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Abstract

Proteomic analysis of cancers’ stages has provided new opportunities for the development

of novel, highly sensitive diagnostic tools which helps early detection of cancer. This paper

introduces a new feature ranking approach called FRMT. FRMT is based on the Technique

for Order of Preference by Similarity to Ideal Solution method (TOPSIS) which select the

most discriminative proteins from proteomics data for cancer staging. In this approach, out-

comes of 10 feature selection techniques were combined by TOPSIS method, to select the

final discriminative proteins from seven different proteomic databases of protein expression

profiles. In the proposed workflow, feature selection methods and protein expressions have

been considered as criteria and alternatives in TOPSIS, respectively. The proposed method

is tested on seven various classifier models in a 10-fold cross validation procedure that

repeated 30 times on the seven cancer datasets. The obtained results proved the higher

stability and superior classification performance of method in comparison with other meth-

ods, and it is less sensitive to the applied classifier. Moreover, the final introduced proteins

are informative and have the potential for application in the real medical practice.

Introduction

Cancer has always been one of the most fundamental health problems of the human society.

Every year, between 100 and 350 out of every 100,000 people die due to cancer in the world-

wide [1–4]. Understanding the nature of cancer, which caused by the malfunction of the

mechanisms that regulate growth and cell division, has always been a topic of interest to

researchers. The development of molecular biology in recent decades enhanced understanding

of complex interactions of the genetic variants, transcription and translation [5]. Proteomic

studies can play a critical role in prevention, early detection and treatment of cancer. Given

that proteomic studies can help identify cancer biomarkers, it might cause early detection and

treatment of cancer [6, 7].

The robustness of microarray-derived cancer biomarkers that have been identified by using

gene expression profiles is very poor [8, 9]. Thus, the evaluation of tumor cells at protein

expression levels, which are more robust than gene expression level, is necessary to explain
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causes of tumor proliferation. And it will help us to find potential drug targets and to illustrate

off-target effects in cancer medicine [10].

Zhang et al. [10] utilized the protein expression profiles for classifying ten types of cancers.

They applied minimum redundancy maximum relevancy (mRMR) and incremental feature

selection (IFS) methods for selecting 23 out of 187 proteins on the protein array, which used as

the inputs of sequential minimal optimization (SMO) classifier. Sonntag et al. [11] have intro-

duced a novel biomarker selection workflow to extract four discriminative biomarkers from

reverse phase protein array (RPPA) data on luminal breast cancer.

Kaddi and Wang [12] employed three different approaches for feature selection (two filter

and one wrapper methods) and six methods for classification (four individual binary and two

ensemble classification methods) to predict early stage of cancer in Head and Neck Squamous

Cell Carcinoma using proteomic and transcriptomic data.

Stafford et al. [13] randomly generated two libraries, each of them contained approximately

10000 peptide sequences, then they used ANOVA and t-test for feature selection and the linear

discriminant analysis (LDA), naive bayes (NB) and support vector machine (SVM) for classifi-

cation. Numerous studies have been reported for identification of biomarkers that influence in

the early detection of ovarian cancer [14].

Nguyen et al. [15, 16] presented a novel feature selection method by integrating the five fil-

ter-based feature selection approaches (i.e., t-test, ROC, Wilcoxon, Entropy, and SNR) through

an analytic hierarchy process (AHP). AHP, which is a multi-criteria decision analysis method,

is used for classification of normal and tumor tissue by means of different classifier algorithms

(i.e. Interval type-2 Fuzzy Logic (FL) [17], Hidden markov model (HMM) [18], k-nearest

neighbors (kNN) [19], support vector machine (SVM) [20], etc.).

In this research, we proposed a hybrid model for prediction of cancer stages using RPPA

data. The novelty of the proposed method relies on the feature ranking using TOPSIS. To

improve the stability and accuracy of the final extracted biomarkers, we modified the feature

selection workflow and utilized the best classification model among the well-known seven clas-

sifiers (i.e. SVM [20], Random Forest (RF) [21], Decision Tree (DT) [22], LDA [23], NB [24],

FL [25], and kNN [19]).

