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Abstract

Drug-induced torsades de pointes (TdP), a life-threatening arrhythmia associated with prolongation of the QT interval, has
been a significant reason for withdrawal of several medicines from the market. Prolongation of the QT interval is considered
as the best biomarker for predicting the torsadogenic risk of a new chemical entity. Because of the difficulty assessing the
risk for TdP during drug development, we evaluated the metabolic phenotype for predicting QT prolongation induced by
sparfloxacin, and elucidated the metabolic pathway related to the QT prolongation. We performed electrocardiography
analysis and liquid chromatography–mass spectroscopy-based metabolic profiling of plasma samples obtained from 15
guinea pigs after administration of sparfloxacin at doses of 33.3, 100, and 300 mg/kg. Principal component analysis and
partial least squares modelling were conducted to select the metabolites that substantially contributed to the prediction of
QT prolongation. QTc increased significantly with increasing dose (r = 0.93). From the PLS analysis, the key metabolites that
showed the highest variable importance in the projection values (.1.5) were selected, identified, and used to determine the
metabolic network. In particular, cytidine-59-diphosphate (CDP), deoxycorticosterone, L-aspartic acid and stearic acid were
found to be final metabolomic phenotypes for the prediction of QT prolongation. Metabolomic phenotypes for predicting
drug-induced QT prolongation of sparfloxacin were developed and can be applied to cardiac toxicity screening of other
drugs. In addition, this integrative pharmacometabolomic approach would serve as a good tool for predicting
pharmacodynamic or toxicological effects caused by changes in dose.
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Introduction

Currently, a huge antibacterial drug market has developed

worldwide, and it is anticipated that side effects caused by the

regular administration of such drugs will lead to substantial

additional medical expenses [1,2,3,4,5]. Side effects such as

torsades de pointes (TdP) can be damaging to an individual

regardless of their rate of incidence; however, TdP can barely be

detected using conventional pharmacotoxicological and clinical

tests [5,6,7]. Because toxic effects may offset the benefits of drug

therapy, there has been increasing interest in developing

biomarkers that provide an early warning of possible drug toxicity.

Because a quantitative relationship can be found between QT

interval prolongation and the risk of TdP, this interval is widely

used as a biomarker to assess the proarrhythmic risk of drugs

[8,9,10,11,12]. Sparfloxacin (C19H22F2N4O3; molecular weight,

392.4) is a compound belonging to the third-generation family of

fluoroquinolones, with two fluorides in its molecular structure

(Figure 1). Sparfloxacin was reported to cause QTc interval

prolongation or death from arrhythmia in humans when orally

administered [6]. Adamantidis et al. demonstrated that sparflox-

acin could prolong cardiac repolarisation and induce early

afterdepolarisations in rabbit Purkinje fibres [13]. In addition,

oral administration of 60 mg/kg sparfloxacin causes TdP, leading

to ventricular fibrillation in dogs with chronic complete atrioven-

tricular block [14]. Most of the drugs that induce QT prolongation

have been reported to share the same ability to block the rapid

component of the delayed rectifier K+ current (IKr) encoded by the

human ether-à-go-go-related gene (hERG) K+ channel [15,16].

Blockade of IKr leads to a delay in cardiac repolarisation and

prolongs the action potential duration (APD) in myocardia and

consequently prolongs the QT interval on electrocardiography

(ECG) [17,18,19,20,21].

Regarding this point, QT interval prolongation has been

reported to have IKr-blocking ability [22,23,24] and is related to

TdP [14]. Thus, determining pharmacometabolomic approaches

to evaluate QT prolongation is very important and useful because

QT prolongation is one of the most serious cardiovascular

toxicities involved in the early stage of drug development.
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With the arrival of the post-genomic era, a radical development

of genomic and proteomic technologies has occurred. However,

the importance of pharmacometabolomic approaches has

emerged because of their direct role in the control of body

function [25,26,27,28,29,30]. Active research is being conducted

on the mechanisms of toxic materials and drugs using metabolite

analysis [31,32,33,34,35,36]. Pharmacometabolomic techniques

are also being investigated for their use in interpreting the

differences among individuals and among species, as well as

among different phenotypes caused by environmental factors

[37,38,39]. The complete metabolite profile of biological samples

such as blood, urine, and tissue provides useful information

concerning the diverse physiological or pathological phenomena

occurring in the body.

Several pharmacometabolomic studies have provided metabolic

profiles that have been useful for investigating drug toxicity.

Metabolic profiles of biofluids such as plasma, cerebrospinal fluid,

and urine reflect both normal variation in and the pathophysio-

logical impact of toxicity or disease on single or multiple organ

systems [25,28,29,30,31,33,34,35,36,37,40,41,42]. Clayton et al.

(2006) [37] first demonstrated that a predose metabolic profile of

urine could predict the toxicity and metabolism of paracetomol in

rats. Predose and postdose profiles were obtained again in a similar

follow-up study [25]. Predose spectra were modelled in relation to

drug metabolite excretion to detect predose biomarkers of drug

metabolites. Winnike et al. (2010) [35] predicted acetaminophen-

induced liver injury from predose human urine samples. Addi-

tionally, Nicholson et al. (2002) [34] suggested the use of liver and

kidney toxicity biomarkers to provide information on drug

toxicity.

However, QT prolongation has never been evaluated by

pharmacometabolomics. Thus, there is substantial interest in

identifying metabolic phenotypes [43] that can predict QT

prolongation and thus be used in clinical settings, as well as in

understanding the pharmacological roles of such phenotypes.

Indeed, metabolic phenotypes have the potential to be most

valuable for detecting a predisposition to or risk of drug toxicity,

thus increasing the frequency with which these signals can be

captured in premarketing clinical trials.

