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Treatment of patients with glioblastoma multiforme (GBM) remains to be a challenge with a median survival of 14.6 months
following diagnosis. Standard treatment options include surgery, radiation therapy, and systemic chemotherapy with
temozolomide. Despite the fact that the brain constitutes an immunoprivileged site, recent observations after immunotherapies
with lysate from autologous tumor cells pulsed on dendritic cells (DCs), peptides, protein, messenger RNA, and cytokines suggest
an immunological and even clinical response from immunotherapies. Given this plethora of immunomodulatory therapies, this
paper gives a structure overview of the state-of-the art in the field. Particular emphasis was also put on immunogenic antigens as
potential targets for a more specific stimulation of the immune system against GBM.

1. Introduction

The primary brain tumor, glioblastoma multiforme (GBM),
occurs in 3 to 4 adult patients per 100,000 inhabitants in
Europe, thus being the most common and life threatening
primary brain tumor [1]. GBM is invasive and infiltrates the
surrounding brain tissue.

GBM is most common in adults older than 50 years and
affects more men than women. Furthermore, around 9%
of childhood brain tumors are GBMs. The median survival
from the time of diagnosis without any treatment is 3
months. The major prognostic factors are age and Karnofsky
performance status (KPS) at the time of diagnosis [2].

2. Standard Treatment of Glioblastoma (GBM)

2.1. Primary Treatment. Although GBM has a typical ap-
pearance in MRI, histological diagnosis is mandatory for
proper diagnosis. A treatment option is gross tumor resec-
tion (GTR), which involves the contrast enhancing tumor
in to the MRI without causing additional neurological defi-
cit [3]. The extent of resection can be optimized using flu-
orescence-guided resection [4], which probably includes

noncontrast enhancing tumor part and can be visualized
by aminoacid positron emission tomography [5]. Placing
carmustine-loaded wafers in the resection cavity has shown
to prolong survival rates [6]. However, the clinical benefit
seems to be limited to patients with GTR and good KPS [7]. If
GTR cannot be achieved and the tumor mass does not cause
a midline shift, stereotactic serial biopsy is a safe procedure
to enable histological and genetic diagnosis [8–10].

Following surgery, a typical treatment consists of con-
comitant temozolomide and 60 Gy radiotherapy of the tu-
mor region for six weeks followed by 6 adjuvant cycles of
temozolomide [11, 12]. After applying this treatment, tu-
mors with methylated promotor for O(6)-methyl-guanine
DNA methyltransferase (MGMT) appear to have a favorable
clinical course with a median overall survival of 21.7 months
[13].

Although long-term adjuvant temozolomide is safe [14],
there is no evidence that the continuation of temozolomide
beyond six cycles gives any additional benefit.

2.2. Recurrent GBM. In recurrent GBM, surgery is an op-
tional treatment. However, there is no evidence for the clin-
ical benefit of second surgery. According to retrospective
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studies, a second resection should be restricted to patients
with good KPS and feasible systemic salvage treatment [15,
16]. Alternatively, conformal reirradiation may be admin-
istrable [17, 18].

For systemic treatment of recurrent glioblastoma, beva-
cizumab is FDA approved but only with class 2 evidence [19–
22]. In Europe, bevacizumab remains off-label treatment for
glioblastoma patients. Rechallenge with TMZ is an alter-
native to bevacizumab. Thereby, protocols vary from dose-
intensified treatment to metronomic schedules [23–26].
However, there are no positive randomized controlled trials
defining a standard treatment in recurrent glioblastoma.
However, salvage treatment should be applied as long as the
patient’s condition has not declined [27].

Due to the limited treatment options for GBM patients,
there is a fervent need for novel therapies such as immuno-
therapies. However, the brain is known as one of the im-
munologically privileged sites and is able to tolerate the
introduction of antigen without eliciting an inflammatory
immune response [28]. Thus, immunotherapy for brain tu-
mor seems to constitute a “mission impossible.” Fortunately,
it is now known that the central nervous system at least
maintains a reciprocal communication network with the
immune system. Infectious or experimental autoimmune
encephalomyelitis animal models allow us to understand bet-
ter how the immune system operates in the brain [29].
Therefore, immunotherapy offers the opportunity to allow
the patient’s immune system a chance to eliminate the tu-
mor. The strength of immunotherapy with DCs has been
demonstrated on the Food and Drug Administration (FDA)
approval of DCs as “Provenge” for prostate cancer [30]. As
for GBM, it has been demonstrated that it efficiently treats
relatively small tumors in experimental animal models.