As demonstrated by a series of recent publications [26–32], and in agreement with the

famous 5-step rule [33], we should comply with the following five step instruction to construct

a really useful prediction method for a biomedical system; (1) select or construct a valid bench-

mark dataset to train and test the predictor model, (2) formulate the statistical samples with an

effective mathematical expression that can truly reflect their intrinsic correlation with the tar-

get to be predicted; (3) develop or introduce a powerful algorithm to run the prediction, (4)

properly perform cross-validation tests to objectively evaluate the anticipated accuracy of the

predictor, (5) establish a user-friendly and publicly accessible web-server for the predictor.

The rest of the paper is organized as follows: In Section 2, the utilized database is introduced

and a detailed description of the proposed protein ranking and classification methods is pre-

sented. In Section 3, the evaluation results of the various protein selection methods in combi-

nation with the various kinds of classifiers are described. The related issues of cancer

classification are discussed in Section 4. We conclude the paper in Section 5.

Materials and methods

Dataset

Proteomic data, including 2101 patient samples from 7 cancer types were downloaded from

The Cancer Proteome Atlas (TCPA) [34]. For each sample, the expressions of 187 proteins
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were taken by RPPA. We used RPPA, an antibody-based high-throughput technique, for ana-

lyzing concurrent expression levels of hundreds of proteins in a single experiment.

The related pathological information for each patient in the TCPA dataset was downloaded

from Broad Institute TCGA (https://confluence.broadinstitute.org/display/GDAC/

Dashboard-Stddata and http://tcpaportal.org/tcpa/download.html). Then, we divided the sam-

ples into two groups of early stage (stage I and II) and advanced stage (stage III and IV).

In TCPA, the proteins are divided into three groups including "validated", "under evalua-

tion" and "used with caution". In this work, we only used 115 validated labeled proteins per

patient to obtain reliable results. See Table 1 for details.

We used the R software and FEAST Toolbox [35] in MATLAB to implement different clas-

sification models and feature selection algorithms. All the cleaned data and the algorithms

scripts used in this manuscript, can be downloaded from www.github.com/E-Saghapour/

FRMT.

Hybrid models

The hybrid model approaches were used by many previous investigators to study various bio-

logical or biomedical problems [36–40]. The stratification of cancer can be considered as tradi-

tional pattern recognition problems. Data analysis procedure, including feature selection and

classification steps, is shown in Fig 1. The explanation of different blocks in Fig 1 is presented

in the next subsections.

Table 1. Summary of the utilized cancer datasets.

Cancer # early-stage # advanced-stage # Total

READ 60 62 122

HSNE 48 152 200

LUSC 158 35 193

COAD 187 139 326

OV 33 370 403

UCEC 321 83 404

KIRC 263 190 453

Total Number of Samples 1070 1031 2101

READ: Rectum adenocarcinoma, HSNE: Head and Neck sequamous cell carcinoma, LUSC: Lung

sequamous cell carcinoma, COAD: Colon adenocarcinoma, OV: Ovarian serous cystadenocarcinoma,

UCEC: Uterine Corpus Endometrioid Carcinoma. KIRC: Kideny renal clear cell carcinoma.

https://doi.org/10.1371/journal.pone.0184203.t001

Fig 1. Schematic of the proposed data analysis procedure. The whole procedure from processing the

protein expression profiles to prediction of the cancer stages is illustrated.

https://doi.org/10.1371/journal.pone.0184203.g001
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Feature selection. In a filter feature selection (FFS) method, a criterion function would be

used for independently ranking features. Then, the top ranked features, called informative fea-

tures, would be used in the classification model. Various criterion functions have been intro-

duced and applied to the gene expression profiles that led to different subset of genes with

different classification performance. Although the FFS methods produce unstable results in

different datasets, but they are robust against overfitting. FFS methods can also be applied to

the protein expression profiles for protein ranking, however, they do not take into account

protein-protein interactions. In this study, a novel ensemble method is proposed to improve

the stability of results obtained by integrating common FFS methods (Table 2). We utilized the

TOPSIS method to score the proteins and choose the most informative ones for classification

(Fig 2). The TOPSIS method is described in detail in the next section.