The overall scheme of the proposed method can be summarised

as follows. As the first step, large-scale metabolite profiling is

conducted, which is essential for the discovery of a metabolic

phenotype predictive of drug toxicity [31,32,33,34,35,36]. Then,

using the biofluid metabolic signatures generated by profiling,

principal component analysis (PCA) and partial least squares (PLS)

models are used to predict toxicity after drug administration, and

the key metabolites that are strongly associated with the toxic

variables are selected based on the PLS model. Finally, using the

selected key metabolites, a hypothetical network describing the

metabolic pathways is constructed.

Here, we present a novel metabolic profile that can predict

individualised QT prolongation in guinea pigs administered three

different doses (33.3, 100, and 300 mg/kg) of sparfloxacin [44]. A

comparative analysis was conducted on endogenous metabolites

considering both sparfloxacin and the drug metabolites (Figure 1).

We developed an integrative approach that effectively combines

Figure 1. Chemical structure of sparfloxacin and its metabolic pathway.
doi:10.1371/journal.pone.0060556.g001
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liquid chromatography–mass spectroscopy (LC–MS) analysis,

PCA, PLS modelling [45,46,47], and network analyses. Finally,

by integrating the results of the PLS and network analyses, a

metabolic phenotype including four metabolites was identified for

predicting the QT prolongation of sparfloxacin, which might

ultimately be used in clinical practice. This integrative approach

can also be extended to other drugs with complex responses and

drug toxicity. In addition, numerical formulation of the electro-

cardiographic changes that are caused by antibacterial quinolones,

when established in relation to their pharmacokinetic behaviour

after administration, would serve as a good tool for predicting

pharmacodynamic or toxicological effects caused by changes in

dose.

Methods

1 Study design
1.1 Test drug and materials. Sparfloxacin, sotalol (internal

standard), ammonium acetate, and sodium hydroxide were

purchased from Sigma (Seoul, Korea), and acetonitrile was

obtained from J.T. Baker (Seoul, Korea). All other chemicals

and solvents were of high-performance liquid chromatography

(HPLC) grade or the highest quality available.

1.2 Experimental animals. The animals used in the study

were male Dunkin Hartley guinea pigs (300,500 g) obtained from

Orient Bio Inc. (Seongnam, Korea). After obtaining the guinea

pigs, the homogeneous inbred animals were given a week to

acclimate to their environment. They were housed in temperature-

(2363uC) and light/dark cycle (12/12 h)-controlled rooms with

standard rodent food and water available ad libitum. All of the

animal experiments were approved by the Institutional Animal

Care and Use Committee of the Catholic University of Daegu

(Daegu, Korea) (Approval Number: IACUC-2009-002).

1.3 Tube insertion and electrode connection. Guinea pigs

were anaesthetised by intraperitoneal injection of pentobarbital at

a dose of 30 mg/kg, and then were affixed to test beds.

Polyethylene tubes (PE-10 tube) were inserted into the jugular

vein and the carotid artery. The electrodes for ECG measurement

were fixed near both armpits, and earth terminals were attached to

the abdomen.

1.4 Administration of sparfloxacin. Through an infusion

pump connected to the jugular vein, sparfloxacin was injected into

each animal at the rate of 2 ml/h for 1 h. Sparfloxacin was

administered at doses of 33.3, 100, and 300 mg/kg.

1.5 Collection of blood samples. Plasma samples for

measuring endogenous metabolites were prepared by collecting

1 ml blood from the jugular vein 1 h before and after the

administration of sparfloxacin. Each sample was placed into a

heparin-treated tube and centrifuged (13,200 rpm; 10 min, 4uC)

to separate plasma. The plasma samples were stored in a deep

freezer (270uC) immediately after centrifugation.

1.6 ECG analysis. Actual measurement of the QT and RR

intervals was conducted using ECG measurement equipment (Bio-

AmpH, PhysioLab, Korea). The QT interval that takes heart rate

into consideration (QTc) was calculated using Bazett’s formula

[48,49,50], as follows: QTc = QT/(RR’)1/2 (Figure 2). ECG

measurements were continued until the final blood sample was

collected, while sampling of the ECG data was performed in 10-

min intervals from the time the drug was administered until the

experiment was completed (for 3 h). At each time point, 20 ECG

waves were selected to calculate the mean QTc value, which was

represented as the percentage of the interval measured before

administration of sparfloxacin.

1.7 Analysis of sparfloxacin concentrations. Plasma

concentrations of sparfloxacin were quantified using an HPLC

system (Applied Biosystems, Foster City, CA, USA). The

compounds were separated on a reversed-phase column (Zorbax

300 SB-C18; 4.66250 mm inner diameter; 5 mm particle size;

Agilent Technologies, Santa Clara, CA, USA) with a Security

Guard cartridge (462.0 mm inner diameter; Phenomenex,

Torrance, CA, USA). The mobile phase was a mixture (55:45,

v/v) of methanol and 0.1% triethylamine solution adjusted to

pH 3.0 with perchloric acid and was prepared daily. The column

temperature was 40uC, and the flow rate was 1.0 ml/min.

Aliquots of thawed plasma (30 ml) were vortex-mixed with

methanol and 150 ml 0.1% triethylamine solution adjusted to

pH 3.0 with 3 ml perchloric acid as in internal standard for 30 s.

After centrifugation at 13,200 rpm for 10 min, the supernatant

was transferred to an injection vial. The calibration curve (5–

400 mg/ml) and quality-control samples were prepared in drug-

free plasma and analysed in the same manner daily before

analysis. Samples with concentrations above the calibration curve

range were subsequently diluted with drug-free blank plasma and

re-analysed to confirm concentration accuracy. The inter-day

(n = 5) and intra-day (n = 3) coefficients of variation for this assay

were ,10% and the correlation coefficient (r) for the calibration

curve was .0.999.

