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Abstract

Original Article

IntroductIon

Digital pathology has many potential utilities. These include 
advancements in education, case archiving and retrieval, 
teleconsultation, and also improvements in efficiency and 
accuracy in the daily practice of the anatomic pathologist. 
Digitization of histopathology slides allows for various modes 
of case presentation which would be advantageous for rapid 
and accurate review. One such example is the simultaneous 
navigation of serial sections of different stains from the same 
tissue block. Localization and direct comparison of findings 
on individual cells and structures can enhance productivity 
over the normal microscopy procedure of switching slides 
and locating the same fields of views (FOVs) as well as 

locating the same cells or structures within those FOVs. In 
addition to presentation, machine learning applications on 
digitized specimens have been shown to be effective for 
the automated identification of particular organs, structures, 
disease processes or other features which under standard 
microscopy would need to be identified manually.[1‑4] 
The combination of automated feature identification and 
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simultaneous and synchronized multiple section display of 
whole slide images (WSIs) has the potential to increase both 
efficiency and accuracy. A similar scenario was well shown 
with “location‑guided screening” in cervical cytology with 
digital results display; a process which was first approved for 
clinical use more than 2 decades ago.[5‑8]

In the present study, the authors developed a prototype system 
of synchronized section display and machine learning‑based 
feature detection in medical renal biopsies. The renal pathologist 
must evaluate a series of special stains on renal biopsies, with 
particular attention to glomerular features. Being able to 
automate the detection of glomeruli, display each glomerulus 
in 4 stains (hematoxylin and eosin, silver, trichrome, periodic 
acid‑Schiff) simultaneously, and move all 4 screens to the next 
identified glomerulus in a synchronized fashion, might create 
a significant efficiency advantage over standard single slide 
microscopic review. In addition, the ability to directly compare 
staining features simultaneously on each glomerulus, as well as 
the ability to autolocate a high majority (>90%) of all glomeruli 
present in each specimen, could lead to a more accurate final 
interpretation through improved correlation of findings and 
fewer missed glomeruli, respectively.

This report details the processes of developing the simultaneous 
multiplex display for reviewing the images and the machine 
learning methods that were utilized to obtain a model 
for glomerulus localization. Preliminary data on a single 
institution’s slide set show the effectiveness of the models in 
the detection of glomeruli. The best results in this study will be 
used in future projects across multi‑institutional biopsy material 
in order to generalize this model to a broader application.

Methods

This study was approved by the institutional review board 
of the facility from which the biopsy material was derived. 
Medical renal biopsies consisting of hematoxylin and eosin, 
silver, trichrome, and periodic acid‑Schiff stained serial 
sections were collected from a single institution. Cases were 
obtained consecutively with the only limitation being adequate 
numbers of glomeruli being present. No selection process 
based on diagnosis or other glomerular feature criteria was 
used. The biopsies were digitized into WSIs using a Leica 
SCN400 scanner (Leica Biosystems Inc., Buffalo Grove, 
IL, USA) at ×40 magnification (0.25 µm/pixel resolution. 
The WSIs were entered into the Corista Quantum research 
platform (Corista LLC, Concord, MA, USA) where they were 
automatically deidentified. The Quantum platform is a single 
interface which allows users to annotate, train, evaluate and 
utilize machine learning models for use with WSI slide sets. 
The core functionality of Quantum used in this study is broken 
into 5 high‑level user and system tasks: Registration of WSI 
serial sections, manual annotation of features, training of deep 
learning models, classification and evaluation of the trained 
models (comparison to the manual annotations), and observer 
review of the model’s feature‑identifying FOVs.

Image registration
The purpose of registering a pair of WSIs is to be able to 
translate any point on one registered WSI to a corresponding 
point on the other registered WSI. “Corresponding” in this 
context means belonging to the same (or nearly the same) 
physical location in the original 3‑dimensional tissue sample. 
This is accomplished with the use of a spatially distributed 
set of affine transforms covering the entire WSI. The affine 
transform matrices (ATMs) provide a simple mathematical 
way to correlate any point on the first image with a point on 
the second image. A distributed set of ATMs allows for better 
accuracy when finding corresponding points on different parts 
of the images, each distorted in its own unique way.

