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A B S T R A C T

Many countries are suffering from the COVID19 pandemic. The number of confirmed cases, recovered, and deaths
are of concern to the countries having a high number of infected patients. Forecasting these parameters is a crucial
way to control the spread of the disease and struggle with the pandemic. This study aimed at forecasting the
number of cases and deaths in KSA using time-series and well-known statistical forecasting techniques including
Exponential Smoothing and Linear Regression. The study is extended to forecast the number of cases in the main
countries such that the US, Spain, and Brazil (having a large number of contamination) to validate the proposed
models (Drift, SES, Holt, and ETS). The forecast results were validated using four evaluation measures. The results
showed that the proposed ETS (resp. Drift) model is efficient to forecast the number of cases (resp. deaths). The
comparison study, using the number of cases in KSA, showed that ETS (with RMSE reaching 18.44) outperforms
the state-of-the art studies (with RMSE equal to 107.54). The proposed forecasting model can be used as a
benchmark to tackle this pandemic in any country.
1. Introduction

The current pandemic, COVID-19, has its first detection in December
2019 in Wuhan, China. It was declared as Pandemic by the World Health
Organization on 04 May 2020 and is still affecting people globally.

To fight with the pandemic, it is crucial to forecast the spread of the
disease by considering not only the number of cases but also the number
of death and recoveries. The accurate and reliable forecasting results for a
given period can support the health and government entities to design
their health strategies to address the expected consequences of the
pandemic.

This real-world problem can be seen as demand forecasting which is a
predictive analysis that estimates the customer demand to enhance
supply decisions and business management. In this study, the customer
demand represents the COVID19 parameters (the number of cases,
deaths, and/or recovered), whereas the supply stands for the health
sector and government entities. Demand forecasting plays a crucial role
in decision making. The efficiency of a decision depends on the fore-
casted results.
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Machine Learning (ML) models and statistical analysis are more
powerful tools to predict the severity of the outbreak and identify at-risk
populations across the countries and regions. Recently, different math-
ematical and Machine Learning-based forecasting models were proposed
to forecast the number of cases and determine its impact, globally and for
specific countries such as the USA, Brazil, China, Italy, Spain, India, and
Malaysia. However, to the best of our knowledge, two studies have been
carried out to forecast the number of COVID-19 cases in KSA [1, 2].

In this study, the statistical time-series techniques are applied to
provide the accurate and reliable forecasting results for the number of
confirmed cases and the number of deaths in KSA, USA, Spain, and Brazil.
The use of time-series in forecasting infectious diseases has been early
studied and recommended by different researchers (e.g. [3]).

A time-series is a sequence of values ordered by time. It is assumed to
be stationary. In other words, it must not rely on the time at which the
time-series is perceived.

To fulfill this study, four forecasting techniques (Drift, Simple-
Exponential-Smoothing (SES), one variant of Exponential-Smoothing
(ETS), and Holt) were used. These techniques have proved their
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success in forecasting different diseases [4, 5], including COVID-19 pa-
rameters [6].

Drift is one of the simplest methods. It is usually considered a
benchmark [7]. Drift is one variant of the Naive forecasting method. It
permits the forecasting results to raise or diminish across time. This is
performed by considering the average change in the whole data instead
of the total change over time. ETS belongs to the Exponential Smoothing
family algorithms. It incorporates three terms including Error, Trend, and
Season (why its name ETS). Each term can be combined using the
addition or the multiplication or dropped from the model [7]. SES is one
of the Exponential Smoothing family methods [7]. SES is dedicated to
forecasting data with no distinct seasonal or trend. Therefore, it was
employed in this study. Holt technique [7] was derived from the Simple
Exponential Smoothing (SES) to promote the forecasting of data pos-
sessing trends.

Unlike the existing studies [1, 2] that used the Auto-Regressive In-
tegrated Moving average (ARIMA), the Auto-Regressive Moving average
(ARMA), and the Logistic Growth to forecast the number of confirmed
cases in KSA, this study aims at providing an efficient forecast model of
the confirmed cases for different countries using the aforementioned
methods. Moreover, it also provides the forecast of the number of deaths
for KSA. Note that, these methods were not involved in recently pub-
lished studies to forecast the COVID19 parameters.

The contribution of the present work is as follows.

� Show the effectiveness of the Exponential Smoothing techniques in
forecasting the spread of COVID19 disease.

� Forecast the COVID19 parameters using only the past confirmed
cases/deaths numbers without requiring additional factors.

� Develop an effective model, that outperforms the existing models, to
forecast the COVID-19 parameters

� Use the developed model to forecast the confirmed cases and deaths
in any country and at any time.

� Suggest the developed models to forecast the spread of any disease.

The experiments passed through five main phases. Firstly, the time-
series stationary was validated using well-known techniques and tests.
Then, the residuals of each model were investigated to ensure that the
models can be applied to forecast new values. After that, the best fore-
casting model was selected based on the Root Mean Square Error
(RMSE). Later, the best model was validated using four evaluation
measures (RMSE, Mean Absolute Error (MAE), Mean Percentage Error
(MPE), and Autocorrelation of errors at lag 1 (ACF1)). Finally, the
numbers of cases (respectively the number of deaths) are successfully
forecasted using the prediction intervals (85% and 90%) for each country
(respectively for KSA) for June 2020. The research findings prove that
the number of cases/deaths was successfully forecasted. The comparison
study showed that the proposed models outperformed the model pro-
posed in the related works.

This article is organized as follows. Section 2 discusses the recent
existing studies. Section 3 describes the methodology. Section 4 en-
compasses the experimentation. Section 5 concludes this study.

2. Related work

Recently, numerous research studies have been done to model
COVID-19 with the goal of better understanding of the pandemic. Most of
these studies are focused on predicting the disease based on a patient's
medical diagnosis. For example, in [8], the authors developed a new
system called the “Gui Covid-19 prediction desktop tool”. The proposed
system automatically detects the infection through the Chest X-Ray im-
ages using the Convolutional Neural Network (CNN). The authors in [9]
also used X-Ray images to detect whether the patient is infected or not.
They applied the Scatter Wavelet Transform for image segmentation and
preprocessing and then the Dense Deep Neural Network for the predic-
tion. Moreover, in [10] the authors focused on the same data type
2

(X-Ray) and applied a modified version of CNN called a Siamese CNN
model to automatically detect the COVID-19 infected patients.