Figure 2. Guinea pig electrocardiograms before (A) and after
(B) the administration of sparfloxacin.
doi:10.1371/journal.pone.0060556.g002
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2 LC–MS-based global metabolomic profiling
2.1 Sample preparation. Plasma samples of 100 ml were

diluted in 300 ml methanol for protein precipitation. Then they

were vortexed at 2,000 rpm for 5 min and centrifuged

(13,200 rpm, 5 min, 4uC). The supernatant (150 mL) was trans-

ferred to a vial and 5 mL samples of this solution were injected into

the LC–MS system for analysis.

2.2 LC–MS analysis for metabolic profiling. The LC–

MS-based global or non-targeted metabolic profiling methodology

performed is described elsewhere [29,38,51]. Each of the test

samples was analysed by LC–MS in the positive ionisation mode

to obtain metabolite profiles. The analysis involved the following

steps: plasma sample preparation, full-scan (50–900 m/z) LC–MS

analysis, data preprocessing, peak detection and alignment (using

XCMS software) [52,53], peak intensity normalization (using the

quantile normalization algorithm of the preprocessCore package

[54] with R language, version 2.11.1) [55], and the creation of an

export annotated peak data table along with unique peak

identifiers and normalised peak intensities for further multivariate

statistical analysis.

To avoid systematic instrument-caused variation in analysis, all

samples were randomized prior to LC–MS analyses, and pooled

quality-control samples (prepared by mixing equal volumes of all

samples) were incorporated. Specific quality-control samples were

used to monitor the performance of the method. Peaks with

unacceptable variation in quality-control samples (CV.20%) and

peaks corresponding to the m/z of the drugs were excluded from

the exported peak data table (obtained using the XCMS software)

before further normalization and statistical analysis. Blank

chromatograms were acquired by injecting solvent mixture at

frequent intervals during analysis to check background noise and

sample carryover effects, and they were used to subtract

background noise from sample chromatograms. These peaks

present in blank samples and identified as noise signals were also

excluded before normalization and statistical analysis.

3 PCA and PLS analysis
3.1 Software. The SIMCA P+ (version 12; Umetrics, Umeå,

Sweden) software package was used for all computations related to

PCA and PLS multivariate analyses.

3.2 Validation of the PCA model. PCA is an unsupervised

pattern-recognition method. PCA was performed to reveal the

general clustering, grouping, and trends among the subjects. The

first principal component (PC) (t[1]) represents the most variance

in the data. The second PC (t[2]) is orthogonal to t[1]. PCA

produces a simpler representation of data and reduces the number

of variables that need to be considered. The loadings for each PC

describe its multivariate make-up as a vector in the multivariate

space. Thus, these loadings identify the underlying variables that

are important to each PC.

3.3 Validation of PLS model. Validation of the PLS model

was performed using two methods: cross-validation using the

leave-out approach (exclusion of 1/7th of the dataset each time),

and internal validation using 20 permutation tests and 100

permutation tests, followed by a comparison of the resulting

goodness of fit (R2) and predictive ability Q2 values. Internal

validation of the PLS model was performed by randomly changing

the order of Y data 20 times in relation to X data to generate 20

separate models that were fit to all permuted Y values with two

latent variables. 100 permutation tests were performed for a

stricter validation criterion. For this model to be valid, all

permuted R2 and Q2 values should be smaller than the values of

the PLS model, and the regression line of the Q2-points should

intersect the Y-axis at or below zero.

4 Metabolite identification
Metabolite identification was performed for the most significant

(variable importance to the projection [VIP].1.5) metabolite ions

from the PLS model. By analysing pooled plasma samples, LC–

MS/MS scans of selected metabolite ions were acquired, with

consideration of their retention times. Next, the obtained data

were searched for potential metabolites using relevant literature

and online databases such as the Human Metabolome Database

(HMDB, http://www.hmdb.ca), MassBank (http://www.

massbank.jp/), Metlin (http://metlin.scripps.edu/), and Lipid

Maps (http://www.lipidmaps.org/). Similarly, MS/MS and

retention time data from commercial standards of those potential

metabolites were acquired and compared to the selected

metabolite ions to confirm the identification. Metabolites with

no easily available commercial standards were identified putatively

by interpreting the fragmentation patterns of metabolite ions and

comparing our data to the available metabolite databases

(mentioned above) and the literature. Due to inherent limitations

of the low-resolution LC–MS technique and limited available

metabolomic resources, we were unable to identify all of the

selected metabolites.

5 Metabolic network analysis
A hypothetical metabolic network was organized using

Cytoscape (version 2.6.2) and was constructed by extracting data

from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

[56], HMDB, Lipid Maps [57], and MetaCyc [58] pathway

databases, as well as from the literature [59]. The node size

indicates the identified metabolites (large) and their neighbours

(small). The nodes are colour-coded according to their respective

modules as follows: steroid-related metabolism (pink); pyrimidine

metabolism (sky blue); glycerophospholipid metabolism (yellow);

alanine, aspartate/glutamate metabolism (orange); fatty acid

metabolism (green); and pentose-related metabolism (apricot).

The edges represent metabolic reactions (arrows); indirect or

possible reactions involving several intermediates are located

between the connected nodes. All of the abbreviations used for

enzymes, genes, and reactions were from KEGG identifiers

(http://www.genome.jp/kegg/kegg3.html).

6 Comparison of the significant differences in the
intensity of key metabolites between the groups

A normality test was necessary because the number of identified

metabolites did not exceed 30. ANOVA, a parametric method,

was used if the p-value was larger than the significance level of

0.05 by the Kolmogorov-Smirnov test, because normality was

satisfied. The Kruskal-Wallis test, a non-parametric method, was

used if the p-value was smaller than the significance level of 0.05

by the Kolmogorov-Smirnov test, because normality was not

satisfied. Statistical analyses were performed using the SPSS

software (version 12.0 for Windows; SPSS, College Station, TX,

USA). Differences were considered statistically significant at

p,0.05.

