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Abstract: The development of non-precious metal catalysts with excellent bifunctional activities is
significant for air–metal batteries. ABO3-type perovskite oxides can improve their catalytic activity
and electronic conductivity by doping transition metal elements at B sites. Here, we develop a novel
Sm0.5Sr0.5Co1−xNixO3−δ (SSCN) nanofiber-structured electrocatalyst. In 0.1 M KOH electrolyte
solution, Sm0.5Sr0.5Co0.8Ni0.2O3−δ (SSCN82) with the optimal Co: Ni molar ratio exhibits good
electrocatalytic activity for OER/ORR, affording a low onset potential of 1.39 V, a slight Tafel slope of
123.8 mV dec−1, and a current density of 6.01 mA cm−2 at 1.8 V, and the ORR reaction process was
four-electron reaction pathway. Combining the morphological characteristic of SSCN nanofibers with
the synergistic effect of cobalt and nickel with a suitable molar ratio is beneficial to improving the cat-
alytic activity of SSCN perovskite oxides. SSCN82 exhibits good bi-functional catalytic performance
and electrochemical double-layer capacitance.

Keywords: Sm0.5Sr0.5Co1−xNixO3−δ; perovskite; cathode electrocatalyst; OER/ORR

1. Introduction

Due to the excessive use of fossil fuels, environmental pollution and energy shortages
have become significant challenges for human survival. Therefore, it is urgent to develop
novel and efficient energy conversion devices [1,2]. Natural energy sources such as wind
and solar power are abundant, but their power output is subject to climate constraints [3].
Metal–air batteries have a good application prospect among many energy storage devices
due to their advantages of low price, friendly environment, and good stability [4,5]. The
cathode of the metal–air battery is open, and oxygen in the air can be continuously input.
There are two critical electrochemical reactions at the cathode, namely oxygen reduction
reaction (ORR) and oxygen evolution reaction (OER), which can determine the perfor-
mance of the entire battery. Therefore, the selection of cathode catalysts is crucial. Up to
now, precious metals such as Pt, IrO2, and RuO2 are still the most efficiently employed
catalysts, but their high price and scarce content in the earth’s crust also limit their practical
application [6–8]. Thus, it is imperative to develop non-noble metal bifunctional catalysts
with good performance [9].

For ABO3-type perovskite oxides, the A-site is alkaline earth metals or rare earth
metals with 12-fold oxygen. The B-site is a transition metal coordinated with six-fold
oxygen located at the center of the octahedron. The electrochemical properties of ABO3
perovskite oxides are significantly improved by doping the A and/or B sites, making
ABO3 one of the best candidates for non-noble metal catalysts [10–12]. Many perovskite
oxides show good electrocatalytic activity. Sm0.5Sr0.5CoO3−δ (SSC) on Vulcan XC-72R
exhibited excellent bifunctional electrocatalytic performance for metal–air batteries [13].
La0.5Sr0.5NiMnRu0.5O6 (LSNMR) showed outstanding bifunctional ORR/OER activities.
The ORR onset potential (Eonset) of LSNMR was 0.94 V, which can be the perovskite
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with the best ORR activity in alkaline solution so far. The OER potential was 1.66 V at
10 mA cm−2 [14]. Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) remained highly stable for OER after
1000 cycles. For BSCF9002N2, the Tafel slopes of OER and ORR are 143 and 128 mV dec−1,
respectively [15]. Sm0.5Sr0.5CoO3−δ hollow nanofibers were hybridized with N-doped
graphene to obtain a remarkable ORR/OER bifunctional catalyst in alkaline media [16].
Catalyst materials with various morphology and catalytic activity can be prepared by
different preparation methods. Heteroatoms doping is an effective method to enhance the
electrocatalytic activity of the catalysts [17].