TOPSIS method. The TOPSIS was first presented by Hwang and Yoon in 1981 [41]. It is

a multi-criteria decision analysis method relied on selecting the option that its geometric dis-

tances from the positive ideal solution (PIS) and the negative ideal solution (NIS) are the short-

est and longest, respectively.

The workflow of the TOPSIS method contains the following seven steps:

1. Generating anm-by-n evaluation matrix containsm alternatives A1;A2; . . . ;Am, each

assessed by n local criteria C1;C2; . . . ;Cn.

2. Normalizing the decision matrix:

uij ¼
xij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k¼1
x2
kj

q ; i ¼ 1; . . . ;m; j ¼ 1; . . . :; n: ð1Þ

Where xij is the score of alternative Ai with respect to the criterion Cj.

3. Calculating the weighted normalized decision matrix which its values Vij are computed as:

Vij ¼Wi � uij; j ¼ 1; 2; . . . ;m; i ¼ 1; 2; . . . ; n:

letWi = [w1, w2,. . .,wn] be the vector of local criteria weights satisfying
Xn

i¼1

Wi ¼ 1.

Table 2. Common filter-based feature selection methods.

Criterion Full name

t-test Two sample t-test

wrs Wilcoxon rank sum

mrmr Max-Relevance Min-Redundancy

mim Mutual Information Maximization

mifs Mutual Information Feature Selection

jmi Joint Mutual Information

disr Double Input Symmetrical Relevance

cmim Conditional Mutual Info Maximization

icap Interaction Capping

cife Conditional Infomax Feature Extraction

https://doi.org/10.1371/journal.pone.0184203.t002

A novel feature ranking method for prediction of cancer stages

PLOS ONE | https://doi.org/10.1371/journal.pone.0184203 September 21, 2017 4 / 17

https://doi.org/10.1371/journal.pone.0184203.t002
https://doi.org/10.1371/journal.pone.0184203


4. Determining the positive ideal (A+) and negative ideal (A-) solutions as follows:

Aþ ¼ fvþ
1
; . . . ; vþn g ¼ fðmax

i
Vijj j 2 JÞ; ðmin

i
Vijj j 2 J

0Þg: ð2Þ

A� ¼ fv�
1
; . . . ; v�n g ¼ fðmin

i
Vijj j 2 JÞ; ðmax

i
Vijj j 2 J

0 Þg: ð3Þ

J ¼ fj ¼ 1; 2; 3; . . . ; njj associated with benefit criteriag: ð4Þ

J 0 ¼ fj ¼ 1; 2; 3; . . . ; njj associated with cost criteriag: ð5Þ

In the proposed method, all criteria are considered as benefit, therefor J’ is empty and (2),

Fig 2. Feature ranking procedure. TOPSIS is used for integration of different FFS methods for proteins

ranking.

https://doi.org/10.1371/journal.pone.0184203.g002

A novel feature ranking method for prediction of cancer stages

PLOS ONE | https://doi.org/10.1371/journal.pone.0184203 September 21, 2017 5 / 17

https://doi.org/10.1371/journal.pone.0184203.g002
https://doi.org/10.1371/journal.pone.0184203


(3) will be reduced to (6), (7);

Aþ ¼ fvþ
1
; . . . ; vþn g ¼ fmax

i
Vijjj 2 Jg: ð6Þ

A� ¼ fv�
1
; . . . ; v�n g ¼ fmin

i
Vijjj 2 Jg: ð7Þ

5. Measuring the Euclidean Distances between each alternative and both the positive and neg-

ative ideal, which are calculated as follows:

Pþi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

ðvij � v
þ
j Þ

2

v
u
u
t ; i ¼ 1; 2; . . . ;m: ð8Þ

P�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

j¼1

ðvij � v�j Þ
2

v
u
u
t ; i ¼ 1; 2; . . . ;m: ð9Þ

6. Computing the relative closeness to the ideal solution by Eq (10).

Hi ¼
P�i

Pþi þ P�i
; i ¼ 1; 2; . . . :;m; 0 � Hi � 1: ð10Þ

7. Ranking alternatives based on the H value of each parameter. Hi = 1 indicates the highest

rank andHi = 0 indicates the lowest rank.