The prediction of infected patients based on the medical diagnosis is
mainly performed using Machine and Deep Learning. This methodology
is generally based on X-Ray images, which is very different from fore-
casting the number of future infected patients using numerical data. The
researchers are still using the time-series to handle this matter. In [4], the
authors forecasted the numbers of COVID-19 confirmed and recovered
cases worldwide using Autoregressive time-series models based on
two-piece scale mixture normal distributions. The proposed technique
performed well and outperformed the existing models. The authors in [5]
studied the performance of different time-series methods to predict the
number of COVID-19 active cases. The statistical methods outperformed
the Deep Learning (DL) methods. The authors in [11] used the Genetic
based Programming model to forecast the behavior of COVID19
spreading in India. The obtained results were highly reliable. The com-
plex network methods have also been used to forecast the spreading of
the outbreak [12].

The authors in [13] used Linear Regression (LR), Multilayer percep-
tron, and Vector autoregression to predict the pace of the spreading of
COVID19 in India. Forecasting the confirmed and death cases using the
exponential smoothing family was presented [6]. The results indicated a
significant increase in the spread of the disease. Themortality rate caused
by COVID-19 [14] was also investigated using the Patient Information
Based Algorithm (PIBA) to estimate the death rate among COVID-19
infected patients in China. The death rate ranges from 0.75% to 3%
and may decrease in the future which is consistent with the real records
of death cases. The authors in [15] suggested three DL models based on
Recurrent Neural Network (RNN) named Stacked Long-Term Memory
(LSTM), Convolution LSTM, and Bi-directional LSTM to forecast the
COVID19 number of cases and deaths in India and the US. The results
showed that the Convolution LSTM is the best model in forecasting both
parameters for US and India.

In KSA, the authors in [1] used different models (Autoregressive
Model, Moving Average, a combination of ARMA and ARIMA). They
predicted that the new cases reach up to 7668 per day and over 127,129
cumulative cases by June 2020. Also, the authors in [2] used the Lo-
gistic Growth and the Susceptible-Infected-Recovered. They estimated
the total number of confirmed cases to be around 69,000 in June2020.
In [16], the authors applied SutteARIMAmethod to forecast the number
of cases in the US. The estimated result was around 3 million cases from
26 June to 6 July 2020. The Mean Absolute Percentage Error (MAPE)
achieved 0.539.

The time-series along with the basic statistical methods have also
been used in forecasting other diseases. The authors in [17] compared
the use of Neural Networks (NN) with the traditional seasonal ARIMA
model for human brucellosis in mainland China. The study showed that
the use of recurrent NN achieved much higher forecast accuracy, espe-
cially for non-linear time-series data. The authors in [3] used the Sea-
sonal ARIMA model which succeeded to predict an annual
periodicity/seasonal variation of hand-foot-mouth disease in China. The
author in [18] applied time-series regression models to show the
dependence between infectious diseases and weather conditions.

In the following, some studies related to disease prediction-based
Machines and Deep Learning were presented. The authors in [19] pre-
sented a review of using ML for the prediction of Chronic Diseases. They
reviewed 453 papers published between 2015 and 2019. They concluded
that the most applicable and used ML models for such diagnosis were
SVM and Logistic Regression (LR). The authors in [20] addressed the
issue of missing data by proposing a regression-correlation combination
(RCC) data imputation technique. They also studied the efficiency of the
proposed labeling for the prediction of schistosomiasis disease density
using Naive Bayes (NB), Support Vector Machine (SVM), J48 decision
tree and Multi-Layer Perceptron (MLP) methods. The authors in [21]
compared different supervised learning algorithms to perform prediction
on a single disease. They found that SVM and the Naive Bayes algorithm
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were the most used algorithms. They also found that the algorithm that
yielded the best accuracy in this context is the Random Forest (RF).

Moreover, in [22], the authors found that the CNN had better accuracy
and less time and memory requirements than K-Nearest Neighbor (KNN)
for disease prediction. Big data analysis has been also considered in [23]
where three methods for the prediction of infectious disease spreading
were evaluated. The authors concluded that DL techniques were the most
stable. The LSTM models were more accurate than ARIMA. The authors in
[24] presented a decision support system to classify and predict multiple
diseases from medical data. They used Naive Bayes and J48 algorithms to
analyze unseen patterns and relations in patients’ records. In [25], a model
of big data for disease prediction was presented. The authors proposed a
new CNN based on a multimodal prediction algorithm for regional disease
risk prediction. They worked on structured and unstructured real-life
hospital data and achieved 94.8% prediction accuracy.

Also, in [26], the authors presented a modified Bayesian Networks
modeling and assessment methods for censored observations that have
time-to-event relationship to predict cardiovascular risk from health
data. Their proposed model outperformed the commonly used
regression-based approach for time-to-event health data. The authors in
[27] compared different ML algorithms such as Naive Bayes, Decision
trees, K-Means, KNN and SVM for early diagnosis of diabetes mellitus.
They tested the methods on PIMA Indian diabetes dataset. They sug-
gested the most used algorithms and proposed recommendations for the
least used algorithms. The authors in [28] proposed Active patient Risk
Prediction (ARP) using active learning on medical data. The aim was to
answer queries related to the similarities between patients that are
difficult to answer by medical doctors.

3. Proposed methodology

The proposed strategy is displayed in Figure 1. The first stage is a data
acquisition and preprocessing. Starting with collecting and combining
the concerned COVID-19 data (the numbers of cases, deaths, recovered)
for KSA and the aforementioned countries and ending with applying
several preprocessing techniques. The dataset was represented as a time-
series and is further processed to make it stationary. Box-Cox Trans-
formation and the differencing technique are used. The Augmented
Dickey-Fuller (ADF) test and Kwiatkowski–Phillips–Schmidt –Shin
(KPSS) test [7] are applied to check for data time-series stationary.

