbalizes the process. It
initially calls the groups with a progressive and cyclic number (1, 2, 3...); after the user
has selected the desired group with a click, it verbalizes in succession the elements in the
chosen group. The user, on hearing the desired letter (or command), clicks a second time.
The voice repeats the item to inform the user of the choice. When the user has written
an entire word and typed in a space, the voice repeats it so that the user can verify the
correctness of what is written. In the case of error, the user can correct it through the
appropriate commands (e.g., delete last letter, delete last word).

Appendix A.2. Hardware

The app runs on multimedia PCs from Windows 7 onwards, requires a USB 2.1 port
or later to power a sensor interface to connect the control sensor, such as the one we
use (Gradual).

The software is very lightweight (only 844 Kb) so it does not require any special
specifications, although we recommend a PC with a good audio section to provide adequate
acoustic feedback to the user.
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