Fig 3 illustrates the whole procedure of TOPSIS method for a simple example in which we

have 5 alternatives (proteins expression), P1-P5, and 3 criteria (methods of feature selection),

C1-C3. Moreover, we considered equal weights for all feature selection methods (criteria).

Classification. In this study, we utilized seven models for classification including SVM,

RF, DT, LDA, NB, FL, and kNN.

SVM rely on the concept of decision planes that specify decision borders. Classification task

performed by building hyperplanes in a multidimensional space that distinct various class

labels. The classes that have nonlinear boundaries in the input space employ the kernel func-

tion method to map the input space in to a higher dimensional feature space in which linear

differentiation may be feasible. The kernel trick computes all training data without using or

Fig 3. Illustration of TOPSIS. This illustrative example explains the functionality of TOPSIS method in a

simple application in which we have 5 alternatives, P1-P5, and 3 criteria, C1-C3.

https://doi.org/10.1371/journal.pone.0184203.g003
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knowing the mapping, thus high dimensionality of the feature space does not increase compu-

tational cost of classification and training task.

RF is an ensemble classifier comprised of many decision trees. The mode of class output

obtained by individual trees would be the class that is output by RF[42]. The Random Decision

Forests learning algorithm was developed by Leo Breiman [21] based on decision trees, which

are non-parametric supervised learning approaches used for regression and classification.

Using of a set of tree classifiers and randomness in the RF design led to good accuracy and sta-

bility of the resulting classifier.

RF is a classifier including a set of tree-structured classifiers {g(x, bk) k = 1, 2,. . .}, where the

{bk} are independent identically distributed random vectors and each tree puts a unit vote for

the famous class at input x. The RF method (along with other ensemble learning methods) has

been very popular in biomedical research, and it considers random tree building using both

bagging and random variable selection [43].

Fuzzy Inference System (FIS) is a method of mapping the input space to an output space

using FL. FIS attempts to formalize the reasoning procedure of human language by means of

FL and building fuzzy IF-THEN rules. The procedure of fuzzy inference involves all of the sec-

tions that are explained in Membership Functions, Logical Operations, and If-Then Rules.

They have become strong methods to afford various problems such as uncertainty, impreci-

sion, and non-linearity. They are generally used for identification, classification, and regres-

sion works. Instead of employing crisp sets as in classical rules, fuzzy rules exploit fuzzy sets.

Rules were initially taken from human experts through knowledge engineering procedures.

However, this approach may not be possible when facing complicated tasks or when human

experts are not accessible [44].

The kNN algorithm, one of the popular machine learning algorithms, is a non-parametric

method used for classification and regression predictive problems. In both cases, the input vec-

tor contains the k closest training samples in the feature space. The output is dependent to

value of k whether it is used for classification or regression. In kNN classification, the output is

a class membership. An object is classified by a majority vote of its neighbors with the object

being allocated to the class most usual between its k nearest neighbors. The best election of k

depends on the data; a good k can be elected by different heuristic methods. Larger values of k

decrease the effect of noise on the classification, but it creates boundaries between classes less

distinct. A drawback of the kNN algorithm is its sensitivity to the local structure of the data. In

kNN regression, the output is the property value for the object. This value is the average of the

values of its k nearest neighbors rather than voting from nearest neighbors [45].

LDA is a method used in pattern recognition, statistics, and machine learning to detect a

linear combination of features that separate two or more classes of objects and is an extension

of Fisher’s linear discriminant; Such combination might be used as a linear classifier, or, more

generally, for dimensionality reduction before later classification. LDA attempts to represent

one dependent variable as a linear combination of other features and is closely relevant to anal-

ysis of variance and regression analysis [46]. LDA is closely relevant to factor analysis and prin-

cipal component analysis (PCA) in that they both look for linear combinations of variables

which best illustrate the data. LDA clearly efforts to model the diversity among the classes of

data. PCA, on the other hand, does not take into account any diversity in class, and factor anal-

ysis creates the feature combinations according to the differences rather than similarities [46].