Our previous studies [18,19] have shown that one-dimensional nanofiber-based
Sm0.5Sr0.5CoO3−δ (SSC) exhibits excellent electrochemical performance. The doping of
B-site in ABO3-type SSC perovskites can efficiently promote the electrocatalytic activity
of the catalyst. The replacement between the two variant Ni and Co atoms in catalyst
materials can generate the ligand effect, resulting in the acceleration of the charge transfer.
The synergistic coupling effect of Ni2+ and Co2+ ions can afford bifunctional synergism
and promote catalytic activity [20]. To the authors’ knowledge, the ORR/OER activities
of Ni-doped Sm0.5Sr0.5CoO3−δ at B-site have rarely been reported. In the present work, a
novel nanofiber-structured Sm0.5Sr0.5Co1−xNixO3−δ was synthesized by electrospinning,
and the OER and ORR catalytic activities were explored.

2. Results and Discussion

To ascertain the optimal molar ratio of Co: Ni in SSCN catalysts, SSCN82, SSCN64,
SSCN55, SSCN46, and SSCN28 were prepared by electrospinning and subsequent calcina-
tion. Figure 1 shows the typical TG–DTA curve of the SSCN precursor. The thermogravi-
metric process of the SSCN precursor can be divided into three stages: the weight loss in
the range of 0~240 ◦C is due to the evaporation of water in the precursor, and the weight
is reduced by 13.6% [21]. The weight loss between 244 ◦C and 401 ◦C is 39.7%, because
metal nitrate will decompose within this temperature range [22]. At the same time, an
apparent exothermic peak of metal nitrate can be found near 265 ◦C. The remaining 20.57%
metal nitrate is further decomposed slowly at 406~654 ◦C. There was no apparent phase
transformation after 654 ◦C, indicating that the SSCN precursor had been decomposed.
To ensure the complete decomposition of the precursor, the SSCN nanofibers obtained by
electrostatic spinning were calcined at 800 ◦C.

Molecules 2022, 27, x FOR PEER REVIEW 2 of 11 
 

 

(Eonset) of LSNMR was 0.94 V, which can be the perovskite with the best ORR activity in 

alkaline solution so far. The OER potential was 1.66 V at 10 mA cm−2 [14]. 

Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) remained highly stable for OER after 1000 cycles. For 

BSCF9002N2, the Tafel slopes of OER and ORR are 143 and 128 mV dec−1, respectively [15]. 

Sm0.5Sr0.5CoO3−δ hollow nanofibers were hybridized with N-doped graphene to obtain a 

remarkable ORR/OER bifunctional catalyst in alkaline media [16]. Catalyst materials with 

various morphology and catalytic activity can be prepared by different preparation meth-

ods. Heteroatoms doping is an effective method to enhance the electrocatalytic activity of 

the catalysts [17]. 

Our previous studies [18,19] have shown that one-dimensional nanofiber-based 

Sm0.5Sr0.5CoO3−δ (SSC) exhibits excellent electrochemical performance. The doping of B-site in 

ABO3-type SSC perovskites can efficiently promote the electrocatalytic activity of the cat-

alyst. The replacement between the two variant Ni and Co atoms in catalyst materials can 

generate the ligand effect, resulting in the acceleration of the charge transfer. The syner-

gistic coupling effect of Ni2+ and Co2+ ions can afford bifunctional synergism and promote 

catalytic activity [20]. To the authors’ knowledge, the ORR/OER activities of Ni-doped 

Sm0.5Sr0.5CoO3−δ at B-site have rarely been reported. In the present work, a novel nanofiber-

structured Sm0.5Sr0.5Co1−xNixO3−δ was synthesized by electrospinning, and the OER and 

ORR catalytic activities were explored. 

2. Results and Discussion 

To ascertain the optimal molar ratio of Co: Ni in SSCN catalysts, SSCN82, SSCN64, 

SSCN55, SSCN46, and SSCN28 were prepared by electrospinning and subsequent calci-

nation. Figure 1 shows the typical TG–DTA curve of the SSCN precursor. The thermo-

gravimetric process of the SSCN precursor can be divided into three stages: the weight 

loss in the range of 0~240 °C is due to the evaporation of water in the precursor, and the 

weight is reduced by 13.6% [21]. The weight loss between 244 °C and 401 °C is 39.7%, 

because metal nitrate will decompose within this temperature range [22]. At the same 

time, an apparent exothermic peak of metal nitrate can be found near 265 °C. The remain-

ing 20.57% metal nitrate is further decomposed slowly at 406~654 °C. There was no ap-

parent phase transformation after 654 °C, indicating that the SSCN precursor had been 

decomposed. To ensure the complete decomposition of the precursor, the SSCN nano-

fibers obtained by electrostatic spinning were calcined at 800 °C. 