This paper focuses on the cellular-based immunotherapy
for brain cancers with emphasis on GBM. We will also high-
light some of the possible directions that may be taken in the
immediate future to improve this therapeutic option.

3. Immunotherapy

There are two important basic strategies for immunothera-
py. Firstly, adoptive immunotherapy, which means the pas-
sive administration of sensitized immune cells to patients.
Secondly, the strategy of “active immunotherapy” is based
on the boosting of antitumor T-cell responses by antigen-
presenting cells (APCs), especially by dendritic cells (DCs).

3.1. Adoptive Immunotherapy. In adoptive immunotherapy,
in vitro activated immune cells are administered to tumor-
bearing patients. Lymphokine-activated killer (LAK) cells,
which were generally obtained by cultivating peripheral lym-
phocytes in the presence of T-cell growth factor interleukin-
2 (IL-2) and other cytokines. These LAKs showed cytolytic
properties but not specifically against tumor cells [31–42].
A novel therapeutic option was to collect lymphocytes
from lymph nodes or peripheral blood mononuclear cells
(PBMCs) after peripheral injection of irradiated autologous
tumor cells and granulocyte-macrophage colony-stimulating

factor (GM-CSF), stimulating them in vitro, and subsequent-
ly reinjecting them [43–47]. Allogeneic cytotoxic T lympho-
cytes (CTLs) stimulated by the patient’s autologous lym-
phocytes have been tested for recurrent GBM as well [48].
They were generated by ex vivo antigenic stimulation of
PBMCs. As Quattrocchi et al. have shown in a pilot stud-
y, CTLs can also be amplificated from tumor-infiltrating
lymphocytes (TILs) in the presence of IL-2 [49].

Injection of CTLs or TILs appeared to allow higher objec-
tive responses compared to LAKs in some GBM patients.
Due to the large variability observed between patients and
the limited number of patients, the correlation between the
number of effector cells, their cytotoxic activity, and the
clinical outcome is still not clear. Kronik et al. have pre-
dicted that GBM would be eradicated by new dose-intensive
strategies, for instance, 3 × 108 CTLs every 4 days for small
tumor burden or 2 × 109 CTLs infused every 5 days for
larger tumor burden [50]. Interestingly, in several clinical
trials with LAK and CTL therapy, the eosinophilic infiltration
at the tumor site and in cerebrospinal fluid (CSF) could
be observed [38, 40, 48, 49]. The impact of chemotherapy
or corticosteroids on the efficacy of the treatment might
also be questioned. These drugs were completely avoided in
some trials according to their immunosuppressive properties
[31, 39, 41, 42]; however, other studies have shown no
influence of steroids or chemotherapy on the stimulation and
the cytotoxic activity of the effector cells [32, 34, 35].

Progress in the treatment of brain tumors using immu-
notherapy is slowly moving forward. Initial attempts used
nonspecific approaches, like adjuvants and, LAK cells were
only minimally effective. Nowadays, the general focus is
directed towards specific cellular approaches including TILs
and CTLs, and alloreactive CTL stimulated by mixed lym-
phocyte reactions. All of these approaches have yielded some
clinical success. GBM cells seem to have a plethora of tumor-
associated antigens. Active immunization with autologous
DCs that have been loaded with tumorantigens also appear to
generate long-term survivors. Identification of other strate-
gies that can be combined with immunotherapy approaches
might improve our success against GBM.