A multi‑resolution registration algorithm was developed and 
used to provide fine ATMs at different stages.[9] Initially, coarse 
ATMs are calculated for the entire WSI. In actual practice 
one WSI might include several tissue samples (e.g., several 
sections taken from the same block). Such samples may require 
initial alignment which differs from that of the whole WSI, 
as some samples may be in different positions or orientations 
on the slide. In such cases in addition to the coarse ATMs 
for the entire WSI, coarse ATMs for the discrete portions of 
each slide are calculated (e.g., if the WSI consists of the four 
discrete tissue samples (two at the top and two at the bottom 
of the slide), then additional coarse ATMs are calculated for 
the four quadrants of the slide.

In further steps, the image is recursively divided into additional 
subsections of smaller size, generating progressively finer 
ATMs for each subsection based on the previously calculated 
coarser ATMs, until no additional precision can be calculated 
or the greatest amount of subdivision is achieved (e.g., with 
a single coarse whole‑WSI ATM with a 2 × 2 matrix of the 
coarse ATMs for the four tissue samples from the example 
above, the next step is to generate a matrix of 4 × 4 ATMs, then 
8 × 8 ATMs, and so on). ATMs at each step will not always 
be calculated if data is insufficient, such as in the background 
of the slide. Once determined, these local ATMs comprise a 
progressively more precise pyramid of ATM levels, where 
higher precision fine ATMs represent smaller subsections of 
the images.

Initial coarse ATMs describe the alignment of whole images 
generated by the identification of keypoint pairs. Keypoints 
are distinct positions in an image, usually relying on visible 
features such as tissue corners or appendages. In each keypoint 
pair, one keypoint belongs to the first WSI and the second 
keypoint refers to the matching location on the second WSI. For 
example, the keypoint on a tissue fragment in the first stained 
image (such as the edge of the tissue, or a cluster of red blood 
cells) should correspond to the same feature in the second 
image [Figure 1]. For real world WSIs, there are usually more 
than three matching keypoint pairs identified, hence special 
mathematical methods are used to find the ATM that best 
satisfies all keypoint matches. These keypoints are identified 
using a feature detection algorithm. In our study, the oriented 
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FAST and rotated BRIEFn algorithm (ORB) was used to detect 
keypoints, which using these algorithms are tissue “corners” 
such as the joined edges of an angular tissue fragment.[10]

The keypoints are paired using a matching algorithm with an 
evaluation criterion. This algorithm is the Brute‑Force Matcher 
and the evaluation distance is the Hamming distance which is 
a measure of the differences between two feature vectors.[11] 
Next, the keypoint matches are analyzed for consistency using a 
mean‑shift clustering algorithm, with unfit or poorly correlated 
matches removed. This was accomplished by: (1) joining closely 
located keypoints using the Density‑based spatial clustering of 
applications with noise clustering algorithm (DBSCAN) to 
reduce the total number of keypoints and hence lower the 
computational complexity of further steps;[12] (2) creating all 
possible triplets of matches; (3) eliminating triplets composed 
of keypoints located too close to each other; (4) calculating 
candidate ATMs for each of the keypoint triplets; (5) using an 
iterative mean‑shift clustering algorithm to eliminate poorly 
correlated candidate ATMs, which produces an average 
ATM as a center of the largest cluster.[13] In each iteration the 
bandwidth parameter is reduced (thus reducing the size of the 
biggest cluster) until the standard deviation of the coordinate 
translation errors produced by the ATMs in the largest cluster 
reaches a pre‑defined empirical value. Essentially this step 
selects the subset of well‑correlated keypoints and uses only 
those to produce the averaged ATM.

It is possible that some areas of the WSI do not contain any 
detectable features (e.g., white background, missing portions 
of tissue). For these areas, the keypoints cannot be found, 
hence the ATMs cannot be calculated. For such feature‑less 
subsections of the WSI, the local ATMs are computed by 
approximation from the previously computed nearby ATMs, 
including the lower precision ATMs calculated for the larger 
area, or from the entire coarse WSI ATM.

