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Introduction
 
Alzheimer disease (AD) is a devastating age-related neu-
rodegenerative disorder, and the most frequent cause of 
senile dementia.1 The appearance of cognitive decline is 
associated with accumulation of misfolded proteins, as 
well as the presence of several additional toxic agents.2 
Among the common neuropathological features found in 
AD are synaptic and neuronal loss, intracellular neuro-
fibrillary tangles, elevated levels of the toxic form of am-
yloid beta (Aβ),1-42 and the accumulation of extracellular 
senile plaques containing misfolded Aβ peptide.2-4 Local 
inflammatory responses as well as uncontrolled astrocyte 
reactivity are often observed in the brains of AD patients 
and in animal models; these processes are not necessar-
ily the primary causes of the disease, but are considered 
to be key factors in disease progression and escalation.5-7 
The accumulated misfolded proteins and the neuroin-
flammatory response have led to numerous attempts 
over the years to arrest disease progression, either using  
treatments that are directed against the misfolded  
proteins to arrest plaque burden,8,9 or using systemic anti- 

inflammatory drugs to arrest the brain inflammation.  
Inconsistent and even conflicting results were obtained, 
and none of the drugs tested thus far have proven effec-
tive in reversing or arresting cognitive loss in patients.10-16 

The failure of treatments directed at Aβ to arrest or  
reverse cognitive loss could reflect the fact that by the time 
Aβ plaque burden is high, removal of plaques, while still 
important, may be insufficient to modify disease because 
numerous collateral disease-escalating factors enter into 
a vicious cycle and continue even after the plaques are  
removed. Such factors might include immune-related 
molecules and cells. In apparent support of such a view 
are, recent results demonstrating that resolution of inflam-
mation is an active mechanism mediated by recruitment 
of circulating immune cells to sites of brain pathology.17-19 

Here, we will discuss the role of brain immune commu-
nication in brain homeostasis and repair. In addition, we 
will discuss if and how activating the immune system by 
immune checkpoint blockade can contribute to disease 
modification.

Author affiliations: Department of Neurobiology, Weizmann Institute of Science, 7610001 Rehovot, Israel. Address for correspondence: Michal Schwartz, Department 
of Neurobiology, Weizmann Institute of Science, 7610001 Rehovot, Israel. (email: michal.schwartz@weizmann.ac.il)  

Potential immunotherapy for Alzheimer 
disease and age-related dementia 
Michal Schwartz, PhD; Michal Arad, PhD; Hila Ben-Yehuda, PhD

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the 
ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than  
suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without  
directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orches-
trating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade 
directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this 
disease using a regimen that will address the needs to combat AD.
© 2019, AICH – Servier Group Dialogues Clin Neurosci. 2019;21:21-25

Keywords: Alzheimer disease; immune checkpoint; immunotherapy; macrophage; microglia

C
op

yr
ig

ht
 ©

 2
01

9 
A

IC
H

 –
 S

er
vi

er
 G

ro
up

. A
ll 

rig
ht

s r
es

er
ve

d.
 w

w
w.

di
al

og
ue

s-
cn

s.o
rg



22 • DIALOGUES IN CLINICAL NEUROSCIENCE • Vol 21 • No. 1 • 2019

Original article
Alzheimer disease immunotherapy - Schwartz et al

Systemic leukocytes are essential players  
in central nervous system repair

For decades, it was commonly assumed that the brain is 
unable to tolerate immune cell entry, mainly due to the be-
lief that it is a tissue behind barriers, and considered an 
immune privileged site.20 In animal models of acute central 
nervous system (CNS) injuries, both monocyte-derived 
macrophages and CD4+ T cells recognizing brain antigens, 
are needed for coping with and helping heal parenchymal 
damage.21-28 Moreover, T cells present in the periphery 
facilitate recruitment of monocyte-derived macrophages 
to the CNS. Such macrophages play a role in supporting 
neuronal survival and axonal regrowth, by resolving the 
local inflammatory response and facilitat-
ing local scar removal.25-27,29-32 Additional 
studies revealed that systemic T cells not 
only participate in CNS repair, but are also 
needed for life-long brain plasticity.33-35 

Independent attempts were made to un-
derstand how T cells support healthy 
brain plasticity while they are excluded 
from the brain parenchyma, how they 
facilitate recruitment of monocyte- 
derived macrophages, and how such 
monocytes can gain access to the CNS 
without breaching the blood-brain-barrier (BBB). Such 
attempts have suggested that the brain’s barriers, includ-
ing the meningeal barrier36,37 and the blood-cerebrospinal 
fluid barrier (BCSFB) can serve as a key compartment 
for immune-brain crosstalk in health and disease.19,38,39 
The BCSFB, which is comprised of the tightly connected  
choroid plexus (CP) epithelial cells,40-43 along with the 
accumulated evidence that immune cells are needed for 
brain maintenance and repair, led us to suggest that the 
CP is a physiological gateway that enables selective im-
mune cell access, depending on the needs of the CNS.19,38 

The paradoxical fate of the “leukocyte gate”  
to the brain in Alzheimer disease models