In the second stage, the forecasting techniques (Drift, SES, Holt, ETS)
were used to find the best model for predicting future values. The models
are validated using Residual's test, Auto correlation Function (ACF), and
Ljung-Box test.
Figure 1. The overall m
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In fact, each dataset was divided into two sets, training, and testing.
The training set was used for parameter setting and the selection of the
best statistical model. In this case, two models, Holt and SES, require
parameter setting. The 10-CV was applied to the training set to select the
best parameters’ values for these models. After finding the best values,
they were used (in the training model) to select the best statistical model.

The best model is selected based on:

1) The result of the ACF indicating that the residuals of the model are not
correlated.

2) The Residual test indicating that the residuals are following a Normal
distribution with constant variance and null means.

3) The highest P-Value calculated from the Ljung-Box test indicating that
the residuals don't possess useful information required when fore-
casting future values.

4) The lowest Root Mean Square Error (RMSE).

The third stage involves the validation of the selected model using the
testing set. Four evaluation measures were used to confirm the effec-
tiveness of the selected model as described in Figure 1.

� The Root Mean Square Error (RMSE): measures the error resulting
from the forecast points using the actual data points.

� The Mean Absolute Error (MAE): evaluates the accuracy of the model
(when data is continues). The difference between the RMSE and the
MAE indicates the variation in the individual errors.

� The Mean Percentage Error (MPE): indicates the difference between
the forecasted and actual values. If the MPE is positive (resp. nega-
tive), then the forecast points are greater (resp. lesser) than the actual
points.

� The Autocorrelation of errors at lag 1 (ACF1): indicates the correla-
tion between the future points and the data points in the time-series.

The smaller the RMSE, MAE, and MPE values, the closer forecasted
and actual points are.

Finally, inducing facts and results is the last stage where insights and
accurate conclusions were gathered from the forecasting results.

4. Experimentation

The dataset was collected from (https://www.ecdc.europa.eu/en/
publications-data) for KSA, Spain, US, and Brazil. In the following, two
main experiments were conducted. The first experiment was to predict
the number of cases for the four aforementioned countries. While the
ethodology pipeline.

https://www.ecdc.europa.eu/en/publications-data
https://www.ecdc.europa.eu/en/publications-data


Table 1. KSA – dataset details.

Total Min Max Mean Standard
Deviation

Training set
size

Testing set
size

108788 1 3369 1087.88 997.715 90 10

Figure 2. KSA: the time-series representing the number of cases (from March 2
to May 30). The Y-axis represents the number of cases and the X-axis stands for
the time (the number of days).

Figure 3. KSA: the differenced time-series for the number of cases (from March
2 to May 30). The Y-axis represents the number of cases and the X-axis stands for
the time (the number of days).

Figure 5. KSA – Parameter setting for Holt using the number of cases. The Y-
axis represents the RMSE values (in both panels (a) and (b)) and the X-axis
stands for the values of alphaH (in panel (a)) and beta (in panel (b)).
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second experiment is to predict the number of deaths for KSA. Both ex-
periments aim to show the efficiency of the proposed forecasting models.
For the first experiment, the choice was based on countries with a high
number of infected patients. The number of COVID 19 cases (resp.
deaths) for each country (resp. for KSA) is represented using a time-
series. As discussed in the methodology section, four forecasting
Figure 4. KSA – Parameter setting for SES using the number of cases. The Y-axis rep
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methods (Drift, SES, Holt, and ETS) were tested to determine the best
forecasting model. The experiments were performed using the R pro-
gramming language (version 3.6.1).

4.1. Forecasting the number of cases in KSA

Table 1 shows the details of the KSA dataset, the minimum and
maximum values, the total value, the mean, and the standard deviation.
It also includes the size of the training and testing sets.

The training set contains the number of cases starting from March
02to May 30. Figure 2 displays the time-series representing the training
set. As seen, it has a trend and it is not stationary, the mean isn't null (¼
928.9). The P-Value of ADF and KPSS are equal to 0.99 (>0.05) and 0.01
(<0.05) respectively which confirms the non-stationary of the time-
series.

After applying the Box-Cox transformation (λ ¼ 0.3484489) and
differencing the time-series, the new transformed time-series is station-
ary (see Figure 3) based on the results yielded by ADF and KPSS tests (P-
Value of both tests achieved 0.02321 (<0.05) and 0.1 (>0.05)
respectively).

Note that SES and Holt require parameter settings. For that, 10-CV
was applied in the training set. For SES (resp. Holt), the parameter α
(resp. αH and β) was investigated to find the best value ranging between
[0.01, 0.99] (resp. [0.01, 0.99] and [.0001, .5]) that minimizes the
RMSE. Figures 4 and 5 display the minimum value of α, αH and β
respectively. The best value of each parameter is α ¼ 0.99, αH ¼
[0.01,0.1] (the best values yielding the same RMSE value) and β ¼
0.0141.

In order to validate each forecasting model, the residuals were
investigated using ACF. The residuals of the four models are uncorrelated
resents the RMSE values and the X-axis stands for the different values of alpha.



Figure 6. KSA Dataset – Residuals test for ETS forecasting model (from March 2 to May 30). The Y-axis represents the residuals values (in panel (a)), the ACF values
(in panel (b)), and number count (in panel (c)). While the X-axis indicates the number of days (in panel (a)), the lags (in panel (b)), and the residuals (in panel (c)).

Table 2. KSA - RMSE values from the training set and the residuals using the four
forecasting methods.

RMSE Drift SES Holt ETS

P-Value 0.1115 0.7906 0.6521 0.5812

Training 430.1558 339.5058 20.8855 18.4361

Residuals 1.6716 1.6898 1.6085 1.6015

Table 3. KSA - The number of cases forecasted using ETS (May 31 to June 09).