 

Figure 1. TG–DTA curves of the SSCN precursor with a scanning rate of 5 °C min−1. 

Figure 2a–e shows the SEM images of SSCN catalysts with different Co: Ni molar 

ratios after calcination at 800 °C for 2 h in air. It can be seen that the microstructure of 

SSCN fibers with different Co: Ni ratios is not the same. In comparison, the more Ni con-

tent in SSCN, the less likely it is to form a fiber structure, which may be due to the ag-

glomeration of nickel in the calcination process. However, with the increase of Co content, 

Figure 1. TG–DTA curves of the SSCN precursor with a scanning rate of 5 ◦C min−1.

Figure 2a–e shows the SEM images of SSCN catalysts with different Co: Ni molar
ratios after calcination at 800 ◦C for 2 h in air. It can be seen that the microstructure of SSCN
fibers with different Co: Ni ratios is not the same. In comparison, the more Ni content in
SSCN, the less likely it is to form a fiber structure, which may be due to the agglomeration
of nickel in the calcination process. However, with the increase of Co content, SSCN82
nanofibers are not easy to fracture, and the diameter is relatively uniform. According
to the literature report [16] and our previous research work [18,19], Sm0.5Sr0.5CoO3−δ

(SSC) materials prepared by electrospinning have a good nanofiber structure. While for
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SSCN nanofibers, due to the intrinsic characteristics of easy agglomeration of Ni, the
more nickel content in Sm0.5Sr0.5Co1−xNixO3−δ, the more likely the fiber will fracture or
even agglomerate. The increase in Co content is beneficial to the formation of SSCN long
fibers [23,24]. Thus, uniform nanofibers without obvious breakage are presented in SSCN82
with the highest Co content. Figure e1–e5 shows the EDX spectra of SSCN82 nanofibers.
It clearly shows the uniform spatial distribution of Sm, Sr, Co, Ni, and O elements in the
SSCN82 catalyst. In particular, the distribution of nickel can fully prove that nickel has
been evenly doped into samarium strontium cobalt oxide.
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The wide-angle XRD patterns of the SSCN catalysts are shown in Figure 3a. The stan-
dard diffraction X-ray peaks of SmSrCoO3 (PDF#53-0112) and SmSrNiO4 (PDF#48-0973)
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are also given as guides to the eyes at the bottom of Figure 3a. All the diffraction peaks of
SSCN were indexed to SmSrCoO3 and SmSrNiO4. The characteristic peaks appearing in
Sm0.5Sr0.5Co1−xNixO3−δ are consistent with the XRD pattern reported by Baek et al. [25].
The result indicates that the SSCN catalysts have a high crystalline characteristic after calci-
nation at 800 ◦C. It is noteworthy that the peaks at about 2θ≈24.6◦, 29.2◦, 32.2◦, and 33.4◦ are
consistent with (011), (004), (013), and (110) for SmSrNiO4 (PDF#48-0973), respectively. The
characteristic peaks increase with the increase of Ni content for Sm0.5Sr0.5Co1−xNixO3−δ.
Peaks at about 2θ≈33.3◦, 40.9◦, and 41.2◦ can be well indexed to (121), (220), and (022) of
SmSrCoO3 (PDF#53-0112), respectively. With the decrease of Co content, the characteristic
peak gradually weakens until SSCN28, which cannot be detected due to too little Co content.
That is also why SSCN82 and SSCN64 have one peak while SSCN55, SSCN46, and SSCN28
have two peaks in the range of 30◦ and 35◦ (see Figure 3b). Moreover, from Figure 3b, the
diffraction peaks of SSCN shifted towards a larger angle with the decrease of the Co/Ni
ratio. Because Co ions are replaced by larger Ni ions, resulting in the lattice expansion of
the SSCN unit cell [26–28].
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Figure 3. Wide-angle XRD patterns of SSCN82, SSCN64, SSCN55, SSCN46, and SSCN28 catalysts
after calcination at 800 ◦C for 2 h. Standard X-ray diffraction peaks of SmSrCoO3 (PDF#53-0112)
and SmSrNiO4 (PDF#48-0973) are given as guides to the eyes at the bottom. (b) A partial enlarged
drawing of (a).