3.2. Active Immunotherapy

3.2.1. Active Immunotherapy in GBM Using Autologous Tumor
Cells (ATCs). Autologous tumor cells are removed from
patients during surgery. Whole cells, parts of cells, or anti-
gens can be used to create a vaccine to a specific tumor.
To date, there are at least eight high qualified trials, which
focused on the GBM treatment were reported [51–58]. One
phase I clinical trial [58], two cases report [51, 54], and
five pilot studies of antitumor vaccination [52, 53, 55–57]
were included, and the vaccination was repeated in all of
these studies. ATCs are generally inactivated by radiation,
sometimes genetically modified [51, 54, 56], and could be
infected with a virus [52, 55] to enhance the immune re-
sponse. The strategy of using antisense oligonucleotides for
insulin growth factor receptor 1 for ATCs prior to implan-
tation was applied in one pilot study [53]. The cells were
injected either subcutaneously or intradermally. In three
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Figure 1: DC-based active immunotherapy for GBM. DCs display a unique capacity to induce and to maintain T-cell responses. Mature
DCs are generated from PBMC in vitro in the presence of IL-4, GM-CSF, TNF-alpha, IL-1beta, PGE2, IFN-gamma, and other cytokines,
in addition to TLR agonists. Subsequently, they are loaded with GBM or glioblastoma stem cell lysates, GBM-associated antigen-derived
peptides, protein, or RNA. Due to their high surface expression of HLA-peptide-complexes and costimulatory molecules, DCs could
efficiently activate and expand CD8+ CTLs and CD4+ Th cells. CD8+ CTLs are able to recognize and eliminate tumor cells, especially
the GBM stem cells (CD133). CD4+ Th cells enhance the capacity of DCs to induce CTLs by the interaction between CD40 on DCs and
CD40 ligand on activated CD4+ T cells. In addition, CD4+ T cells help in the maintenance and expansion of CTLs by secreting IL-2. CTLs:
cytotoxic T cells; imDC: immature dendritic cells; GZMB: granzyme B; GSCs: glioblastoma stem cells, HLA: human leukocyte antigen; IL:
interleukin; IFN: interferon; mDC: mature dendritic cells; PBMC: peripheral blood mononuclear cells; TCR: T-cell receptor; Th: T helper
cell; TLR: toll-like receptor.

studies, injections of ATCs were given concomitantly with
IL-2 [51], IL-4 [54] or B7-2, and GM-CSF infusions [56].
Different amounts of cells were given for vaccination.

At least half of the patients in these studies showed an
induction of immune responses both in peripheral blood and
tumor site [53, 55]. Toxicity was addressed in all trials with-
out any severe adverse events. Beside an immune response,
a clinical response was demonstrated to be associated with
survival benefit in five studies with three complete responses
(CRs), four partial responses (PRs), two minor responses
(MRs), and six stable diseases (SDs) in a total of 48 GBM
patients [53–55, 57, 58].

3.2.2. Active Immunotherapy Using Dendritic Cells. Dendritic
cells (DCs) are professional antigen-presenting cells (APCs),
which play a key role in eliciting, maintaining, and regulating
T-cell responses [59, 60]. DCs are present in almost all

organs, even in immune-privileged sites such as the central
nervous system, testis, and ovaries. DCs can be generated
not only from lymphoid organs but also from the blood or
lymph. DC vaccines are attractive and now widely used in
GBM active immunotherapy based on their various anti-
tumor effects (Figure 1).

In Table 1, we summarized 15 clinical trials reported so
far including 316 patients [61–75]: eight phase I trials [62,
64, 65, 69–72, 75], six phase I/II trials [61, 63, 66, 68, 73, 74],
and one phase II trial [67]. Monocyte-derived DCs were
used for most of the clinical trials. The preparation of DC
is now well established, and a sufficient number of DC can
be generated for injections into patients [76, 77]. Immature
DCs were widely used in older trials [67, 69, 70, 74, 75];
however, some trials have used maturation factors like TNF-
alpha [71], toll-like receptor (TLR) agonists: penicillin-killed
streptococcus pyogenes (OK-432) [68] and imiquimod [62,
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64], TLR ligand: poly ICLC [61, 62], IFN-gamma and TNF-
alpha in combination with IL-4-secreting fibroblasts [78].
In several trials, DCs were matured using cocktails with IL-
1beta, TNF-alpha, PGE2, or IFN-gamma [7, 63, 64, 74].
The number of DCs injected ranged from 1 × 106 to 1 ×
1010. The frequency of the injections was highly variable.
One phase I study focused on the dose of DCs, which did
not result in any dose-limiting toxicity [69]. The sources
of antigen were quite different: autologous tumor lysates,
apoptotic glioma cells peptides eluded from ATCs, synthetic
peptides, defined peptides, mRNA derived from ATCs, and
irradiated single-cell suspension of ATCs. For vaccinations
using ATCs, the ATCs were fused [71] or incubated with DC.
Defined peptides were derived from EGFRvIII, the particular
target as its frequent expression in GBM [65, 79]. Vaccines
were injected intradermally, intranodally, or subcutaneously.
Moreover, in one phase I/II trial, some patients even received
intratumoral injections [74].