The Bayesian Classification is a statistical method for classification that illustrates a super-

vised learning strategy. Bayesian classification provides practical learning algorithms in which

the former knowledge and the observed data can be combined. Bayesian Classification pro-

vides an effective perspective for evaluating and understanding many learning algorithms. It is

not affected by noise in input data and calculates clear probabilities for hypothesis. The NB
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classifier is used when features are independent of each other within each class, but it works

well in practice even when that independence assumption is not valid. NB classifier requires a

small amount of training data to estimate the parameters such as mean and variance of the var-

iables necessary for classification [47].

Performance measures

K-fold cross-validation test, independent dataset test, sub-sampling test and jackknife cross-

validation test are four widely used classes of schemes in statistical classify for examining the

performance of a prediction model [48–53]. The jackknife test has been widely used in Bioin-

formatics [54–68], because it can achieve unique outcome [33, 69]. However, it is time-con-

suming. For saving the computational time, in this study, ten-fold cross-validation was used to

investigate the performance of the prediction model. In k-fold cross-validation, the data is

divided into k subset, each time, one of the k subsets and k-1 subsets are used as test and train

data, respectively. Then the mean error across all k experiment is calculated. Since the utilized

dataset is unbalanced in terms of number of samples in two groups of early and advanced

stages, the Area under Curve (AUC) and Matthews Correlation Coefficient (MCC) were used.

The MCC, introduced by Brian W. Matthews [70], is used for measuring the quality of

binary classification. The MCC is a number between -1 and +1. Values of 1 and 0 demonstrate

a perfect and random prediction, respectively. In addition, -1 represents total disagreement

between the predicted and actual values. It can be computed from the confusion matrix as:

MCC ¼
ðTP� TNÞ � ðFP � FNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p : ð11Þ

where TP is the number of true positives (early stage), TN is the number of true negatives

(advanced stage), FP is the number of false positives, and FN is the number of false negatives.

Eq 11 can be represented in another form like Eq. 11 in [40], which were derived by Xu et al.

[29] and Lin et al. [40] based on the symbols introduced by Chou in studying signal peptides

and those used in many recent studies [26–32]. The set of metrics is valid only for the single-

label systems. For the multi-label systems which has become more frequent in systems biology

[71] and systems medicine [37, 72–74], a completely different set of metrics as defined in [75]

is needed.

Moreover, the AUC is defined as the area under the ROC curve, which illustrates the

performance of a binary classifier system as its discrimination threshold is varied. An AUC

of 1, 0.5, and under 0.5 indicates a perfect, random, and bad classifier, respectively.

Results

As can be seen from the data in Table 1, the KIRC cancer with 453 samples, contains the most

samples in the whole dataset. The UCEC Cancer is the second-most with 404 samples. Accord-

ing to the pathologic stage, data are unbalanced and the READ and OV data has the less and

the most unbalanced level, respectively.

To present the performance of the proposed FRMT method, we have provided 7 tables; one

table for each cancer data (S1 Table), which demonstrated the effect of applying different fea-

ture selection technique on various classifier architectures. In this regard, MCC and AUC are

used as evaluation measures in 30 repetitions of 10-fold cross-validation procedure. For a fair

performance evaluation, we should consider different constraints that affect the classification

performance such as: train dataset, classifier model, and the number of selected features. In

this regard, we should evaluate different possible combinations, which contains 49 states due

to the seven classifiers that applied on seven datasets. Then, we select subset of features with
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different sizes (5, 10, 15 and 20) obtained by each feature selection method, considering which

method reaches the highest accuracy in each of 49 state. Fig 4 shows the percentage of states

that each feature selection method reached the best performance (winning frequency) for vari-

ous numbers of features. As it is shown in Fig 4, the proposed method has reached the best

result for all sizes of feature subsets in comparison with other methods, and the peak of result

obtained by using 10 features.

After this point the same number of features (top 10 proteins) has been selected as the input

of all classifiers in all experiments. The best results in the tables are highlighted by shading.

The frequency of selection of each feature selection method as the best, or winning frequency

regarding the classification performance, is depicted in Fig 5. For each cancer, each classifier

model obtained the best answer with only one of the eleven feature selection methods.

Fig 6 illustrates the winning frequency of all feature selection methods in the whole dataset.