To further examine the surface composition and valence states of Co and Ni in SSCN,
X-ray photoelectron spectroscopy (XPS) measurements were performed. The wide-scan
spectrum of SSCN82 reveals the presence of Ni, Co, O, and Sm and Sr elements (Figure 4a).
The Co 2p spectrum in Figure 4b shows the peaks of Co 2p3/2 and Co 2p1/2 along with
their satellite peaks. For SSCN82, two peaks appear at 780.5 and 781.3 eV, which belong to
Co 2p3/2 and indicate the presence of Co2+ and Co3+, respectively [21]. The Ni 2p spectrum
(Figure 4c) shows 2p3/2 and 2p1/2 doublets due to spin–orbit coupling. The Ni 2p spectra
of SSCN82 show two peaks at 853.8 and 859.3 eV corresponding to Ni 2p3/2 and a satellite
peak at higher binding energies [29,30]. From Figure 4d, the O 1s peaks for the sample are
located at 529, 531.7, and 533.1 eV, respectively, corresponding to lattice oxygen, absorbed
oxygen, and absorbed water [31,32]. The binding energies of Ni 2p and Co 2p in SSCN82
reveal that the Ni and Co atoms are uniformly distributed in the crystal structure. It further
demonstrated the formation of SSCN82, which was in agreement with XRD results.

For Co oxide-based catalysts, it has been found that the number of oxidation states
of Co present in the catalyst is combined with its activity for the ORR and OER. The
presence of Co3+ is associated with higher activity towards the OER, while Co2+ shows
higher activity towards the ORR [33]. The variability of the valence states of the cobalt ions
between Co2+ and Co3+ benefits attaining excellent bifunctional ORR/OER electrocatalysis.
Similar characteristics of bifunctional activity were also observed for the other transition
metal oxides [34]. Ni can undergo more than one oxidation–reduction reaction during
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the OER [33]. The effect of Ni content on the formation of a bimetallic Co-Ni oxide
electrocatalyst was explored [35]. In general, adding Ni to the catalyst can improve the
half-wave ORR potential and current densities, respectively.
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Figure 4. (a) XPS spectra of SSCN82 catalyst. High-resolution XPS spectra of (b) Co 2p, (c) Ni 2p, and
(d) O 1s.

To evaluate the optimal molar ratio of cobalt and nickel of Sm0.5Sr0.5Co1−xNixO3−δ,
the OER and ORR activities were tested at a speed of 1600 rpm in 0.1 M KOH solution.
Figure 5a shows the OER polarization curves of the SSCN catalysts. SSCN82 catalyst shows
a higher current density at the same potential. The onset potential (Eonset) of SSCN82 was
1.39 V, which was lower than the others. The results showed that SSCN82 had higher OER
catalytic activity than the others. Figure 5b shows the Tafel slope obtained from the LSV
curves. The OER Tafel slopes of SSCN82, SSCN64, SSCN55, SSCN46, and SSCN28 are
108.3, 137.7, 173.3, 170.4, and 180.9 mV dec−1, respectively. Among the five samples, the
Tafel slope of SSCN82 is the lowest, which proves that it has faster OER reaction kinetics.
SSCN82 generated a current density of 6.01 mA cm−2 at 1.8 V. For the sake of comparison,
the results in our work and the values reported in literature [15,16,36–39] are summarized
in Table 1. The OER performance of SSCN82 is comparable to the perovskite catalysts.
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Table 1. Comparison of OER performances in 0.1 M KOH media for SSCN catalysts with other
perovskite catalysts.