After the coarser ATMs were calculated via the keypoint‑based 
method providing basic alignment of the two WSIs, a 

parametric, intensity‑based registration algorithm was 
applied to bolster the coarse registration’s precision. This 
algorithm compares the pixels of the two images instead of 
finding keypoints, matching up comparable areas based on 
a defined similarity metric and assessing the differences in 
the images in an iterative stochastic optimization process. 
This algorithm requires initial placement of the compared 
areas to be relatively precise, hence the requirement of the 
keypoint WSI registration as a first step. Before intensity‑based 
registration, the second image is warped to fit the first image 
in the registration, producing a new result image. This result 
image can be overlayed on the first image to assess the quality 
of the registration, where greater nonoverlapping area suggests 
a lower quality registration.[14,15]

The keypoints‑ and intensity‑based registrations both may 
repeat on progressively smaller areas of WSIs, with higher 
resolution, as needed to obtain optimal registration. The 
combination of the most precise ATMs for any region blended 
into a single structure creates a field of ATMs which provide 
a continuous and mathematically smooth way of finding 
corresponding locations on several slides.

The registered serial sections of the tissue block are displayed 
in a 4‑panel viewer in which each stain is visualized in its own 
area (quarter panel). Navigation of each panel is synchronized 
for both movement and magnification. The resultant full panel 
display is illustrated in Figure 2.

Glomerulus annotation
Using a freehand or circle/oval annotation tool available in 
the Quantum platform, pathologists outlined each glomerulus 
identified in all 4 stains in each renal biopsy [Figure 3]. Each 
section was annotated by 2 pathologists with truth for the 
study being any annotated structure. Double annotation was 
not required as truth because glomeruli are such distinct 
morphologic structures. The double annotation process was 
to ensure that all glomeruli were captured. A third pathologist 
reviewed all “single‑annotated” structures to ensure that 
they were in fact glomeruli (and all were deemed to be so). 
Any portion of each WSI containing tissue (not background) 

Figure 1: An example of the keypoints portion of image registration. 
Areas of distinct features (e.g., edges, appendages, points) are denoted 
by the asterisks. These features are aligned and allow serial sections to 
be matched and rotated (see green box indicating rotation of the section 
on the right) for simultaneous review

Figure 2: A 4 stain registered panel display. Each panel navigates and 
changes magnification in a linked fashion to allow for examination of each 
glomerulus simultaneously in all 4 stains
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which does not contain an annotation is assigned a default 
classification (“not glomerulus”), which is used as such by 
the system during training.

Training models for feature identification
Using the annotated WSIs, several models were trained to 
detect glomeruli in the tissue sections of each of the 4 stain 
types. For each WSI, the system produces a series of image 
patches (smaller, overlapping segments of each image 
that can more readily be processed by a machine learning 
algorithm) and then assigns each patch a classification based 
on the annotation (i.e., “glomerulus” or “not glomerulus”). 
Performance is influenced by the marking precision of the 
glomerulus annotations, and the specific annotated regions of 
each particular class can be used as a mask to produce accurate 
training patches. During training, the system can augment the 
amount of available training data and patches by modifying and 
reanalyzing the patches via rotation, flipping, scaling, adding 
noise, or blurring. Such maneuvers increase the overall size 
and variety of the dataset used for machine learning training. 
The set of annotated patches is then provided as training data 
to each machine learning algorithm, which then produces a 
model for each algorithm.

During the initial phases of this study, a variety of automatic 
feature generation methods (where the machine learning 
algorithm includes the processing to generate its own features, 
such as with a convolutional neural net [CNN]) operated on 
the raw image data, and other ML algorithms which included 
a preprocessing step were used before employing an ML 
algorithm. These included feature detection such as ORB, color 
normalization and other computer vision algorithms, but they 
did not prove beneficial as pre‑processing steps comparing to 
use of the raw image data fed to CNN. Other methods such as 
background removal (color saturation‑based) and resampling 
of the training patches were found useful and included in the 
overall system data flow.

