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EDITORIAL COMMENT
Cardiometabolic Heart Failure and HFpEF
Still Chasing Unicorns*
Thomas E. Sharp III, PHD,a David J. Lefer, PHD,a,b Steven R. Houser, PHDc
H eart failure (HF) is a complex and heterog-
enous syndrome that is projected to affect
more than 8 million adults by 2030 (1).

The HF patient population can be separated into 2
general groups, those with HF with reduced ejection
fraction and those with HF with preserved ejection
fraction (HFpEF). HFpEF has been estimated to affect
approximately one-half of the HF patient population,
and this population is predicted to increase over the
next decade (2). The pathophysiological drivers that
cause or exacerbate HFpEF are under investigation
because the precise cardiac and extracardiac pathol-
ogies that cause or exacerbate the HFpEF phenotype
remain largely unknown. There are no Food and
Drug Administration–approved therapeutic agents to
treat patients that have HFpEF, in part because the
pathobiology is still not clearly defined, and there is
a lack of suitable preclinical models that can be
used to define causes and test therapies (3). Compli-
cating matters further, current clinical research sug-
gests that HFpEF is not caused by a single pathology
but is a result of multiple, distinct, and unique dis-
eases with different primary driving factors. This
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was eloquently presented by Shah et al. (4), where 3
primary phenotypes were observed in patients: 1)
young patients with moderate diastolic dysfunction
and normal B-type natriuretic peptide (BNP) levels;
2) obese, diabetic patients with sleep apnea and wors-
ened left ventricular (LV) relaxation; and 3) older pa-
tients with chronic kidney disease, myocardial
dysfunction, and pulmonary hypertension. This char-
acterization of distinct phenotypes may aid in better
clinical trial design and outcomes but leaves the basic
research community in a conundrum regarding the
development of suitable translational animal models
which reliably recapitulate each of these different
HFpEF phenotypes. Although rodent models of
HFpEF have emerged (5), the physiological differ-
ences between rodents and humans are well estab-
lished and suggests that large animal models might
be more predictive of therapies that could be effec-
tive in humans (6). It is imperative, that these newly
developed large animal models of HFpEF recapitulate
essential pathophysiological features of HFpEF and
its progression to allow for translation to the clinic.
In this issue of JACC: Basic to Translational Science,
Olver et al. (7) have characterized a swine HFpEF
model that includes several of the key comorbidities
(obesity, early metabolic derangement, and pressure
overload) observed in patients.(8,9).
SEE PAGE 404
The study was performed in Ossabaw swine, which
are well characterized to have a “thrifty phenotype,”
becoming obese and pre-diabetic when fed a western
diet (WD) (10). The authors fed 2-month-old, female
Ossabaw swine a control or WD for 10 months to
induce obesity with metabolic derangements. They
then placed an aortic band (AB) at 6 months of age to
induce pressure overload in an attempt to induce
HFpEF. Functional, morphological, and molecular
endpoints were measured to assess the degree of
https://doi.org/10.1016/j.jacbts.2019.05.003
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cardiac and systemic dysfunction at 12 months of age
in 4 to 5 control and WD-AB swine. The authors
describe the cardiac structural and functional
changes observed at 10-months’ post-diet and
6-months’ post-aortic banding (7). The expected hy-
pertrophic response due to aortic banding was
demonstrated by increased heart weight and LV wall
thickness. Furthermore, they conclude LV systolic
function remained normal, whereas diastolic function
was impaired based solely on the end-diastolic pres-
sure volume relationship and isolated single car-
diomyocyte T-tubule structure and function. They
attribute impaired relaxation to LV mitochondrial
dysfunction as previously reported in the Ossabaw
swine (11). Furthermore, the investigators also
explore the molecular signature through tran-
scriptomic analysis of LV tissue, reporting alterations
of a myriad of genes that are consistent with cardio-
vascular diseases and their related comorbidities. The
authors conclude that their model recapitulates fea-
tures of HFpEF.