The method with larger segment on the pie chart demonstrates the better approach.

Fig 4. Effect of feature subset size on performance. The winning frequency is calculated for different

feature selection methods for various sizes of feature subsets.

https://doi.org/10.1371/journal.pone.0184203.g004

Fig 5. Comparison of FFS methods in different datasets. The winning frequency is calculated for different

feature selection methods in each dataset, regarding the classification performance.

https://doi.org/10.1371/journal.pone.0184203.g005
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The results presented in S1 Table are summarized in Table 3. The left part of Table 3 dem-

onstrates a comparative analysis of the FRMT method performance by applying different clas-

sification models in seven datasets. In the right part of Table 3, the best results of every feature

selection method in combination with a classifier that led to the best performance for predic-

tion of cancer stage are shown.

After applying the FRMT method in different datasets, top ranked proteins were extracted

and the name of first 10 informative ones were reported in S1 Table.

Discussion

In this study, a new approach called FRMT method was proposed to select protein biomarkers.

10 FFS methods were integrated to extract the best stage prediction cancer biomarkers. Find-

ing the best proteins via a multi-criteria decision analysis method, the FRMT method demon-

strates a proficient method for ranking proteins using protein expression profile data without

concerning about the selection of suitable FFS method for a specific problem.

Fig 6. Final comparison of different FFS methods. The winning frequency of all feature selection methods

is illustrated in a pie chart for all datasets.

https://doi.org/10.1371/journal.pone.0184203.g006

Table 3. Comparison of the FRMT method with other methods for whole cancers.

FRMT method Other methods

Cancer MCC AUC Classifier MCC AUC Criteria Classifier

READ 0.23±0.0025 61.59±0.61 LDA 0.23±0.0021 59.09±0.31 cmim SVM

HSNE 0.37±0.0002 69.55±0.07 NB 0.27±0.0018 60.59±0.31 disr KNN

LUSC 0.27±0.002 59.02±0.28 KNN 0.16±0.0068 57.93±1.69 mim DT

COAD 0.18±0.0015 58.55±0.31 SVM 0.15±0.0013 56.97±0.3 mim SVM

OV 0.27±0.0007 61.57±0.11 NB 0.17±0.0013 54.58±0.12 cife NB

UCEC 0.26±0.0011 56.54±0.08 NB 0.16±0.0005 55.96±0.08 disr NB

KIRC 0.34±0.0001 66.54±0.03 NB 0.28±0.0005 63.51±0.13 wrs RF

https://doi.org/10.1371/journal.pone.0184203.t003
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The performance of six well-known classifiers was evaluated and reported using 10 top

ranked proteins selected by the FRMT and other FFS approaches. The results indicate that the

FRMT method is more advantageous than other FFS methods in terms of robustness in classi-

fication performance; By measuring the number of times that a method obtained the best

results, we observed that the best frequency has been achieved by the FRMT method with 6

out of 7 times in UCEC and KIRC cancer (Fig 5). Furthermore, in the READ and LUSC cancer

dataset, the maximum frequency of 3 out of 7 has been reached by the FRMT method. In the

HSNE cancer, the frequency for disr and FRMT methods are equal to 3. It should be noted

that some methods of feature selection were never chosen as the best model.

Looking at the pie chart in Fig 6, in 62 percent of experiments the FRMT method achieved

the best classification performance in the whole proteomic dataset. Afterward, the disr and

mimmethods reached to success rate of 8 and 6 percent, respectively.

As it is reported in Table 3, the best performance in prediction of cancer stage evaluated by

using AUC and MCC has occurred in HSNE dataset. The AUC of 69.55 with SE (Standard

Error) of 0.07 and MCC of 0.37 with SE of 0.0002 are the best results among all dataset

achieved by the FRMT method as feature selection and NB method as classifier. It should be

noted that in HSNE dataset, the disrmethod reached the second-best place by AUC of 60.59

with SE of 0.31 and MCC of 0.27 with SE of 0.0018.