The best performing algorithm was a CNN derived from 
AlexNet,[16] which is a well‑established, verified, and 

universally applicable CNN model. Other CNNs were 
considered but compared to AlexNet, presented their own set of 
operational “quirks” and usage specifics. In this study AlexNet 
consisted of two or more convolutional layers, pooling layers 
to reduce the dimensionality of the data and prevent overfitting, 
nonlinearity layers (e.g., rectified linear unit [ReLU] layers) 
to increase the nonlinearity properties of the network, dropout 
layers to prevent overfitting, one or more fully connected 
layers, and an output classification layer. The classification 
layer is a softmax classifier with cross‑entropy loss function, 
leveraging stochastic gradient descent with adaptive moment 
estimation as an optimization algorithm.[17,18] Trained CNN 
models were snapshotted and stored for further evaluation and 
determining their performance.

Evaluating new whole slide image slide sets (testing of 
the model)
Testing of the model created by the above process evaluates 
the classification of a new specimen (one not used for 
training). This was performed on 2 batches of slides not used 
for training. One batch (labeled “same”) was from the same 
group temporally as the training set. The other batch (labeled 
“different”) was from the same institution but from a different 
time. Evaluation results in the assignment of a class for each 
identified ROI with a confidence score based on classes used in 
training of the model. The classes are referred to as “default,” 
indicating the absence of glomeruli, and “nondefault” 
indicating the presence of glomeruli. Once the classification 
model had been created on the training data for the CNN, it 
was applied to “test” data. Similar to the training process, 
normalized and otherwise preconditioned image patches were 
supplied to the model. The pipeline selected for the classifier 
accepts patches of a predetermined size as input and results in 
a classification and scoring of each patch based on the classes 
identified during training.

The test WSIs were also annotated for the presence of 
glomeruli and the results of the classification process were 
compared to the annotations to determine accuracy and ROI 
size (calculated as a percentage of the total area of the slide). In 
binary classification (i.e., detection vs. nondetection), in which 
a phenomenon (feature) may be found in an ROI (positive or 
nondefault classification) or absent from an ROI (negative or 
default classification), the results may be evaluated via standard 
metrics such as sensitivity (correct positive percentage) or 
specificity (correct negative percentage).

For the specific task (utilizing multiple stain‑specific WSIs in a 
slide set), the outputs from the various stain‑specific classifiers 
were combined and evaluated using correlation techniques. 
The outputs from multiple input sets and multiple models 
were combined to boost the detection of the features and 
reduce false detections. The output of the classification step 
is a set of regions of interest (ROIs), each of which will have 
a classification and an associated confidence metric (or score).

Results were expected to differ between the four different 
special stains in each case set. The distance between serial 

Figure 3: An example of glomerulus annotation – pathologists circled 
individual structures for the determination of “ground truth” against which 
the convolutional neural net model developed was tested for accuracy 
and precision of detection
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sections could affect localization of an individual glomerulus, 
as could unique tinctorial characteristics of each stain. Hence, 
in our implementation of correlation, classification and scoring 
results were obtained separately from the WSIs of the four 
stains and then combined to give a composite localization 
result. The per‑staining detected feature results were 
thresholded by a confidence score and combined together using 
inter‑WSI registration in order to align the feature locations. 
The results were further filtered by removing spatial locations 
with positive detections on fewer than 3 of individual stain 
WSIs. The remaining positive classification data and scores 
were merged into a score‑heatmap, from which local combined 
score maxima are found, which in turn become the centers of 
newly found ROIs. Classification data may be further used 
after additional filtering to aggregate around the found local 
maxima and create clusters that would define the sizes of the 
newly identified ROIs. With this approach the distance between 
serial sections is less important.

Using the combined classification results from multistain 
WSIs, with enhanced registration of WSI pairs to correlate the 
localities of the positively classified areas results in significant 
improvement of the detection characteristics compared to ROIs 
generated using a single stain WSI [Figure 4].