Date Real Forecast Lo 80 Hi 80 Lo 95 Hi 95

31/5/20 1877 1738 1473 2014 1348 2176

01/6/20 1881 1794 1459 2147 1305 2359

02/6/20 1869 1851 1454 2271 1276 2529

03/6/20 2171 1909 1456 2392 1257 2692

04/6/20 1975 1969 1462 2511 1244 2852

05/6/20 2591 2029 1472 2628 1235 3010

06/6/20 3121 2090 1484 2746 1230 3168

07/6/20 3045 2152 1498 2863 1227 3325

08/6/20 3369 2216 1514 2981 1228 3482

09/6/20 3288 2281 1532 3099 1230 3640
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and follow the Normal distribution. Figure 6 displays the residuals (up),
the ACF (bottom left), and the normal distribution of the residuals
(bottom right) of the ETS model. To save space, only the ETS model was
presented. To select the best model, Table 2 points out the P-Value of
each model (calculated from the Ljung-Box test), and the RMSE. The P-
Values of the four models are high. The SES, holt and ETS models suc-
cessfully fit the data with a percentage between 58% and 79%. ETS and
Holt yielded the lowest RMSE rate for both the training and the residuals.
This is because the corresponding forecasts are based on the model that
fitted to the entire data set. Consequently, the ETS model is selected.

Table 3 displays the number of cases forecasted using ETS. It en-
compasses the date, the current number of cases, the forecasted values
from May 31to June 09, 2020, and the lower and higher limits of 80%
5

and 95% prediction intervals respectively. The forecasted values should
always be accompanied by the prediction intervals because they cannot
precise the uncertainty in the forecasts. These intervals express how ac-
curate the forecasts are.

Figure 7 displays the boxplots of the number of cases forecasted be-
tween May 31 and June 9, 2020. As shown, the forecasted values are
linearly increasing. These values follow the trend of the actual previous
values which were stable contrary to the actual values provided between
31 May to 9 June.

Table 4 displays the evaluation measures. The RMSE is greater than
the MAE with a difference equal to 163.64 which reflects the dissimi-
larity in the individual errors. This difference is somewhat large because
of the unexpected increase of the number of cases in these ten days (31/
05 to 09/06). Moreover, the MPE indicates that the average percentage
errors between the forecasts and the actual values is about 17%. In other
words, the forecasting quality is about 83%. Finally, the ACF1 indicates
that the current value is influenced by the previous values (correlation ¼
70%). Therefore, the five last values couldn't be efficiently predicted
since the values between 31/05 and 09/06 achieved 3000 cases whereas
the previous values didn't exceed 2000 cases. Figure 8 presents the
forecasted values until 30/06/2020. The dark (resp. light) blue color
indicates the 80% (resp. 95%) prediction interval. The maximum number
of cases is expected to not exceed 4000 cases per day by June 2020 of
June 2020. However, the predicted interval (80%) indicated that the
forecast values are between 2000 and 5000 cases.

4.2. Forecasting the number of cases in Brazil

Table 5 shows the details of the Brazil dataset, the minimum and
maximum values, the total value, the mean, and the standard deviation.
It also includes the size of the training and testing sets. As displayed,
there is a large variation between the values (mean and standard devi-
ation are very large).

The Brazil dataset was collected from February 26 to May 31. The 10-
CV was applied to the training set (February 26 to May 21) to find the
best parameters’ values for Holt and SES techniques. Then the best
selected model was validated using the testing set (May 22–31). Figure 9
displays the time-series of the training set. One can notice that is not



Figure 7. KSA – Boxplot of the Number of COVID19 cases forecasted using the ETS method between May 30 – June 9. The Y-axis represents the number of cases and
the X-axis stands for the date.

Table 4. KSA - Evaluation of ETS model using the testing set.

Measures RMSE MAE MPE ACF1

Test set 679.3891 515.7540 17.4239 0.7053

Figure 8. KSA - Number of COVID19 casthe es forecasted using ETS method
between May 30 – June 30 (P-Value <0.05). The Y-axis represents the number
of cases and the X-axis stands for the time (the number of days).

Table 5. Brazil – dataset details.

Total Min Max Mean Standard
Deviation

Training set
size

Testing set
size

498440 1 33274 5538.222 7246.635 90 10

Figure 9. Brazil - The time-series representing number of cases (from Feb 26 to
May 21). The Y-axis represents the number of cases and the X-axis stands for the
time (the number of days).

Table 6. BRAZIL - The p-value and RMSE values for the training set and the
residuals using the forecasting methods.

Drift SES Holt ETS

P-Value 0.00023 0.02659 0.02183 0.02183

Training 4502.002 2155.484 59.2007 39.1186

Residuals 2.2735 2.0479 1.8494 1.8494
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stationary. So, the process detailed in the previous section was employed
for this dataset. To save space, figures and explanations were omitted.

Table 6 figures out the RMSE from the residuals and the training set,
along with the P-Value computed from the Ljung-Box test for the four
models. The P-Values for all the models don't indicate a good fit for the
data. However, according to [12], the models might be used for fore-
casting (since the RMSE values from the residuals are insignificant) but
their accuracy will be low. So, ETS is selected for forecasting.
6

Figure 10 presents the number of forecasted cases using the testing set
(May 22–31). The perturbation seems to increase with the days. This is
because the number of cases from March 2 to May 22 was small and
increased slowly, while the number of cases on May 22–31 jumped from
20000 to 30000. In other words, the values of the training model are very
different (small) from the values of the testing model (large). So, the
forecasted values increased slowly following the training model, while
the actual values jumped from 20000 to 30000 cases.

Table 7 indicates that the forecasted values are not very close to the
actual values (the black curve). Therefore, the RMSE from the testing set
is not low (see Table 7). Moreover, the variance in the individual errors
(the difference between RMSE and MAE) achieved 1210.0442 which is
large due to the lack of fit of the dataset. The MPE, with a negative result,
indicates that the actual values are greater than the forecasted values.
Finally, the ACF1 shows the influence of the past values on the future
values (about 51%).



Figure 10. Brazil - COVID19 forecasted number of cases from May 22–31. The
Y-axis represents the number of cases and the X-axis stands for the time (the
number of days).

Table 7. Brazil – Evaluation of ETS model using the testing.

Measures RMSE MAE MPE ACF1

Test set 5280.021 4069.9768 -21.8686 0.5109847

Figure 11. Brazil - COVID19 forecasted number of cases for June 20204.3
Forecasting the number of cases in the US. The Y-axis represents the number of
cases and the X-axis stands for the time (the number of days).