Results

1 Metabolic profiling of plasma samples
Global metabolomic profiling, which involves the collective

analysis of metabolites, is an essential technique for discovering

metabolic phenotypes that can predict individual QT prolonga-

tion. According to previous studies [60,61], LC–MS analysis can

provide large amounts of information about metabolites from

small samples, with high sensitivity to molecules of a broad range

of molecular weights. LC–MS analysis was performed on the

Metabolomic Approach to Predict QT Prolongation
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plasma samples collected to generate global metabolic profiles

from the 15 guinea pigs after administration of sparfloxacin at

doses of 33.3, 100, and 300-mg/kg (Figure S1). The peaks of the

endogenous metabolite except not only sparfloxacin but also the

drug metabolites were processed (Figure 1). Then the XCMS

software was used to detect 1,178 common metabolic features(i.e.,

peaks) from the 15 datasets. The major peaks detected

corresponded to steroids, lipids and pyrimidines, as well as a

broad range of molecules including other metabolites.

Finally, the intensities of the 1,178 peaks were normalised using

a quantile normalization algorithm [55] to remove systematic

errors from sample preparations and LC–MS analyses. The peak

intensities represent a metabolic phenotype for each sample, which

varied among samples and thus represented the individual

variation in the plasma metabolome.

2 ECG analysis
To evaluate QT prolongation from the investigated guinea pigs,

the mean QTc value was represented as the percentage, using the

interval measured before administration of sparfloxacin (control)

as the baseline. As shown in Figure 3, an increase in drug dose

resulted in an increase in both plasma sparfloxacin concentration

and the percent change in QT interval. This made it possible to

detect drug toxicity based on QT prolongation, and also to

determine the metabolite that exerts the strongest effect on QTc

values. Thus, the percent change in QT interval was chosen as a

response variable for the PLS analysis.

3 Prediction of individualised QT prolongation
To build a statistical model that can predict individualised QT

prolongation effectively using the measured metabolic data, we

employed PCA and PLS analysis. The pool sample quality-control

data can be examined visually for gross changes to provide a rapid

assessment of how well the run performed. Similarly, a small

number of selected components can be rapidly screened for peak

shape, intensity, mass accuracy, and retention time against

predetermined acceptance criteria. Assuming that these criteria

are met, the entire data set can be used for initial multivariate

statistical analysis by PCA. As shown in Figure 4A, all of the

quality-control data (blue colour) clustered closely together. The

PCA score plots for the 1,178 peak intensities (X block) are also

shown in Figure 4A. The plots show distinct grouping patterns for

control and drug-dose (low, middle, high) groups from the plasma

model (3 PCs, R2 = 0.687, Q2 = 0.536).

PLS is a multivariate statistical analysis that can build an

efficient model using X variables (metabolites) to predict Y

variables (QTc) via reduction of dimensionality. Such dimension

reduction is achieved by generating several PLS components (also

called latent variables [LVs], each of which is a linear combination

of metabolites in the X block) [62] that maximise the correlation

between the LVs and the QTc. Subsequently, the prediction

model can be built by relating the LV values to the QTc values

(see below). We performed PLS analysis for all 1,178 peak

intensities (X block) to the QTc (Y block) to predict QT

prolongation. The first two LVs were included in the PLS model

based on their eigenvalues and Q2 statistics. Based on this model,

we selected the metabolites (X variables) that made a large

contribution to predicting QT prolongation (Y variable-QTc).

Figure 4B shows the coefficients (PLS loadings) of the 1,178

variables in the linear combinations for the first two LVs. A high

coefficient value in the first LV indicates that the corresponding

metabolite made a large contribution to the prediction of QT

prolongation using QTc values. A positive coefficient means that

the corresponding metabolite has a positive relationship with the

QTc; negative coefficients indicate an inverse relationship. To

focus on metabolites associated with QTc, a set of metabolites was

selected that made a large contribution to its prediction using VIP

measurements, which represent the collective contribution of the

individual metabolites from the first two LVs to QT prolongation

prediction. The 106 metabolites selected (VIP.1.5) are enclosed

by red boxes in Figure 4B.

This model included two PLS components (LVs) that had high

eigenvalues (10.3 and 4.5 for the two LVs, respectively), goodness

of fit (R2 = 0.994), and high predictability (Q2 = 0.924) estimated

by leave-one-out cross-validation (LOOCV) experiments [63].

All predicted QTc values from this model showed excellent

Figure 3.     Mean      plasma        concentration       and       mean        increase        in     QTc       (                     )         over      time      to    sparfloxacin      doses.        %          
(A) Mean plasma concentration of sparfloxacin following a single 1-h intravenous dose of 33.3 mg kg21, 100 mg kg21, or 300 mg kg21 . (B)
Mean increase in QTc (%) following a single intravenous dose of 33.3 mg kg 21, 100 mg kg 21, or 300 mg kg21. The percentage QT increase was less in
the group dosed with 100 mg kg 21 than that with 33.3 mg kg 21after 1 h. Bars indicate standard deviations.
doi:10.1371/journal.pone.0060556.g003
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correlations with actual measured QTc values, as indicated by the

regression line of 0.9884 for the predicted versus actual QTc plot

(Figure 5A). Internal validation was also performed with this PLS

model to check its ability to predict new observations with no risk

of overfitting the data and capturing non-systematic correlations

between the metabolites and QTc values. The goodness of fit (R2)

and predictability (Q2) measures from 20 and 100 random

permutation experiments [64] are shown in Figure 5B and 5C.

All R2 and Q2 values from the permutation experiments (left) were

smaller than those of the PLS model (far right). Additionally, the

negative intercept (20.16 in Figure 5B; 20.11 in Figure 5C) of the

Q2 regression line indicated no data overfitting in the model.