From all of these clinical studies, only one patient had
a large residual tumor and a perilesional edema suffered
grade IV neurotoxicity (stupor) [68]. A peripheral immune
response such as DTH (delayed-type hypersensitivity) lym-
phocyte infiltrations, particularly CD8+ cells, can be ob-
served in more than half of patients. Activated CD8+ CTLs
efficiently recognize and destroy tumor cells, which expose
peptides derived from tumor-associated antigens (TAAs)
in human leukocyte antigen (HLA) class I molecules [80].
CD4+ T cells recognizing peptides in the complex of HLA
class II molecules also play an important role in antitumor
immunity [81]. CD4+ T cells improve the capacity of DCs
to induce CTLs by the interaction between CD40 on DCs
and CD40 ligand on activated CD4+ T cells. In addition,
CD4+ T cells help to maintain and expand CTLs by secret-
ing cytokines such as IL-2. Beside their extraordinary ca-
pacity to elicit T-cell responses, DCs efficiently improve the
immunomodulatory and cytotoxic potential of natural killer
cells, which are also involved in the elimination of tumor
[82, 83]. Furthermore, DCs can also directly mediate tumor-
directed cytotoxicity [84].

Almost fifteen studies have reported on a survival benefit
of patients receiving immunotherapies when compared with
historical cohorts [61–70, 73–75]. Liau et al. [69] vaccinated
four patients showing an increase of intratumoral infiltration
by lymphocytes after vaccination at a time when the tumor
was minimal. T-cell infiltration correlated with a decrease
in intratumoral TGF-beta and was associated with a better
survival. Patients without T-cell infiltration showed a reverse
effect. Combined intravenous and intracranial administra-
tion of ATCs gave a superior response when compared to
intravenous injection only [68]. Wheeler et al. reported
on the large cohort of 34 GBM patients demonstrating
that responders had an increase of IFN-gamma after vac-
cination when compared with the IFN-gamma level before
vaccination using in vitro PBMC stimulation. Moreover,
responders to vaccination showed a better response to
chemotherapy which was delivered in a second phase [67].
Recent phase I and phase I/II studies with 10 newly diagnosed
GBM and 13 recurrent GBM, vaccinated intranodally with
autologous tumor lysate pulsed on DCs after radiation

and chemotherapy or synthetic peptides for GAA epitopes
showed a good immune response and a prolonged survival
[61, 85].

As a consequence, active immunotherapy appears to have
a beneficial effect in some patients, particularly in those with
a limited tumor, without causing major toxicity. Both clinical
trials using ATCs and DC demonstrate induced immune
responses (DTH reaction, tumor infiltration, and/or anti-
tumor responses of PBMC) and some clinical responses.
The important take-home message for DC vaccination is
that no dose-related toxicity has been demonstrated [69].
In addition, it seems better to use mature DC compared to
immature DC. Due to the large variability of protocols tested,
the source of ATCs, and the type and the cell number of DC
injected, the type of adjuvants, no proven approach can be
presented so far.

Various antigen sources can be used for DC active im-
munotherapy. Peptides are very popular; however, loading
DCs with peptides requires a large culture of autologous
tumor cells, which is a complex process. To break this limita-
tion, some trials load DCs with tumor lysate instead of eluted
peptides. Yu et al. [75] found T-cell-mediated cytotoxicity in
60% of the patients after immunization with tumor lysate-
loaded DCs, a success rate higher than the 40% value seen
with eluted peptides by the same team [70]. In another
phase I/II trial, 24 patients with recurrent malignant gliomas
were treated with intradermal or intratumoral (Ommaya
reservoir) injections of DCs loaded with tumor lysate. Some
patients also received intratumoral injections. One PR and
three MR were observed [68]. A novel development in cancer
vaccines consists of fusing tumor cells with DCs, a strategy
that has been associated with clinical responses in patients
with glioma [71].