Catalysts OER Onset Potential
(E/V vs. RHE) Tafel Slope (mV dec−1) Current Density

at 1.8 V (mA cm−2) References

SSCN82 1.39 123.8 6.01 This work
SSCN64 1.51 129.1 2.2 This work
SSCN55 1.52 133.9 1.4 This work
SSCN46 1.61 138.1 1.12 This work
SSCN28 1.63 159.2 0.65 This work

BSCF900N2 143 ca 7 [15]
SSC-HG 1.53 115 [16]

LSM 1.7 226 2 [36]
LCNP@NCNF 1.51 152 4.09 [37]

LSNF-5546 1.56 76 [38]
IrO2 1.56 115 - [39]

Furthermore, the ORR activities were also examined to demonstrate the bifunctionality
of SSCN catalysts. Figure 5c shows the ORR polarization curves of SSCN at 1600 rpm. The
Tafel slope (b) can be calculated by the equation: E = a + b log |j|. The Tafel plots of SSCN82,
SSCN64, SSCN55, SSCN46, and SSCN28 are 111.8, 95.4, 69.7 87.1, and 80.1 mV dec−1, re-
spectively. As shown in Figure 5e, the electron-transfer number of SSCN82 was closest
to 4. It indicates that SSCN82 can restore O2 to OH− via the desired four-electron path-
way [16,40]. Combining the OER and ORR test results, it is obvious that SSCN82 has the
most excellent OER and ORR performance, which proved that the synergy of Co and Ni
with the suitable molar ratio is beneficial for the bifunctional activities [20]. In addition,
electrochemical impedance spectroscopy (EIS) analysis can further study the catalytic ki-
netics of SSCN. The kinetic activity of different catalysts can be expressed by their charge
transfer resistance (Rct). A lower Rct means a faster kinetic reaction. Impedance spectra
of the SSCN catalysts appeared as two capacitive arcs (Figure 5f), which can be fitted by
the equivalent circuit (inset of Figure 5f). Here, Rs is the solution resistance, and CPE1 and
CPEdl are two constant phase elements. R1 represents the electron transport resistance of
catalyst and electrode, and Rct the interfacial charge transfer resistance. SSCN82 shows the
lowest Rct, indicating SSCN82 has the optimal electron and charge transport capability. The
ORR/OER and CV test results divulge that a 0.8:0.2 molar proportion of Co: Ni is optimum
for Sm0.5Sr0.5Co1−xNixO3−δ. Combining the best morphological characteristic of SSCN82
nanofibers with the synergistic effect of cobalt and nickel with the optimal molar ratio is
beneficial to improving the catalytic activity of SSCN82 [20].

For oxygen electrode catalysts, the electrochemical double-layer capacitance (Cdl) is
proportional to the active area of the catalyst [23], and the actual electrochemical active
area can be calculated from CV test. Figure 6 shows the CV curves of SSCN catalysts with
different cobalt–nickel ratios in the potential range of 1.20~1.30 V and at different scanning
speeds (20~100 mV s−1). In the potential range, the transient non-Faraday current is only
caused by the structural changes of the double electric layer. Therefore, the actual surface
area of the electrode can be measured by studying the adsorption and desorption behavior
of the electrode surface through the non-Faraday current in this range. It can be seen from
the figure that the charge and discharge current of the double layer increases linearly with
the increase of scanning speed. The Cdl values of SSCN82, SSCN64, SSCN55, SSCN46,
and SSCN28 catalysts were 1.92, 1.77, 1.71, 1.36, and 1.32 mF cm−2, respectively. SSCN82
has the highest Cdl value and reactivity area, so it has the best catalytic activity among all
SSCN catalysts.
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Figure 5. OER and ORR activities of SSCN. (a) OER polarization curves of SSCN28, SSCN64, SSCN55,
SSCN46, and SSCN82 catalysts obtained in 0.1 M KOH solution with a scan rate of 5 mV s−1, and
(b) the corresponding Tafel plots of SSCN catalysts. (c) ORR polarization curves of SSCN28, SSCN46,
SSCN55, SSCN64, and SSCN82 obtained in O2-saturated 0.1 M KOH solution at 1600 rpm, and (d) the
corresponding Tafel plots of SSCN catalysts. (e) Electron-transfer number (n) of SSCN catalysts.
(f) Electrochemical impedance spectra at 1.664 V vs. RHE.
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3. Materials and Methods