Guinea pigs were used in this study to avoid the risk of high-dose

administration in humans, while the sample size was increased to

the minimal sample size that would allow prediction of QT

prolongation in the guinea pig according to dose change (33.3,

100, 300 mg/kg), and the validity of the stricter model was

established based on 100 random permutation tests.

Finally, we selected a set of 106 key metabolic features

characterising individualised QT prolongation, represented by

the QTc as those with VIP.1.5 in the PLS model. Interestingly,

some of these selected metabolites displayed positive correlations

with the QTc, while others mainly exhibited negative correlations.

The correlation coefficients between some of the selected

metabolites and the QTc are shown in Figure 4B (green bars).

Strong correlations were found between two key metabolites,

LysoPC (18:1) and L-aspartic acid, versus the QTc values in the 15

samples (Figure 5D and E).

4 Identification of key metabolites associated with
individualised QT prolongation

An LC–MS/MS-based (tandem mass spectroscopy) method was

used to recognise the biological importance of 106 selected

metabolites in individualised QT prolongation. To obtain

information about the 106 MS fragment patterns and retention

times using LC–MS/MS, a pooled plasma sample was analysed,

prepared by mixing together an equal amount of each plasma

sample. Molecular weights of parents were measured, and

daughter ions were obtained by the MS/MS technique (Figure

S2a). Adducts (e.g., Na, K) of expected candidate metabolites were

considered, and candidate metabolites were identified by HMDB

[65] using a m/z tolerance of 0.5-Da (Figure S2b). Next, we

analysed commercial standards for candidates using the same LC–

MS/MS method (Figure S2c) and matched their retention times

and MS/MS data to those of the selected parent ion. The same

method was applied to identify parent ions of the remaining

selected key metabolites. When commercial metabolite standards

were not easily available, we identified the corresponding

metabolites using database searches and other resources. Table 1

summarises the 15 metabolites identified and relevant metabolic

pathways. The 10 metabolites marked with asterisks were

identified using commercial standards, while the other metabolites

were identified based on database searches and literature reports.

Figure 4. PCA and PLS modelling of plasma LC–MS metabolic data for predicting the drug-induced QT prolongation of
sparfloxacin. (A) PCA score plot (t[1] vs. t[2]) obtained from guinea pig plasma samples. Obviously separated clustering of dose groups and the
control group was shown by PCA; in addition, dose-dependent metabolomic modification was detected. (B) Loading plot for the above PLS model in
which each point represents a metabolic feature detected from plasma LC–MS data and is plotted as its respective coefficient from PLS component 1
vs. its coefficient from PLS component 2. The arrow indicates a positive relationship with the QTc. Metabolite variables with larger coefficient values
(positive or negative) have a stronger correlation with the QTc (marked by red boxes; VIP.1.5) and were used to build the PLS model for predicting
cardiovascular toxicity. The inset green bar plot shows the correlation coefficients for the key identified metabolites.
doi:10.1371/journal.pone.0060556.g004
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5 Prediction of the potential functional association of key
metabolites with individualised QT prolongation

To investigate the potential functional roles of the metabolites

identified in individualised QT prolongation, a hypothetical

metabolic network (Figure 6) was reorganised using the 15

identified metabolites (Table 1) and their first neighbours from

the metabolic interactome obtained from the KEGG databases

[56], Lipid Maps [57], MetaCyc [58], and HMDB, as well as the

literature reports [59]. The node size indicates the identified

metabolites (large) and their neighbours (small). The edges

represent metabolic reactions (arrows); indirect or possible

reactions involving several intermediates are located between the

connected nodes. The six major network modules (different node

colors) are presented in Figure 6; steroid, pyrimidine, glyceropho-

spholipid, alanine, fatty acid, and pentose-related metabolism

(Table 1).

The reactions associated with the selected metabolites in the

major modules may have important effects on the cardiac toxicity

of sparfloxacin, thus acting as determinants of the individualised

QT prolongation of sparfloxacin. Interestingly, lipids (e.g.,

lysophospholipid, phosphatidylcholine [lysoPC]) have been re-

ported to cause endothelial vasomotor dysfunction in isolated

blood vessels [66]. Diabetes is positively associated with the

proportion of stearic acid in plasma phospholipids [67]. In

addition, altered levels of fatty acids such as stearic acid suggest a

disrupted pathway of choline metabolism [68]. In the present

study, a decrease in lysoPC(18:1) tended to result in a decrease in

stearic acid. According to another report, intravenous (i.v.)

administration of cytidine-59-diphosphate choline (CDP-choline)

(100, 250, and 500 mg kg21) increases blood pressure [69].

Figure 4B shows that there was a strong correlation between CDPs

with larger coefficient values and the QTc value. DOCA/salt

treatment modifies cardiac electrical activity (i.e., increased

arrhythmogenic activity and prolongation of PR and QTc

intervals) in one- and two-renin gene mice [70], and progesterone

levels in women are inversely correlated with ibutilide-induced QT

interval prolongation [71]. Figure 4B shows that, in the present

study, progesterone had larger negative coefficient values,

confirming that progesterone is a marker that affects QT interval

prolongation. In addition, the selected metabolites with negative

relationships with the QTc (Figure 4B) mostly belonged to the

same steroid module in the network, indicating the validity of the

selected metabolites regarding their functional association with

QT prolongation. Nonetheless, most of the other selected

metabolites have never been reported to be associated with the

Figure 5. PLS model validity. (A) Plot of predicted QTc vs. actual (measured) QTc from the PLS model using the cross-validation method. Predicted
values from the PLS model in which all predicted QTc values show a linear relationship with actual measured QTc values (R2 = 0.9884). Colour from
blue to red indicates increasing QTc values. RMSEE specifies the root mean square error of the estimation (the fit) for observations in the workset. The
values were predicted by exclusion of 1/7th of the data from the model and predicting the excluded data that are not part of model building. (B)
Internal validation of the PLS model by 20 permutation tests to confirm predictability and data overfitting shows that all R2 (goodness of fit) and Q2

(predictability of model) values from the permuted models (left) are smaller than those of the original model (far right), demonstrating the validity of
the PLS model. (C) Internal validation of the PLS model with 100 permutation tests to use stricter validation criteria. (D and E) Plots for normalised
intensities of LysoPC (18:1) (D) and L-aspartic acid (E), which exhibit a negative and positive correlation, respectively, with QTc.
doi:10.1371/journal.pone.0060556.g005
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Table 1. Names and associated metabolic pathways for the identified metabolites in increasing order of their VIP values.