Results reporting parameters
The sensitivity and a “modified” specificity for the detection 
of glomeruli compared to manual annotation was reported for 
the best model developed (variant of AlexNet). The sensitivity 
indicates how many annotated glomeruli were identified by 
each model (true positive detections); and the “modified” 
specificity indicates how many ROI from each model showed 
no glomeruli (inverse of false positive detections). A classic 
true specificity calculation could not be performed in this 
setting because no ROI were generated for areas not containing 
glomeruli (which would be all nonannotated areas of the 
slide‑which would represent true negative results). Hence 
a “modified” specificity‑like measurement was chosen that 
indicates how many ROI did not contain annotated glomeruli. 
Overall this metric gives an indication of the specificity of 

the model in the detection of annotated glomeruli, although it 
is understood that it is not a true specificity measurement in 
the classic sense. Both sensitivity and “modified” specificity 
metrics were expressed as percent values; the higher the 
value the better is the performance. The FOV average area 
as a percentage of the overall slide size is noted for the best 
model. The area measurement is proportional to the robustness 
of the detection, with smaller FOVs indicating a more robust 
localization.

results

The model was trained on trained on 28 stain sets of 4 slides 
each, making 112 WSIs. The WSIs were preprocessed as 
512,000 training samples with reuse by inverting, rotating, 
and focusing. Evaluation was performed on 6 stain sets of the 
same batch as the original training slide sets, and again on 
7 slide sets from a different batch from the same institution.

For the best CNN model (variant of AlexNet), the sensitivity 
and “modified” specificity for the detection of glomeruli in 
the combined ROIs were 92% and 89%, respectively for the 
same‑batch WSIs, and 90% and 98% for the different‑batch 
WSIs [Table 1]. For the best model the average FOV area was 
0.8% and 1.6% of the total slide area for the same batch and 
different batch cohorts, respectively. These area numbers are 
meaningless when viewed by themselves but form the basis 
for comparisons with other models on other cohorts of slides 
to be tested in the future.

conclusIons

The use of machine learning for glomerulus detection has the 
potential to substantially improve the pathologist experience 
for the examination of medical renal tissue biopsies. In 
addition, when automated localization is combined with 
multiplex display of different stains, with navigation and 
magnification synchronization, both efficiency and accuracy 
might be improved. Automated identification can save time 
and with high detection sensitivity the possibility of missing 
an important glomerulus would be minimized. While high 

Figure 4: In each of the 4 stains on the left, the rectangles are the region of interest identified by the convolutional neural net model. Yellow circles 
represent the manually annotated glomeruli. By strengthening strong and reducing weak signals from the individual stains, a final composite region 
of interest is created as displayed on the H and E stained slide on the right. Note that this process reduces the size of the region of interests that 
encompass annotated glomeruli, indicating a more precise localization of glomeruli
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specificity is important to save review time by minimizing 
the examination of FOVs not containing the sought after 
features, in actual practice this time loss would be minimal 
as trained pathologists would easily dismiss these FOVs as 
not important to their review. The ability to review multiple 
synchronized digital serial sections with different stains 
might further enhances both efficiency and accuracy. The 
equivalent of 4 slides can be reviewed in the time it might 
take to examine a single slide using a standard microscope. 
In addition, the features of each glomerulus could be directly 
compared across all 4 digital stains simultaneously which 
obviates the need to continually switch between analog slides 
and relocate glomeruli for a direct comparison. Accurate and 
rapid review might therefore accrue from such a platform. 
The pathologist experience for accuracy and efficiency was 
not tested in this presentation of system development. The 
results herein show that feature identification and multiplex 
presentation of multiple special stains is possible. Obtaining 
actual performance metrics will be the focus of a future clinical 
study.