Several independent studies in animal models have shown 
that recruitment of circulating monocyte-derived macro-
phages,44-52 possibly together with additional immunoreg-
ulatory leukocytes, can modify AD pathology.31,53,54 Such 
cells can help remove misfolded protein including Aβ-

plaques,48,55,56 balance the local inflammatory milieu,46,47,57 
reduce gliosis,58 and protect synaptic structures.46,57,59 

Analyzing the fate of the CP with respect to its ability 
to support leukocyte trafficking revealed that its activity 
is impaired in animal models of brain aging and AD.60,61 
It was further discovered that reducing systemic immune 
suppression in AD animal models, by transiently deplet-
ing peripheral Foxp3+ regulatory T cells has a beneficial 
effect in mitigating disease pathology.62 These results are 
consistent with an independent observation, showing that 
the adaptive immune system plays an important role in 
the progression of AD in animal models. For example, it 
was demonstrated that genetic ablation of B, T, and natu-

ral killer cells in the 5xFAD mouse mod-
el by crossing these mice with Rag2/Il2rc 
double knockout animals (Rag-5xFAD), 
resulted in increased plaque load and  
increased soluble Aβ levels.63 

Importantly, immunoregulatory T cells 
and anti-inflammatory cells are needed in 
the brain as a source of anti-inflammatory 
cytokines for reducing the inflammatory 
response. Homing of such immunomodu-
lating cells requires well-controlled boost-
ing, rather than suppression of systemic 

immunity. Accordingly, special care must be taken when 
viewing immunosuppressive cells (such as FoxP3) as  
uniformly beneficial or harmful in neurodegenerative dis-
eases, without considering their localization and kinetics.

Taken together, the results summarized above created 
the basis for our approach of empowering the systemic 
immune system, by transiently blocking inhibitory im-
mune checkpoints, to drive a cascade of immune events 
that starts outside the brain, induces activation of the 
CP, and culminates in immune-dependent brain repair  
processes.61,64 

Immune checkpoint blockade for mitigating  
Alzheimer disease pathology

Inhibitory immune checkpoints restrain the activity 
of memory T cells, mainly those directed against self- 
compounds, to avoid autoimmune diseases. Among such 
checkpoints are the programmed cell death protein 1  
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(PD-1), a member of the B7-CD28 family, expressed by 
a variety of activated effector memory immune cells, in-
cluding CD4+ T cells.65 The PD-1 ligand is expressed by 
dendritic cells and regulatory T cells,66 as well as by non-
immune cells such as endothelial and epithelial cells,67,68 
and astrocytes.66 The interaction between PD-1 and 
PD-L1 suppresses memory T-cell responses, including  
proliferation, and cytokine production.65,69 Blocking the 
PD-L1/PD-1 pathway potentially results in an increase 
in T cell activation.70-72 Based on our new understanding, 
we envisioned that targeting systemic PD-1/PD-L1 might 
be a way to activate such a protective/reparative immune 
response. 

Our studies using anti-PD-1 or anti-PD-L1 antibody in 
the 5xFAD mouse model of AD, as well as in a dementia 
model of tau pathology, revealed that such treatments are 
effective in helping and even reversing cognitive impair-
ments and reducing disease pathology. This process was 
associated with monocyte-derived macrophages homing to 
the brain.61,62 These macrophages locally express numer-
ous molecules including scavenger receptors for removal 
of dead cells as well as misfolded or aggregated proteins, 
anti-inflammatory cytokines, and growth factors.61,64 

Importantly, a single injection of antibody directed ag-
ainst either PD-1 or PD-L1 initiated a chain of events that 
started outside the brain, and led to alterations in several 
processes within the brain that together resulted in dis-
ease modification.64 

Notably, in most mouse models of AD, disease symptoms 
begin earlier in females than in males. In humans there 
is no clear scientific consensus regarding gender differ-
ences in AD, though most studies have shown that men 
and women exhibit differences in the development and 
progression of the disease.73 Generally, women are con-
sidered at greater risk and show more rapid progression.74 
Notably, both female and male mice of tau-driven models 

of dementia and amyloid β-driven pathology similarly re-
sponded to treatment with immune checkpoint blockade 
directed to PD-1 or PD-L1.64 

Conclusion

In conclusion, results from animal studies suggest that 
treatment with PD-1/PD-L1 blockade evokes a series of 
immunological events that start outside the brain, and, 
in synergy with inflammatory signals emerging from the 
diseased brain, restore the immunological communication 
between the brain and the immune system.75 The result-
ing modification of the immunological milieu of the brain 
culminates in reduction of cognitive deficits and disease 
pathological manifestations. The treatment protocol  
going forward to clinical trials will require intermittent 
administration of the antibody. Such a protocol is like-
ly to reduce adverse immunological effects. Moreover, 
since the treatment is not directed against a single factor 
within the brain that contributes to disease escalation, but 
rather affects common immunological pathways, it is ex-
pected to have a higher efficacy than past attempts, and 
to overcome disease heterogeneity and some translational 
obstacles. 
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