Identification VIPa
m/z of parent
ion (MS) HMDB ID** Pathway/Process or Class Reference

LysoPC(15:0)* 1.57 482 HMDB10381 Glycerophospholipid metabolism KEGG Pathway (ko00564)

LysoPC(18:1)* 1.59 522 HMDB02815 Glycerophospholipid metabolism KEGG Pathway (ko00564)

LysoPC(22:5(4Z,7Z,10Z,13Z,16Z)) 1.61 570 HMDB10402 Glycerophospholipid metabolism KEGG Pathway (ko00564)

PC(19:0/0:0) 1.51 538 - Phospholipid metabolism HMDB class and LMGP01050041

Lanosterol* 1.61 427 HMDB01251 Steroids and Steroid Derivatives KEGG Pathway (ko00100)

Progesterone* 1.61 315 HMDB01830 Steroids and Steroid Derivatives KEGG Pathway (ko00140)

Deoxycorticosterone* 1.69 331 HMDB00016 Steroids and Steroid Derivatives KEGG Pathway (ko00140)

7a-Hydroxycholesterol* 1.96 403 HMDB01496 Steroids and Steroid Derivatives KEGG Pathway (ko00120)

Stearic acid* 1.53 285 HMDB00827 Fatty acid biosynthesis KEGG Pathway (ko00061)

3,5-Diiodothyronine* 1.62 526 HMDB00582 Amino acids HMDB class and ref.

CDP(Cytidine-59-diphosphate)* 1.97 404 HMDB01546 Pyrimidine metabolism KEGG Pathway (ko00240)

APGPR Enterostatin 1.62 497 HMDB06117 Polypeptides HMDB class and ref.

L-Aspartic acid* 1.65 134 HMDB00191 Alanine, aspartate, and glutamate
metabolism

KEGG Pathway (ko00250)

11-Oxo-androsterone glucuronide 1.57 481 HMDB10338 Glucuronides KEGG Pathway (ko00040)

Dehydroepiandrosterone 3-glucuronide 1.59 465 HMDB10348 Glucuronides KEGG Pathway (ko00040)

*Metabolites were identified by interpreting their fragmentation patterns (MS/MS spectra) and conducting a database search. LysoPC, lysophosphatidylcholine; PC,
phosphatidylcholine; CDP, cytidine-59-diphosphate; APGPR, Ala-Pro-Gly-Pro-Arg. **Human Metabolome Database. aVariable importance in the projection. All
abbreviations used for pathways and reactions are from KEGG identifiers (http://www.genome.jp/kegg/kegg3.html).
doi:10.1371/journal.pone.0060556.t001

Figure 6. Metabolic network for 15 identified metabolites. The large nodes in the network represent the key identified metabolites, while the
small nodes represent their neighbours in the respective metabolic pathways (see Table 1). Metabolic reactions (arrow) and indirect or possible
reactions involving several intermediates between the connected nodes are indicated. This metabolic network revealed six major modules, shown in
different colours. All abbreviations used for enzymes or genes and reactions are from KEGG identifiers (http://www.genome.jp/kegg/kegg3.html).
doi:10.1371/journal.pone.0060556.g006
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cardiac toxicity of sparfloxacin, suggesting their potential as novel

determinants of the individualised QT prolongation of sparflox-

acin.

6 Comparison of the significant differences in the
intensity of key metabolites between the groups

Deoxycorticosterone, lanosterol, 3,5-diiodothyronine, L-aspartic

acid, lysoPC(15:0) and lysoPC(18:1) satisfied normality, because

their p-values were larger than the significance level of 0.05 by the

Kolmogorov-Smirnov test. ANOVA was carried out with the

metabolites identified that satisfied the normality test. Significant

differences in peak intensity levels were seen between the control,

low dose, middle dose, and high dose groups. In the cases of

deoxycorticosterone, lanosterol, 3,5-diiodothyronine, L-aspartic

acid and lysoPC(15:0), the p-value of the peak intensity between

the dosed and control groups was ,0.001, whereas that of

lysoPC(18:1) was 0.016. Progesterone, 7a-hydroxycholesterol,

stearic acid and cytidine-59-diphosphate (CDP) did not satisfy

normality, because their p-values were smaller than the significance

level of 0.05 by the Kolmogorov-Smirnov test. The Kruskal-Wallis

test was used with the metabolites that failed to satisfy the normality

test. As in the cases of the metabolites that satisfied the normality

test, there were significant differences in peak intensity between the

control, low dose, middle dose, and high dose groups. In the cases of

progesterone, 7a-hydroxycholesterol, stearic acid and CDP, the p-

values of the peak intensity between the dosed and control groups

were ,0.001. CDP, deoxycorticosterone, stearic acid and L-

aspartic acid were selected as key metabolic phenotypes that would

be able to reflect QT prolongation well in clinical settings, and their

peak intensities are presented in a box plot by group (Figure 7). In

the case of deoxycorticosterone, the p-values of the peak intensity

between the low dose and control groups, between the middle dose

and control groups and between the high dose and control groups

were all ,0.001 (Figure 7A). In the case of stearic acid, the p-values

of the peak intensity between the low dose and control groups,

between the middle dose and control groups and between the high

dose and control groups were all ,0.001, while that between the

middle dose and high dose groups was 0.004 (Figure 7B). In the case

of CDP, the p-values of the peak intensity between the low dose and

control groups, between the middle dose and control groups and

between the high dose and control groups were all ,0.001, while

that between the low dose and high dose groups was 0.001,and that

between the middle dose and high dose groups was 0.031

(Figure 7C). In the case of L-aspartic acid, the p-values of the peak

intensity between the middle dose and control groups and between

the high dose and control groups were ,0.001, while that between

the low dose and middle dose groups was 0.008, and that between

the low dose and high dose groups was ,0.001 (Figure 7D).