In this proof of concept study, preliminary results using deep 
learning to identify glomeruli in all 4 stains of a standard 
medical renal biopsy are reported. Prior studies have also 
sought to use deep learning for the detection of glomeruli. 
Olivier et al. found an approximately 90% precision for 
detection of glomeruli in PAS stains from 8 human biopsies 
from a single institution. Bukowy et al., using renal biopsies 
from rats found a 97% accuracy in detecting glomeruli, 
again using a PAS stain only.[19] Kannan et al. found a 93% 
accuracy for detection of glomeruli in cropped digital images 
of trichrome stains in human renal biopsies.[20] Hermson et al. 
using 40 PAS‑stained transplant and nephrectomy specimens 
was able to identify 92% of manually annotated glomeruli 
with a false positive rate of 10%.[21] In the present study, the 
extension of this prior work to a practical application of all 
4 stains in a human renal biopsy makes this a prototypical 
example of results which might be expected in a real‑world 
setting. Using a deep learning approach applied to all 4 stains 
simultaneously with combination of the detection signals 
into a final composite FOV ROI allows CNN “errors” to be 
reduced by eliminating weak probability areas that might 
occur on one (but not other) stains, and strengthening areas 
of high probability that occur in more than one of the stains. 

Ninety percent accuracy might be considered a lower limit 
for a clinically usable device, but further training of the CNN 
model with additional 4 stain sets should improve the accuracy 
going forward. The addition of the synchronized display adds 
significant practical utility to this system. Although this is a 
limited study on a small number of cases, the concept appears 
sound and the results were encouraging.

Models that use training slide sets from a single institution risk 
not having the ability to generalize the findings when slides 
from other institutions are run through the system. Significant 
differences in tissue processing, preparation, and staining are 
expected to be present between institutions and as such results 
would be expected to degrade without training on slides having 
those different features. A hint of this difference can be gleaned 
from the difference in the “same” and “different” batch results 
from the present study. Sensitivity degrades slightly (92%–
90%) and average ROI size increases by 100% (0.8%–1.6%), 
meaning that the precision of the detection degrades. This 
may be the result of changes in slide preparation and staining 
that might have occurred at that institution between the time 
of collection of the “same” and “different” batches of slides.

The extension of the present study will test potential 
inter‑institutional differences further by adding slides from 
several centers to the training and validation sets with retraining 
and testing of the resultant cross‑institutional model. When 
accurate glomerulus detection is well‑established, further 
investigation into pathologic classification of glomerular 
abnormalities by deep learning will become the ultimate goal.

The utility of digital pathology is growing as more institutions 
acquire the technology and infrastructure to digitize their slide 
base and experience is gained in pathologist interpretation 
from digital viewing stations. However, adoption remains 
slow because the cost of equipment and the practical value 
to users is still limited. Applications in training, continuing 
education, and teleconsultation are growing in value, but 
day to day primary interpretation still lags behind standard 
microscopy for efficiency, despite being shown to be as 
accurate.[22,23] The addition of machine learning for autolocation 
of features and ultimately interpretation will greatly increase 
the value of digital pathology for primary users. Along with 
this development of innovative workflow changes, such as 
the synchronized multiplex display reported herein, digital 

Table 1: The sensitivity and “modified” specificity for detection of glomeruli and the average size of the regions of 
interest identified for the best convolutional neural net model

Sensitivity for detection of 
annotated glomeruli (TP/TP + FN)

“Modified” specificity for detection of 
annotated glomeruli (1 − FP/[TP + FP])

Average ROI area (as a measure 
of the total slide area), %

Same‑batch
6 stain sets, 24 WSIs

92% (192/192+16) 89% (1−24/[192+24]) 0.8

Different‑batch
7 stain sets, 28 WSIs

90% (236/236+25) 98% (1−4/[236+4]) 1.6

ROI: Region of interest, TP: Generated ROI containing an annotated glomerulus, FN: Annotated glomerulus without a generated ROI, FP: Generated ROI 
not containing an annotated glomerulus, TN: Cannot be calculated for this study because no ROI were generated for “not‑annotated as glomerulus” areas, 
WSIs: Whole slide images
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pathology has the potential to greatly increase the value 
proposition for users. When such advancements play out, 
digital pathology should move into the mainstream of the 
pathologist’s daily work.
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