In our view, the model in the study by Olver et al.
(7) represents an early-stage of HFpEF, and as such
may not faithfully mimic HFpEF in humans. Although
Ossabaw swine on a WD develop dyslipidemia,
immature vascular plaque formation, and hyper-
insulinemia, the investigators acknowledge they do
not spontaneously develop HF (12). HFpEF is recog-
nized to also be an age-related disease, because age is
a primary predictor of HFpEF’s initial diagnosis (13),
whereas the investigators used very young animals
(2 months of age for 10 months). To induce HF in the
WD-fed animals, the investigators implanted a sur-
gical band on the aorta to produce acute pressure
overload. This technique is widely used in both large
and small animal models (14–17) but has caveats.
More rapid pressure overload usually causes
compensatory states (hypertrophic response) (18,19)
or decompensation (LV dilation with reduced ejec-
tion fraction) such as in mouse transverse aortic
constriction models of acute pressure overload (15).
By contrast, slow, progressive pressure overload
models more closely parallel the type of structural
heart disease induced by aortic stenosis in humans
(14). There are several alternatives to aortic banding
that are more physiologically relevant, including an
increase in dietary salt consumption or introduction
of agonists that activate the renin-angiotensin-
aldosterone system to develop a global hypertensive
phenotype. The gene ontology data herein is gener-
alized and could conceivably be altered by HF-
independent cardiovascular disease (7).
Although systolic function was preserved (no
change in LVEF) in the model, there was a leftward
shift in the EDPVR, consistent with diastolic
dysfunction, many traditional measures of LV dia-
stolic dysfunction were not measured (i.e., E/A, E/e0,
Doppler flow velocities). Moreover there was no
physiological measurement of pulmonary hyperten-
sion (elevated pulmonary artery pressure or pulmo-
nary capillary wedge pressure). Most importantly, LV
end-diastolic pressure was not elevated (LVEDP),
which is an essential feature of HFpEF involving
pressure overload. Lastly, there was no traditional
HFpEF biomarkers (i.e., cardiac troponin I, BNP, atrial
natriuretic peptide) studies.

The authors also studied the cellular mechanisms
that may contribute to impaired relaxation by inves-
tigating isolated single cardiomyocyte physiology in
the basal state and after exposure to adrenergic ago-
nists. Myocytes isolated from the WD-AB animals did
not have significant alterations in Ca2þ regulation,
either in the basal state or after treatment with an
adrenergic agonist. This suggests the presence of the
very earliest stages of adaptation to persistent disease
stress. These findings are at odds with previous
studies of myocytes with hypertrophy from slow
progressive pressure overload, where myocyte con-
tractile derangements are present even though global
pump performance parameters (LVEF) are main-
tained (18). In these studies, persistent disease
caused derangements of cardiac functional reserve
(20,21). The absence of these changes suggests that
the model fails to show any systolic defects that are
present in patients with HFpEF. The absence of any
significant changes in Ca2þ transient dynamics is also
a bit surprising, given the T-tubules are disrupted in
the WD-AB myocytes (7).

In conclusion, HFpEF is a complex and heteroge-
nous clinical syndrome for which there are no
effective therapies. Developing novel HPpEF thera-
pies will require developing large animal models
that faithfully mimic the HFpEF phenotype. The
model developed by Olver et al. (7) combines meta-
bolic derangements together with mechanical pres-
sure overload in young, female swine. Although
these animals develop cardiac hypertrophy and
some metabolic disturbances, as noted above many
of the phenotypic features characteristic of human
HFpEF are not observed in this model, which raise
important questions about the overall clinical utility
of the model. In our view, the critical features of a
large animal HFpEF model should include adverse
LV structural and functional remodeling, abnormal
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diastolic function, decreased systolic functional
reserve, increased LV filling pressures, and pulmo-
nary hypertension. Models with several comorbid-
ities such as increased body mass index,
dyslipidemia, moderately resistant hypertension,
and metabolic derangements are also critical for the
development of HFpEF models. In this regard, the
study by Olver et al. (7) represents an important first
step in developing an appropriate large animal
model that mimics the cardiometabolic phenotype of
HFPEF in humans.
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