Table 8. US – dataset details.

Total Min Max Mean Standard
Deviation

Training set
size

Testing set
size

1770384 1 48529 13412 13191.53 90 10

Table 9. US – The P-value and RMSE values for the training set and the residuals
using the four forecasting methods.

Drift SES Holt ETS

P-Value 0.0003 0.245 0.7235 0.5401

Training 28266.38 6274.319 17.2757 4.4497

Residuals 2.846624 2.4880 2.3191 2.2946

Figure 12. US - Number of COVID19 cases forecasted (testing set May 22–31)
using all the methods. The Y-axis represents the number of cases and the X-axis
stands for the time (the number of days).

Table 10. US – Evaluation of ETS model using the testing set.

Measures RMSE MAE MPE ACF1

ETS Testing 3017.577 2687.257 -9.189413 0.5268518

Holt Testing 2735.936 2470.140 -7.235159 0.5177277

Table 11. US - The number of cases forecasted using ETS (May 22–31,2020).

Date Real Value Holt ETS

22-05-2020 25434 22465 22693

23-05-2020 24147 22449 22750

24-05-2020 21236 22481 22848

25-05-2020 20568 22570 22994

26-05-2020 19064 22726 23197

27-05-2020 18910 22957 23460

28-05-2020 18721 23272 23787

29-05-2020 21817 23681 24183

30-05-2020 25337 24191 24650

31-05-2020 23297 24813 25191
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Figure 11 displays the forecasted number of cases for June 2020. The
number of cases is still increasing and can be around 10000 and 40000 in
June2020. This forecast is inflated because the number of cases in Brazil
is high. This result was induced by the fact that the model didn't fit well
the data.

Table 8 shows the details of US dataset, the minimum and maximum
values, the total value, the mean, and the standard deviation. It also in-
cludes the size of the training and the testing sets. Alike Brazil dataset,
there is a large variation between the values (mean and standard devi-
ation are very large).

The dataset was collected from January 21 to May 31, divided into
the training set (January 21 to May 21) and the testing set (May 22–31).
Table 9 exhibits the P-Value for each model, and the RMSE values from
both the training set and the residuals. The best model (with the lowest
7

RMSE value) is ETS. Holt model gained the second position. SES yielded
the highest RMSE value, and hence, is rejected. These results are
confirmed in Figure 12 where the number of cases forecasted for ten days
(May 22–31) is displayed.

Table 10 shows the results of the evaluation measures for ETS and
Holt using the testing set (May 22–31). The Holt model is superior to ETS
when using the testing set. The ACF1 indicates the correlation between
the forecasted and the previous values (0.53 and 0.52 for ETS and Holt
respectively). So, the greater ACF1, the smaller the RMSE. Moreover, the
variance in the individual errors is about 330.32 and 265.796 for ETS and
Holt respectively. Finally, the MPE shows that the actual values are
slightly greater than the predicted values.

Table 11 displays the real values of the number of cases in the US
(May 22–31) as well as the forecasted values yielded by Holt and ETS. As



Figure 13. US – Boxplots of the real and the forecasted values of number of cases (May 22–31,2020). The Y-axis represents the number of cases and the X-axis
indicates the forecasting methods used and real values.

Figure 14. US – the Number of COVID19 cases forecasted (until June 30,2020)
using ETS method. The Y-axis represents the number of cases and the X-axis
stands for the time (the number of days).

Table 12. Spain – dataset details.

Total Min Max Mean Standard
Deviation

Training set
size

Testing set
size

244599 1 9181 2470.697 2529.043 90 10

Table 13. Spain - The P-value and RMSE values from the training set and the
residuals using the forecasting methods.

Drift SES Holt ETS

P-Value 0.02715 0.005475 0.2226 0.1047

Training 1979.784 1780.588 293.1407 173.6283

Residuals 897.4764 876.451 0.2785 0.5843

Table 14. Spain – Evaluation of ETS and Holt models using the testing set.

Measures RMSE MAE MPE ACF1

ETS Testing 493.6207 301.7801 -1.581006 -0.1304494

Holt Testing 500.4079 300.5976 -8.598741 -0.09755344
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seen, the proposed forecasting models are efficient to predict future
values based on the provided dataset.

Figure 13 displays the boxplots of the real and the forecasted number
of cases using ETS and Holt between 21 and 30 May. As indicated, the
forecasted values range between 22000 and 25000 confirmed cases
whereas the real values expand from 18000 to 25000. The real values
indicate that the confirmed cases fell (from 25434 in May 22) to 18721
confirmed cases on May 28, to increase to 25337 on May 30. This vari-
ability affected the Accuracy of the results.

Figure 14 shows the number of cases forecasted in June 2020. Based on
the ETS model, the forecasted values are between 10000 and 50000.
However, the number of cases might remain high following the prediction
intervals. This can be expected since the lock-down is no longer imposed.
4.3. Forecasting the number of cases in Spain

Table 12 shows the details of Spain dataset, the minimum and
maximum values, the total value, the mean, and the standard deviation.
It also includes the size of the training and testing sets. The mean and
standard deviation are very large.

The Spain dataset was collected from February 01 to May 31 and
divided into training (February 01 to May 21) and testing set (May
8

22–31). As presented in Table13, the Holt and ETS models are selected
based on the P-Values (> 0.05) and the RMSE from both the residuals and
the training set. Table 14 sets out the RMSE results from the testing for
ETS and Holt models. The ETS outperforms again the Holt model. The
negative value of MPE indicates that both models yielded future values
lesser than the actual values. Besides, the variance of the individual er-
rors is about 191 and 200 for ETS and Holt respectively, which are not
high compared to the Brazil results. However, there is a lack of correla-
tion between the previous the predicted values (about -0.13 and -0.09 for
ETS and Holt respectively, see the ACF1).

Figure 15 shows the forecasted number of cases for June using both
models. The number of cases is expected to decrease. Holt model pro-
vides values between 300 and 470, whereas ETS estimates to reach 0 by
the end of June.