7 Selection of a clinically applicable metabolic phenotype
predictive of individualised QT prolongation

A metabolic phenotype associated with 15 metabolites would

still be complicated to use for predicting the QT prolongation of

sparfloxacin in clinical practice. Thus, we reduced the profile

further by integrating all the findings, including the key

metabolites selected from the PLS model, the six major modules

in the network, and the contribution of each metabolite to the

prediction of the QTc value (i.e., VIPs), and also considering the

convenience of their use in a clinical setting. This integrative

approach allowed us to select the following four metabolites,

readily applicable in the clinical setting, from the six network

modules: CDP (CDP; VIP = 1.97), representing pyrimidine

metabolism; deoxycorticosterone (DC; VIP = 1.69), representing

steroid-related metabolism; stearic acid (SA; VIP = 1.53), repre-

senting fatty acid biosynthesis metabolism; and L-aspartic acid

(LA; VIP = 1.65), representing alanine, aspartate, and glutamate

metabolism.

Recently, the use of pathways has been demonstrated to

outperform individual molecules for predicting disease subtypes

[72]. Hence, we hypothesised that the four metabolites represent-

ing the major network modules and their associated pathways

could be used collectively to improve the prediction of individu-

alised QT prolongation. We applied PLS analysis to the four

metabolites and developed a measure that can be used to predict

the cardiac toxicity of sparfloxacin from the resultant PLS model

(considering the coefficients from the correlation structure of these

four metabolites with the QTc and their normalised intensities

in test samples) as follows: QTcnorm = 0.537LA+0.533CDP2

0.431DC20.640SA. A scatterplot of the predicted versus

measured QTc values for the 15 samples using this equation is

presented in Figure 8. The prediction power (R2 = 0.5303) suggests

that the prediction capability is reasonably well. As shown in

Figure 8, the prediction equation can also be used to categorise the

subjects into three cardiac toxicity groups (high, medium, and low

QTc groups) based on their plasma levels of these four

metabolites. To prove the validity of prediction equation, we re-

established a predictive model and a predictive equation using 12

guinea pigs by the same approach, and then predictive accuracy

was confirmed by applying the predictive equation to the other 3

guinea pigs (Figure S3, S4 and Table S1, S2). Thus, the use of the

four metabolites allows us to predict the individualised QT

prolongation of three different doses of sparfloxacin, and monitor

the activities of the key metabolic pathways affecting the

pharmacodynamics of sparfloxacin in clinical applications.

Discussion and Conclusions

Endogenous metabolites in the human body may change due to

many factors, such as dietary habits, the environment, heredity,

disease and medicines. We developed a pharmacometabolomic

approach to discover metabolic phenotypes that could predict

changes in biochemical metabolites directly related to physiolog-

ical or pathological functions and that can also predict drug

toxicity in the guinea pig. Metabolic phenotypes can be applied to

understand pharmacological roles related to pharmacodynamics,

as well as to pre-clinical or clinical settings. Cardiovascular risk

factors are strongly related to abdominal obesity, increased blood

pressure, impaired fasting glucose and dyslipidemia, and also

increased incidence and lethality of ischemic heart disease and

stroke [73,74,75]. Although it is known that such factors increase

cardiovascular risk [76,77,78,79], little is known about the

relationship with asymptomatic risk factors, such as long QT

syndrome on an electrocardiogram. QTc interval prolongation is

considered a prognostic factor for arrhythmia although its

mechanism has not been completely known, since it is a

phenomenon accompanying delayed ventricular repolrarisation

[80,81,82,83]. QT interval prolongation is a side effect of

sparfloxacin, and has been reported to have IKr-blocking ability

[22,23,24] and to be related to TdP [14]. hERG, one of the genes

[84] that can cause long QT syndrome, controls an important

repolarising current called IKr. Guinea pigs have hERG channels

and thus are suitable for measuring the proarrhythmic effect

[85,86,87]. This integrative approach was applied to predict drug-

induced QT prolongation of sparfloxacin. Significant prolongation

of the QT interval was observed when sparfloxacin was

administered at doses of 33.3, 100, and 300 mg/kg [44], and

these doses were used in our experiments. We analyzed plasma

Metabolomic Approach to Predict QT Prolongation
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samples using LC-MS, and detected 1,178 metabolic features.

These plasma metabolic signatures were used to establish PCA

and PLS models that could predict the QT prolongation caused by

sparfloxacin. Then, based on the PLS model, 106 key metabolic

features were selected that were most related to QTc values. LC-

MS/MS analysis and database searches were conducted to identify

15 metabolites. The 15 metabolites identified were reorganised

into a hypothetical network depicting metabolic pathways. The

network revealed six major modules; metabolism related to

steroids, pyrimidines, glycerophospholipids, alanine, fatty acids

and pentoses. Finally, the results of metabolic profiling, multivar-

iate analyses and the network were used to select four metabolites

that could best predict QT prolongation with clinical applicability,

and these four metabolites were used to establish a prediction

equation for QT prolongation. This aspect ofmetabolic phenotype

can be applied in the early stages of drug development to save time

by decreasing the possibility of experimental failure caused by

toxicity during the course of later research. The prediction

equation may be sparfloxacin-specific, in the form of a weighted

linear combination of the four selected metabolites. The potential

effects of metabolites on the major network modules of Pharma-

codynamics may be due to direct biological effects resulting from

an interaction between the drug and biological system. In addition

to the lipids mentioned, lysoPC [66], DOCA/salt [70], and

progesterone [71] are also known to be involved in QT

prolongation and can influence the response to sparfloxacin.