3.2.3. Antigens for GBM Immunotherapy

(1) Glioblastoma-Associated Antigens (GAAs). Recently,
many efforts have been made to identify tumor-associated
proteins as targets of tumor-reactive T cells and to define
peptide motifs within these proteins constituting T-cell epit-
opes. In this paper, we focus on glioblastoma-associated
antigens (GAAs), which have already been used for DC-
based vaccination trials enrolling GBM patients. GAAs
such as EGFRvIII, EphA2, GP100, HER2, MAGE-1, IL-
13Rα2, SOX11, and TRP2 [86–89], which were frequently
overexpressed in GBMs, were able to initiate immune re-
sponses. Other antigens associated with GBM have been
described including survivin, WT1, SOX2, AIM2, SART1,
SART2, and SART3 [90]. T cells directed against IL-13Rα2
and EphA2 have been demonstrated in the PBMCs of a long
surviving patient with anaplastic astrocytoma, showing that
a spontaneous immune reaction can be observed in high-
grade glioma [91]. Many glioblastoma-associated antigens
were identified within either glioblastoma cell lines or GBM
cells, such as ART and SART [92]. “Cancer-testis antigens”
are differentially expressed in testis and tumors including
MAGE-1, GAGE-1, and NY-ESO-1. These antigens were
found in terminally differentiated melanocytes and also in
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Figure 2: Adoptive immunotherapy for GBM patients with CMV or GAA peptides. CMV and GAAs are highly expressed in GBM, but
neither in healthy brain tissue, nor in nonmalignant brain tumors. Therefore, GAAs constitute good targets for immunotherapy of GBM
patients. The streptamer technology offers the advantage of selecting CMV- or GAA-specific CD8+ CTLs at the good manufacturing practice
(GMP) level in vitro. PBMCs from healthy donors are collected and isolated by streptamer beads. Noninduced antigen-specific T cells are
purified and accumulated through a magnetic field and released by D-biotin from the streptamer complex. Subsequently, these cells are
administered to the GBM patient. CMV/GAA-specific cytotoxic T cells can recognize the target antigens which are presented on the surface
of GBM cells or GSCs. Cytotoxicity is exerted directly through the Fas or perforin pathway and/or indirectly by the release of cytokines.
CMV: cytomegalovirus; GAA: glioblastoma associated antigen; GBM: glioblastoma multiforme; GSCs: glioblastoma stem cells; HD: healthy
donor; PBMC: peripheral blood mononuclear cells; Pt: patient.

GBMs [93–95]. TRP-1 and TRP-2 were not found in the testis
but were detected in normal cells like melanocytes as well
transformed tissues like melanomas and glioblastomas [89].
Since melanoma and glioblastoma cells share a common
embryonic neuroectoderm precursor, it is not that surprising
that these two cancer types share many common antigens.
Here, we summarized the key GAAs in Table 2 [79, 89–123].

(2) Viral Antigens. Viral antigens act as good targets for anti-
infectious immunity. Moreover, many viruses such as HTLV-
1, hepatitis B and C virus, and EBV/JCV play a critical role
in several human cancers as well. Cytomegalovirus (CMV,
a common, typically harmless herpes virus) is frequently
detected within chronically immunosuppressed patients. It is
thought that up to 90% of the population might be chroni-
cally infected with CMV. However, our immune system keeps
them under tight control. GBM patients are considered to be
immunosuppressed through many mechanisms [124]. So the
CMV can revive whenever the immune system is impaired.
In 2002, Dr. Cobbs et al. [125] linked CMV with human
GBM. They analyzed GBM samples from 22 patients and

found that all of them harbored CMV. 80% people have
this virus, which remains in the body for remaining lifespan.
Whether CMV directly causes GBM is still a hot topic and
is also controversial. The possibility that CMV attaches itself
to GBM via the platelet-derived growth factor alpha allows
some interesting therapies to be explored. One CMV antigen,
pp65, induced a HLA-A2 restricted immune response in a
GBM patient [126]. Freshly isolated GBM samples seem to
highly express this CMVpp65 antigen, but cell lines lose this
ability [127]. If a high number of GBM cells harbor CMV
or express CMV antigen in vivo, this might open the door
towards developing CMV peptides to vaccinate against the
virus and the tumor at the same time (Figure 2). Currently,
after learning about Dr. Cobbs’s work, Dr. Mitchell and his
colleagues first confirmed the basic findings. They discovered
CMV in the tumors of more than 90% of those patients with
GBM, but not in healthy brain tissue nor in nonmalignant
brain tumors [127]. Then used DC-based vaccines-targeting
CMV antigens to treat 21 patients who had been diagnosed
with GBM. Allogeneic CMV-specific CTLs have been used
for treating glioma patients by the research group from
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Pennsylvania State University [128, 129]. Yao et al. [130] and
Schmitt et al. [131] showed that the streptamer technology
offered the advantage of selecting CMVpp65-specific CD8+

CTLs at the good manufacturing practice level in vitro. This
strategy might then be used for adoptive immunotherapy for
GBM patients in the future (Figure 2). CMV-specific T cells
might constitute a key of the useful immunological tool to
attack GBM.