5. Discussion

To sum up, four forecasting case studies have been investigated
involving four different countries, KSA, Brazil, US and Spain. All the



Figure 15. Spain - Number of COVID19 cases forecasted (until June 30,2020)
using ETS and Holt methods. The Y-axis represents the number of cases and the
X-axis stands for the time (the number of days).

Table 16. US – Results of the Comparison study with [15].

Models Proposed
Holt

Proposed
ETS

Stacked
LSTM

Bi-directional
LSTM

ConvLSTM

MAPE 1.94 1.94 10.00 6.66 2.00

Table 17. US – Results of Comparison study with [16].

Date Actual Proposed Holt Proposed ETS SutteARIMA

26/06/2020 2552956 2463825 2463824 2544732

27/06/2020 2596537 2504119 2504116 2590888

28/06/2020 2637077 2545431 2545425 2632477

29/06/2020 2681811 2587936 2587928 2671055

30/06/2020 2727853 2631818 2631807 2711798

01/07/2020 2779953 2677265 2677251 2755128

02/07/2020 2837189 2724475 2724456 2803729

MAPE 3.601921 3.602240 0.00539
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datasets were preprocessed to make the time-series stationary. With
respect to the model validation, the four models were validated to forecast
future values (with high P-Value) for KSA case study. While only Holt and
ETS (respectively SES, Holt, and ETS) models were validated for the US
(respectively Spain) case study. However, even though no model was
validated for Brazil case study, the forecasting was performed. The ETS
forecasting technique outperformed the three proposed models (consid-
ering RMSE) in the four case studies, and Holt achieved better results than
Drift and SES. This is because Holt is a type of ETS which represents a
Multiplicative error, an Additive Trend, and No seasonality. It is worth to
notice that the multiplicative and the additive models (the selected ETS
and Holt) result in the same forecast values but with distinct prediction
intervals. The validation of the selected model was performed using four
evaluation measures (RMSE, MAE, MPE, and ACF1). The forecasting re-
sults using the Brazil time-series resulted in a high RMSE (5280) and a high
variance of the individual errors (1210) because the model didn't correctly
fit the data. The reason behind this result is that the Brazil dataset has high
mean and standard deviation (Table 5, mean ¼ 5538 and Standard Devi-
ation¼ 7247) which reflects high difference between the number cases (in
March: 1 confirmed case and in May: 33472 confirmed cases). So, this
effect has weakened the forecasting process.

Moreover, the highest ACF1 was found in the KSA case study. This
means that there is a strong correlation between the KSA time-series and
the number of forecasted cases. The greater the ACF1 the smaller the
RMSE. This is not true with US time-series where the ACF1 exceeded 52%
but the RMSE achieved 3000 (for ETS). This effect is interesting when
large random values can be expected in the time-series (See Table 8,
mean ¼ 13412, Standard Deviation ¼ 13992). Alike Brazil dataset, the
US dataset reflects a high variability (with a minimum number of cases¼
1 in March and the maximum number of cases ¼ 48529 in May).
Furthermore, the forecasted number of cases for Spain, US, and Brazil
were less than the actual values (MPE< 0) due to some unexpected large
values appeared in the testing set. The ETS model succeeds in forecasting
future values for the four countries even if the results of Brazil are
somewhat inflated. The 80% and 95% prediction intervals provided a
gap between low and high values due to an unexpected change and lack
of consistency in the datasets. This resulted in a prediction uncertainty,
but the obtained forecasts are promising. The obtained results showed
that by the end of June, the number of cases (per day) in KSA, Brazil, and
US continues to increase to reach approximately 4000–5000 cases per
Table 15. Comparison study results for KSA.

Models Proposed Holt Proposed ETS ARIMA

RMSE 20.8855 18.4361 107.5396

P-Value 0.6521 0.5812 <0.05
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day in KSA, 10000–40000 cases in Brazil, 10000 and 50000 in the USA.
Whereas it is expected to fall to 300–470 cases in Spain by June 2020.

5.1. Comparison study

5.1.1. Comparison study with state-of-the-art studies
The KSA dataset described above (March 02 to May 31) was used in

[1]. Table 15 displays the RMSE results obtained by ETS and Holt (the
proposed models), and ARIMA [1]. As seen, the ETS and Holt out-
performed ARIMA. This result is due to not only the performance of ETS
and Holt but also to 1)-the parameter setting applied in this study to find
the best values of Holt's parameters and 2)-the preprocessing performed
on the time-series. This comparison study demonstrated the efficiency of
the proposed study. The proposed models significantly enhanced the
forecasting results by about 88%.

Moreover, two studies forecasted the total number of cases in US from
February 2020 to July 2nd, 2020 in [16], and from February 2020 to July
10th, 2020 in 0þ. Both datasets were collected and processed as
explained above. Table 16 displayed the results of [15] as well as the
proposed Holt and ETSmodels. As, displayed, MAPE obtained by ETS and
Holt are clearly smaller than the results obtained by Stacked LSTM,
Bi-directional LSTM, and Convolution LSTM. Both proposed models
outperformed the three DL models in forecasting the cumulative number
of cases. However, the Convolution LSTM is a competitive model as its
result is not far from the results yielded by Holt and ETS. In the contrast,
the results of Bi-directional and Stacked LSTM were enhanced by 4.72%
and 8.06% using ETS and Holt respectively.

Table 17 shows the forecasted values of the total number of cases be-
tween 26 June and 02 July 2020 using the proposed Holts and ETSmodels,
andtheSutteARIMA[16].Thethreemodelsyieldedvaluesclosetotheactual
values.However, SutteARIMA isbetter thanETSandHolt in termsofMAPE.
Theauthors in[16]didnotuseanothermetric tofurthercomparetheresults.

5.1.2. Comparison study with other algorithms
This section presents the comparison with some ML algorithms.

Firstly, H2O's AutoML was used. It consists of the automation of the
different phases of ML (data preprocessing, training, testing, validation,
parameter setting, etc) [29]. It includes several ML algorithms such that
Gradient Boosting Machine (GBM), Generalized Linear Model (GLM),
Distributed Random Forest (DRF), eXtremely Randomized Trees (XRT),
and Stacked Ensemble (using the one of only the best models of each kind
of these algorithms).