Sm0.5Sr0.5Co1−xNixO3−δ (SSCN, x = 0.2, 0.4, 0.5, 0.6, and 0.8) nanofibers were synthesized
by the electrospinning method. Stoichiometric amounts of samarium nitrate (Sm(NO3)3·6H2O),
strontium nitrate (Sr(NO3)2), cobalt nitrate hexahydrate (Co(NO3)2·6H2O), and nickel nitrate
(Ni(NO3)2·6H2O) with the molar ratio of 0.5:0.5:1-x:x were added into N, N-dimethyl
formamide (DMF) under stirring. Then, polyvinylpyrrolidone (PVP) was dissolved into
the above solution under constant stirring for several hours to form a clear and homo-
geneous electrospinning precursor solution. The electrospinning method was applied to
synthesize the SSCN precursor nanofibers. Then the precursors were dried in a vacuum
drying chamber at 150 ◦C for 4 h to remove the excess solvent, and subsequently calcined
at 800 ◦C for 2 h in air with a rate of 3 ◦C min−1, obtaining the Sm0.5Sr0.5Co0.8Ni0.2O3−δ,
Sm0.5Sr0.5Co0.6Ni0.4O3−δ, Sm0.5Sr0.5Co0.5Ni0.5O3−δ, Sm0.5Sr0.5Co0.4Ni0.6O3−δ, and
Sm0.5Sr0.5Co0.2Ni0.8O3−δ samples. Accordingly, the samples were denoted as SSCN82,
SSCN64, SSCN55, SSCN46, and SSCN28, respectively.

Thermal gravimetric analysis (TGA) was investigated by a simultaneous thermal ana-
lyzer (STA 449 F3) with a scanning rate of 5 ◦C min−1. Scanning electron microscopy (SEM)
and energy dispersion X-ray spectrometer (EDX) were operated by Hitachi S-4300 with the
accelerating voltage of 10 kV. The phase composition of SSCN samples was characterized
by X-ray diffraction (XRD, D 8, Germany BRUKER-AXS) with Cu-Kα radiation. The X-ray
photoelectron spectroscopy (XPS) analysis was operated using an ESCALAB 250 Xi with
Mg-Kα radiation.

The electrochemical measurements were manipulated by the RRDE-ALS rotate disk
electrode system and CHI 760E electrochemical workstation in three-electrode mode. GCE
was used as the working electrode with a diameter of 4 mm, platinum wire as the counter
electrode, and Ag/AgCl as the reference electrode. A 0.1 M KOH solution was used as
the electrolyte. Before electrochemical tests, oxygen was introduced into the electrolyte



Molecules 2022, 27, 1263 9 of 11

solution at least for 30 min to obtain the O2-saturation solution. Linear sweep voltam-
metry (LSV) curves were examined at the rotating rate of 1600 rpm and the scan rate of
5 mV s−1. The electron transfer number (n) during the ORR process was calculated by the
following equation:

n =
4 × Idisk

Idisk + Iring/N

where Idisk is the disk current, and Iring is the ring current. N (= 0.4) is the theoretical current
collection efficiency of the Pt ring. The electrochemical impedance spectroscopy (EIS) was
obtained with 5 mV amplitude within 100 kHz to 0.1 Hz.

4. Conclusions

Sm0.5Sr0.5Co1−xNixO3−δ (SSCN, x = 0.2, 0.4, 0.5, 0.6, and 0.8) nanofibers were suc-
cessfully synthesized by electrospinning method. The synergistic effect of Co and N and
the three-dimensional structure of SSCN nanofibers result in a good catalytic activity. In
0.1 M KOH electrolyte solution, SSCN82 with the optimum Co: Ni molar ratio exhibits
good ORR/OER catalytic performances and electrochemical double-layer capacitance. The
SSCN82 nanofibers are a promising cathode electrocatalyst for metal–air batteries.
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