3.3. Role of Regulatory T Cells and Th17 Cells in Immunother-
apy. CD4+ regulatory T cells (Tregs) play a key role in main-
taining immune homeostasis. They have been well charac-
terized as a distinct subpopulation of T cells due to the iden-
tification of the forkhead box transcription factor 3 (Foxp3)
as an essential transcription factor in Tregs [132]. The inves-
tigation of Treg in brain tumor has blossomed in the last
five years. The CD4+, CD25+ (IL-2Rα+), and Foxp3+ Tregs
were most frequently found in GBM but very rarely in low-
grade astrocytomas and were not present in normal brain
tissue. Treg infiltration differed significantly in the brain
tumor according to lineage, pathology, and grade. Under the
microenvironmental conditions in the GBM patients, Tregs
work in several ways to inhibit the effect of T-cell response
and act as immune suppressors [133–135]. This might cause
the failure of elimination of GBM with glioblastoma infiltrat-
ing lymphocytes in clinical trials. Options to eliminate Treg
function will likely improve clinical results in future trials.
Daclizumab is an approved antibody against IL-2R, which
can be used for Treg elimination. Tregs share a common
early-stage pathway with another type of CD4+ IL-17A+ T-
helper cell, called Th17 cells [136, 137]. Naive T cells upon
exposure to antigen and TGF-beta can generate mouse Th17
cells, but not human Th17 cells. For generating Th17 cells,
the presence of IL-6 is required. Both cytokines are produced
by GBMs. In a melanoma-bearing mouse model, Th17 cells
could be used to clear large-established tumor cells [138].
To date, the presence of Th17 cells was confirmed in both
human and mouse glioma as well [139], but their beneficial
or inhibitory actions have not been fully understood.

3.4. Myeloid-Derived Suppressor Cells (MDSCs). GBM pa-
tients are immunosuppressed and have more circulating
myeloid-derived suppressor cells (MDSCs) when compared
to normal donors. Interestingly, MDSCs might be gener-
ated from glioma-conditioned monocytes in vitro [140].
As Raychaudhuri et al. reported in 2011, GBM patients
have increased MDSCs counts (CD33+ HLA-DR−) in their
peripheral blood. The accumulation of MDSCs in patients
with GBM promotes T-cell immune suppression. Increased
plasma levels of arginase and granulocyte colony-stimulating
factor may relate to MDSC suppressor function and MDSC
expansion, respectively. Removing MDSCs from the PBMCs
with anti-CD33/CD15-coated beads significantly restored T-
cell function [141].

3.5. GBM Stem Cells (GSCs). Relapse of GBM is attributed
to the persistence of hibernating tumor stem cells [142].
The existence of GBM stem cells is also correlated with

multidrug and radiation resistance in GBM [143, 144]. In
the past few years, one of the neural progenitor cells marker,
CD133, was described as a reasonable marker for GSCs as
well [145]. However, some GSCs were also reported to be
CD133 negative [146]. So the actual concept of GSCs still
needs to be defined.

A safe and effective immune response against rodent
gliomas can be elicited by using GSC cell lines as a vaccine in
rodent models [147]. Glioblastoma-associated antigens such
as AIM2, BMI1, COX-2, TRP2, GP100, EGFRv III, EZH2,
LICAM, Livin/Livin β, MRP3, NESTIN, OLIG2, and SOX2
are present on these human GSCs. In contrast, IL-13Rα2 and
HER2 seem to be decreased in these GSCs [98]. Two studies
suggest that GSCs can differentiate into glioma endothelial
cells [148, 149]. GSCs might be considered as sources of
antigens for DC vaccination against human GBM, with
the aim of achieving GSC-targeting and better antitumor
immunity (Figure 1).

4. Future Perspective

Recently, several studies have reported that the combination
of chemotherapy and immunotherapy may be more effective
than single-modality treatment alone [150, 151]. Kim et al.
demonstrated that in a GL26 glioma model, a combination of
low-dose TMZ chemotherapy and transactivation of trans-
cription (TAT)-based DC immunotherapy may be a novel
strategy for safe and effective treatment of malignant glio-
mas. TAT contains a protein transduction domain and could
be used as an efficient carrier [152].

Our recent work also showed that TMZ might not be
deleterious but rather beneficial to immunomodulatory ther-
apy of GBM patients [153].

Future developments in DC vaccination for GBM might
include transfection/nucleofection of DCs with RNA encod-
ing for GAA, cytokines, or TLRs.
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