H2O's AutoML requires more than one independent variable to pre-
dict the dependent variable. For this, KSA dataset was used with three
independent variables (Date, Number of Deaths, and Number of Recov-
ered) to predict the number of Cases. The same training and testing sets



Table 18. KSA - RMSE values from the training set using H2O's AutoML and ETS.

Models – H2O's AutoML RMSE

XRT 288.0577

GBM 298.1039

DRF 300.0999

Stacked Ensemble 210.3833

Proposed Model: ETS 18.4361

Table 19. KSA - Evaluation of ETS and XRT models using the testing set.

Model RMSE MAE

XRT 908.3867 721.6342

ETS 679.3891 515.7540

Table 20. Comparison study - Evaluation of XGBoost and the proposed models
using the testing set for each dataset.

Dataset Model RMSE MAE MPE

KSA ETS 679.3891 515.7540 17.4239

XGBoost 822.3128 610.1452 17.72728

Brazil ETS 5280.021 4069.9768 -21.8686

XGBoost 6190.753 4918.1 -4.469476

US ETS 3017.577 2687.257 -9.189413

Holt 2735.936 2470.140 -7.235159

XGBoost 3272.734 2734.444 -11.26654

Spain ETS 493.6207 301.7801 -1.581006

Holt 500.4079 300.5976 -8.598741

XGBoost 497.9066 317.1167 8.140828

Table 21. KSA - Parameters and evaluation measures obtained from MLR for the
“cases” and “recovered” variables.

Std. Error t value P-Value

Intercept 0.01843 4.066 0.000105

Cases 0.07181 5.279 9.44e-07

Recovered 0.08043 3.025 0.003273

Figure 16. KSA - Representation of the Multiple Regression Model. The Y-axis
represents the number of deaths and the X-axis stands for the time (the number
of days).
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(used in the proposed models, from March 2nd to May 30th for the
training, and for May 31st to June 9th for the testing) were used in this
comparison. Table 18 presents the RMSE values from the training set
using the H2O's AutoML algorithms. Among AutoML proposed algo-
rithms, the best model yielding the lowest RMSE value is XRT. However,
the ETS outperformed the best model XRT.

Table 19 figures out the results of ETS and XRT using the testing set.
Again, ETS outperforms XRT in terms of RMSE and MAE.

Secondly, XGBoost was used. XGBoost (or eXtreme Gradient Boost-
ing) is an enhanced version of distributed Gradient Boosted Decision Tree
(GBDT) library. It affords parallel tree boosting. It is a well-known library
for classification and regression [30]. In this comparison, the four data-
sets (KSA, Brazil, Spain, and the US) were utilized (considering only the
“Date” variable and previous values of Cases). The training and the
testing sets are similar to what was used above.

Table 20 displays the values of the RMSE, MAE, and MPE for the
XGBoost and the proposed models using the testing set for each dataset.
As displayed, ETS (respectively Holt) performed better than XGBoost for
all the datasets (respectively, US and Spain).

AutoML and XGBoost are mainly dedicated to large datasets with a
considerable number of features (independent variables) which is not the
case for the datasets used in this study. The four datasets are small and
the predicted results (the number of cases) mainly depend on their-
previous values. Hence, the comparison study with the ML algorithms
showed that the proposed statistical methods are more appropriate to
forecast the number of Covid 19 confirmed cases.

5.2. Forecasting the number of deaths in KSA

In this section, three research questions were answered to investigate
the number of deaths in KSA. The dataset was collected fromMarch 02 to
May 30.
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1) Can the number of deaths be predicted based on both the numbers of
cases and recovered?

The dataset was normalized before being transformed to time-series
using Eq. (1).

zi ¼ xi �minðxÞ
maxðxÞ �minðxÞ (1)

Where is the data point at time t.
The prediction of the number of deaths was performed using the

Multiple Linear Regression (MLR). The obtained MLR equation is pre-
sented in Eq. (2).

Death ¼ 0.07492 þ 0.37909 � Cases þ0.24325 � Recovered (2)

The predictor “Cases” is the most influencing variable. There is one
death for every two cases and two recovered. Table 21 presents the
standard error, the t- and P-Values for the intercept, Cases and Recov-
ered variables. The Cases and Recovered variables have a strong rela-
tionship with the Death variable due to a small P-Value (< 0.05). The P-
Value is useful when studying the effect of each predictor but is not
particularly useful for forecasting [7]. Figure 16 shows the actual values
compared to the fitted values after applying MLR. To show how well the
MLR model fits the data, the coefficient of determination (R squared)
was calculated. R-squared achieved 0.7044. So, the model does a good
job as it explains 70.44 % of the variation in the dataset. Also, the re-
sidual standard error of this model is equal to 0.1173 which is insig-
nificant. After the regression model being fitted, the residuals are
plotted to check whether the time-series can be used to forecast future
values. The results are displayed in Figure 17. The residuals are not
uncorrelated (3 lags exceed the blue line in the ACF plot) and don't
follow the Normal distribution, with a no-null mean (see the histo-
gram). The P-Value (¼8.273e-08 computed from the Breusch-Godfrey)
indicates that the model doesn't fit the entire data. Consequently,
forecasting the Death number cannot be applied using the numbers of
Cases and recovered because the conditions required for the MLRmodel
are not met.



Figure 17. KSA – The residuals from the MLR model. The Y-axis represents the residuals values (in panel (a)), the ACF values (in panel (b)), and number count (in
panel (c)). While the X-axis indicates the number of days (in (a)), the lags (in (b)), and the residuals (in (c)).

Figure 18. Scatter plot of the residuals (represented in the Y-axis in both panels (a) and (b)) against “Cases” variable (indicated in the X-axis in panel (a)) and the
fitted model (indicated in the X-Axis in panel (b)).

Table 22. KSA Death - The P-value and RMSE values from the training set and the
residuals using the forecasting methods.