Sparfloxacin interacts with several steroids, stearic acid, and CDP,

supporting the possible functional role of our metabolic network

module in predicting sparfloxacin QT prolongation.

Hypertriglyceridemia, hyperglycemia and obesity may affect

QTc intervals [88,89], may be related to changes in the autonomic

nervous system of patients with obesity [90], and may affect the

QTc interval by increasing oxygen consumption in the body and

thus increasing the heart rate [91]. It may also be that in patients

with abdominal obesity, insulin resistance and hyperinsulinemia

may cause cardiovascular disease, resulting in QTc interval

prolongation [92,93,94]. In addition, abnormal pathological

changes caused by complex diseases or medication could damage

the blood stream into cardiac muscle, leading to asymptomatic- or

clinical- heart disease, and this in turn could cause QTc

Figure 7. Comparison of the distribution of metabolite intensity levels for control and drug-dosed (low, middle, high) groups. Box
plots indicate the distribution of magnitudes of peak intensity levels of key metabolic phenotype in each group. The box is drawn from the 25th to
75th percentiles in the distribution of intensities. The median, or 50th percentile, is drawn as a black horizontal line inside the box. The whiskers (lines
extending from the box) describe the spread of the data within the 10th and 90th percentiles.
doi:10.1371/journal.pone.0060556.g007
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prolongation. The key metabolic phenotypes proposed in this

study are also related to various complex diseases. Thus, QT

prolongation, an adverse effect of a drug, could not be detected in

the early stages, and the merit of this study is that the prediction

equation for QT prolongation can be set up for use in the clinical

setting. We propose that QT prolongation can be detected early

using the prediction equation obtained by a pharmacometabo-

lomic approach that comprehensively involves typical clinical

assays (e.g., ECG measurement; [49,50]), simple chromatography

technology [95], normalization, multivariate analyses and network

technology.

In conclusion, it was confirmed that QT prolongation increased

according to increased dosage of the drug. It is difficult, however,

to obtain early information about major determining factors of

relevant reactions, such as drug dose, and concentration in plasma

and at the action site. Accordingly, we proposed a pharmacome-

tabolomic approach to predict drug-induced QT prolongation. By

applying this approach, a model was established for predicting

adverse cardiovascular effects of sparfloxacin, and key metabolic

phenotypes were identified. Application of such an approach could

be extended to research on other fluoroquinolone antibiotics and

drug toxicity that involve complex reactions in the pre-clinical or

clinical setting, and can provide a foundation for understanding

the mechanism(s) of their effect(s) in pharmacological efficacy.

Nonetheless, the validity of these findings and hypotheses should

be tested on a larger, independent group of samples, and our

metabolic phenotype should be integrated into subsequent

investigations on human subjects.

Supporting Information

Figure S1 Liquid chromatography–mass spectroscopy-
based metabolic profiling of plasma samples obtained
from 15 guinea pigs after administration of sparfloxacin
at doses of 33.3, 100, and 300 mg/kg.
(TIF)

Figure S2 Metabolite identification of lysoPC(18:1). (A)

Plasma MS/MS spectra of the m/z 522.3 peak at a retention time

(RT) of 17.2 min. (B) MS search for m/z 52260.5 Da from the

HMDB database resulted in three possible metabolites that were

compared for their MS/MS spectra and RT from their standards

in Figure S2a. (C) Only lysoPC(18:1) matched the MS/MS spectra

and RT of the plasma spectra (Figure S2a), making it possible to

identify the peak at RT 17.2 min and m/z 522.2 as lysoPC(18:1).

(TIF)

Figure S3 PCA and PLS model validity for predicting
drug-induced QT prolongation of sparfloxacin using 12
guinea pig plasma samples (four guinea pigs in each of
the low, medium, and high QTc groups). (A) PCA score

plot (t[1] vs. t[2]) obtained using the 12 guinea pig samples. We

confirmed that the three groups were separated from each other,

in the same pattern as in Figure 3A. Eigenvalues were 3.69 and

9.59. Each eigenvalue reflects the dispersion of the corresponding

major component. The explanatory powers of t[1] and t[2] were

27.79% and 72.21%, respectively. (B) Plot of predicted QTc versus

actual (measured) QTc from the PLS model using a cross-

validation method. Predicted values from the PLS model in which

all predictions of QTc values showed a linear relationship with

actual (measured) QTc values (R2 = 0.9953). (C) Internal valida-

tion of the PLS model by 20 permutation tests to confirm

predictability and data overfitting showed that all R2 (goodness of

fit) and Q2 (predictability of model) values from the permuted

models (left) were smaller than those of the original model (far

right), demonstrating the validity of the PLS model. (D) Internal

validation of the PLS model with 100 permutation tests using

stricter validation criteria.

(TIF)

Figure S4 Scatterplot of the predicted normalized QTc
values (QTcnorm) from the equation QTcnorm = 0.402
(LA)+0.556(CDP)20.409(DC)20.601(SA), versus the
measured (QTcnorm) values for the 12 samples (four
guinea pigs in each of the low, medium, and high
groups). Using this prediction index with only four metabolite

abundance values, subjects can be categorized into low, medium,

and high QTc groups.

(TIF)

Table S1 Measured QTcnorm
a values (95% CI), and predicted

normalized QTc values (95% CI) from the QTcnorm
b and

QTcnorm
c equations for the three guinea pigs not included in the

modeling.

(DOCX)

Table S2 Values of the measured QTc (%) calculated by

converting the predicted normalized QTc values from the

QTcnorm
b and QTcnorm

c equations for the three guinea pigs not

included in the modeling.

(DOCX)
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