Comparison of the FRMT method with other methods in Table 3 are suggestive of the

wrsmethod achieving the best results among other FFS methods; AUC of 63.51 with SE

of 0.13 and MCC of 0.28 with SE of 0.0005 have been achieved by using RF as classifier in

KIRC dataset. However, in the KIRC dataset, the FRMT method already obtained the best

result with NB classifier, which are AUC of 66.54 with SE of 0.03 and MCC of 0.34 with SE

of 0.0001.

As it is seen from the data in Table 3, the NB classifier was achieved the best results in the

majority of experiments evaluated various feature selection methods. NB achieved the best per-

formance in 4 out of 7 datasets using the proposed method, and in two datasets by applying

cife and disrmethods. Notably, the SVM classifier obtained the second place.

Top-ranked protein selected by FRMT method from each dataset, showed significant over-

lap with recently discovered biomarkers that were associated with cancer development.

According to Fig 7, MAPK_pT202_Y204 is the most frequently selected protein from 4 data-

sets among top 10 ones by FRMT. The striking point about the MAPK_pT202_Y204 is its sig-

nificant role in MAPK pathway (Mitogen-activated protein kinases) and regulation of cell

growth and differentiation [34].

In addition, S6_pS235_S236 which involved in growth factors and mitogens induced pro-

tein translation [34], is the second frequently selected protein selected from 3 datasets among

top 10 ones by FRMT.

Gab2 that is selected by FRMT as the most informative protein in the READ dataset is

recently introduced as an overexpressed protein in several cancer types [76–78]. Moreover,

several researchers have reported that overexpression of Gab2 stimulates cell proliferation, cell

transformation, and tumor progression; Ding et al. [79] showed Gab2 overexpression in clini-

cal colorectal cancer (CRC) specimens. Moreover, Gab2 is selected by FRMT as the second dis-

criminative protein in OV dataset, and this is in concordance with recent studies that reported

Gab2 amplification and overexpression in a subset of primary high-grade serous ovarian can-

cers and cell lines [78]. Furthermore, the expression level of IRS1, which is selected by FRMT

as the second discriminative protein in READ dataset, was utilized by Hanyuda et al. as a pre-

dictive marker for classification of patients according to their survival benefit gained by the

exercise [80].
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About S6 phosphorylation(S6_pS240_S244), which is selected by FRMT as the most dis-

criminative protein in the HSNE dataset, previous studies have revealed its high occurrence in

HNSCC specimens and demonstrated its correlation on clinical outcomes [81].

Bcl-2 protein is chosen by FRMT as an important marker in the COAD dataset; This find-

ing broadly supports the work of Poincloux et al., linking loss of Bcl-2 protein expression with

increase in relapse of stage II colon cancer, and it could be a potential histo-prognostic marker

in therapy decision making [82].

Many studies [53, 60–62, 83–85] have demonstrated that high dimension data will bring

about information redundancy or noise that results in bad prediction accuracy, over-fitting

that results in low generalization ability of prediction model, and dimension disaster which in

turn is a handicap for the computation. Thus, a novel two-step feature selection technique was

applied to optimize features.

As demonstrated in a series of recent publications (see, e.g., [26–32, 86, 87]) in

evaluating new prediction/classification methods, user-friendly and publicly accessible web-

servers will significantly enhance their impacts [88, 89], we shall try to provide a web-server

in our future work for online application of the method presented in this paper. Moreover,

for extending our experiment, we shall consider combining different feature selector as in

[90].

Fig 7. Detail description of top ranked proteins. The name, frequency of selection, related cancer, function

and regulatory pathways of informative proteins are reported, which are appeared more than one time in

whole cancers among the 10 top ranking of selected proteins by FRMT method.

https://doi.org/10.1371/journal.pone.0184203.g007
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Conclusion

Various FFS methods may lead to diverse biomarkers with different discriminative power in

different datasets. However, the proposed FRMT method can help researchers to select more

stable biomarkers from protein expression profiles by integrating various FFS methods. The

proposed method has the advantage of stability and classification performance compared with

other approaches. However, it suffers from the computational complexity problem comparing

to FFS methods. On the other hand, the FRMT method in comparison to the wrapper feature

selection approaches, has lower computational complexity and produce more general results

without overfitting.

Supporting information

S1 Table. Name of proteins and their classification performance in all datasets. The results
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