Drift SES Holt ETS

P-Value 0.1254 0.208 0.1122 0.3021

Training 3.229823 2.690445 3.938953 4.055494

Residuals 1.27837 1.226366 1.169782 1.212663

Table 23. KSA Death – Evaluation of the four models using the testing set.

RMSE MAE MPE ACF1

Drift 7.375841 6.267739 18.17841 0.6591618

SES 10.785257 9.484588 29.04443 0.68395988

Holt 10.974308 10.102519 31.69407 0.6644047

ETS 11.905337 10.729140 33.27339 0.6843702
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2) Can the number of deaths be predicted based on the number of cases?

The same process discussed above was applied using Linear Regres-
sion (LR). The regression equation is presented in Eq. (3).

Death ¼ 0.06055 þ 0.56109 � Cases (3)

The predictor variable “cases” is the most influencing variable. Its P-
Value is < 2e � 16 and R-squared reached 0.677. The residuals are un-
correlated and possess information that might be useful when forecasting
future values (small P- Value equals to 2.226e-08). They have a linear
pattern with the predictor variable (left) and the fitted model (right) as
displayed in Figure 18. Thus, forecasting the number of Deaths cannot be
applied using the number of Cases.

3) Can the number of deaths be forecasted (alone)?

In the following, the four forecasting techniques were used to forecast
the number of deaths. The dataset was divided into training (March 2
until May 30) and testing (May 31 to June 9). The same process was
followed. Prior to forecast future values, the residuals of eachmodel were
investigated. The Ljung-Box test yielded a high P-Value (see Table 22)
which confirms the effectiveness of the fitted model obtained by the four
techniques. Furthermore, the RMSE results from the residuals, for all the
models, are small and less than the RMSE values from the training set.
SES outperformed the three models, and the Drift model performed
better than the Holt and the ETS models (Table 22). The four models
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yielded promising results even though the SES is the best one. So, all the
models were kept for the validation and the forecast phases.

Table 23 presents the results of four evaluation measures using the
testing set. Drift is the best model (RMSE ¼ 7.3758). The variance of the
individual errors reached 1.11 which is a small value. The forecasted
values are greater than the actual values (MPE > 0). The forecasted and
the previous values are correlated (ACF1 ¼ 66%). Figure 19 displays the
number of deaths forecasted (until June 30) using the Drift model. The
number of deaths per day is expected to range between 30 and 84 (see the



Figure 19. KSA Death – Number of COVID19 deaths forecasted (until June 30) using Drift model. The Y-axis represents the number of cases and the X-axis stands for
the time (the number of days).
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prediction interval) with an average of 50 per day by the end of June
2020. So, the pandemic is still subsisting in KSA.

6. Conclusion

In conclusion, the recentCOVID-19 pandemic has had its tolls in a
lot of countries around the world. Thus, scientists in different fields are
working on designing various models to build a better understanding of
the situation and propose valid solutions. Prediction and forecasting
models are vital to provide a well-validated view of the pandemic
situation in the future and consequently help in designing the proper
solutions. Our work is an additional block added to this field. It aimed
to predict the number of COVID-19 cases (resp. death) for four coun-
tries including KSA, USA, Spain, and Brazil (resp. KSA). Forecasting
was performed using time-series and four techniques (Drift, SES, ETS,
Holt).

The experiments went through five stages. First, time-series station-
ary was validated using well-known techniques and tests. Then, the re-
siduals of each model were investigated to ensure that the models can be
applied to forecast new values. Following that, the best forecasting model
was selected based on RMSE. Lastly, the best model was validated using
four evaluation measures (RMSE, MAE, MPE, ACF1). The forecast was
successfully performed with the prediction intervals 85%–90%. The ob-
tained results estimated that in June 2020 the per-day number of cases in
KSA reaches around 5000 cases and reaches around 10000–40000 in
Brazil. While it is predicted to reach 200–370 confirmed cases in Spain,
and 10000–50000 in the US. However, the forecasted number might not
exactly reflect the actual numbers of cases/deaths because they can be
affected by the different imposed events like the lockdown and the
curfew, and their release. The comparison study showed that the pro-
posed ETS and Holt models outperformed ARIMA, the three variants of
LSTM Deep Learning techniques. However, both models are competitive
with SutteARIMA. Moreover, ETS and Holt also outperformed the ML
algorithms provided by AutoML and XGBoost. Furthermore, the last case
study showed that the number of deaths can also be forecasted using the
same models. The results indicate that the number of deaths in KSA can
reach an average of 50 per day by the end of June 2020.

To sum up, the present study showed the effectiveness of the Expo-
nential Smoothing techniques in forecasting the spread of COVID19
disease. The well-known and old statistical models (ETS and Holt) can
surpass ARIMA, Drift, SES, LSTM deep learning technique, XGBoost, and
AutoML algorithms. This can be achieved with a good preprocessing of
the time-series and best parameter setting (for Holt). ETS and Holt are
competitive forecasting models that deserve to be more investigated in
any forecasting problem. The existing studies involved many statistical,
ML, and DL techniques but not ETS and Holt. The forecast of the
COVID19 parameters used only the past confirmed cases/deaths numbers
without requiring additional factors. This model can be applied to
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forecast an ongoing changing situation of any kind of disease, and not
just COVID-19 pandemic, by providing sufficient data.

The main limitation of this work is that the prediction intervals
provided a gap between low and high values due to an unexpected
change and lack of consistency in the datasets. The forecasted values
highly depend on the previous actual values. So, if the last actual values
raised suddenly, the forecasted values would follow the trend of the
actual values. The sudden change will affect the results and increase the
gap between the forecasted and existing values. Hence, the increased
values of the metrics. To minimize the evaluation metrics results, it is
recommended to forecast few days or a limited period (for example be-
tween 3 and 6 days) instead of forecasting a whole month.

This study could be extended to explore Deep Learning technique
(other than LSTM). Moreover, the different inflected events like the
lockdown, the curfew, and their release make change to the datasets. So,
the inclusion of these factors in the dataset could be of interest.
Furthermore, forecasting the Spread Growth Rate and the Case Fatality
Rate (discussed in [31]) using the proposed models could help the au-
thority in decision making.
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