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a b s t r a c t 

Monitoring of tree spatial arrangement is increasingly essential for restoration of dry conifer forests. The 

presented method was developed for high-density point clouds, like those from unmanned aerial system imagery, 

to extract and model individual tree location, height, and diameter at breast height (DBH). Extraction of tree 

locations and heights uses a variable window function searching point cloud-derived canopy height models. 

Tree DBH is extracted for a subset of point cloud trees using a slice at 1.32-1.42 m and a least-squares circle 

fitting algorithm. Extracted heights and DBHs are spatially matched and filtered against each tree’s expected DBH 

predicted using a regional National Forest Inventory height to DBH relationship. Values remaining after filtering 

are used to create a site-specific height to DBH relationship for predicting missing DBH values. Applying the 

method in a ponderosa pine-dominated forest found that extracted height values exceeded the precision of field 

height measurement approaches, while the accuracy of extracted and modeled DBH values had a mean error of 

0.79 cm. 

• Leveraging National Forest Inventory to filter DBH values eliminates the need for in situ observations. 
• Produces tree list for all extractable stems in the point cloud. 
• Transferable to high-density point clouds in open-canopy forests. 
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Specifications table 

Subject Area: Agricultural and Biological Sciences 

More specific subject area: Remote Sensing Augmented Forest Inventory 

Method name: Point Cloud-Based Estimation and Modeling of Tree Height and DBH Distributions 

Name and reference of original 

method: 

N.C. Swayze, W.T. Tinkham, J.C. Vogeler, A.T. Hudak. 2021. Influence of flight 

parameters on UAS-based monitoring of tree height, diameter, and density. Remote 

Sensing of Environment, in review. 

Resource availability: Supplement files of example datasets and processing scripts are provided. 

Background 

The demand for spatially explicit observations of tree heights and diameters at breast height

(DBH; 1.37 m) has been increasing for assessment of forest management objectives [1–3] related

to the spatial arrangement of trees and projecting tree-level growth [4] . However, extrapolation of

height and DBH distributions from traditional field sampling lacks the information to inform spatial 

tree arrangements [5] . Additionally, the cost of stem-mapping individual trees across forest stands

[6–7] prohibits its implementation in management. To overcome these limitations, researchers have 

turned to remote sensing practices that provide 3-dimensional information related to forest structure 

[8–9] . 

For over three decades, airborne laser scanning (ALS) has been the prominent technology for 

acquiring data points describing the vertical and horizontal heterogeneity of forest structure [10–

11] . As ALS data density and reliability have improved, more sophisticated analytical methods have

been developed to detect individual tree location and heights [12–13] . Local allometries can then be

used to model tree DBH and biomass from these ALS-derived tree observations [14] . However, high

ALS equipment costs and aircraft fees have drastically limited ALS use for the repeated acquisitions

necessary for stand-level monitoring [15] . Although not designed for landscape-level monitoring like 

ALS, unmanned aerial systems (UAS) provide a scalable data acquisition strategy well suited for stand-

level monitoring [ 8 , 16 ]. 

The integration of Structure from Motion (SfM) photogrammetry with UAS acquired high-resolution 

imagery can produce data densities exceeding 1,0 0 0 points m 

−2 [17] . These high data densities

enable the application of ALS tree-level detection methods at a resolution capable of detecting > 90%

of overstory trees in open canopy conifer forests [16] . Additionally, when a UAS image acquisition

strategy is utilized that facilitates image view angles that see lower into the forest canopy, detecting

at least a subset of tree DBH values is feasible [18–19] . Although not a complete list of DBH values,

other UAS studies have shown that local allometries can predict missing tree observations [20–21] .

This paper presents a method for processing point clouds, such as those derived from UAS-SfM, to

extract individual tree locations, heights, and DBHs along with a modeling routine for filling missing

DBH observations without the need for in situ tree observation. 

Materials and methods 

Study area description 

Development of the method occurred in a ponderosa pine ( Pinus ponderosa Lawson & C. Lawson)

dominated site at the Manitou Experimental Forest in the Pike-San Isabel National Forest of Colorado,

USA. The forests at the site are an all-age ponderosa pine stand, characterized by a mosaic of spatially

aggregated tree groups where each group generally contains a single cohort of tree sizes [22] . These

forest structures developed after management in the 1880s that resembled a shelterwood harvest, 

followed by a century of regeneration pulses. Tree recruitment predominantly occurred in open areas 

because of ponderosa pine’s shade intolerance [6] . 
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ata collection and image processing 

This method uses three stages, including 1) data collection and image processing, 2) tree height

nd DBH extraction, and 3) DBH filtering and modeling ( Fig. 1 ). The method was initially tested

gainst 30 UAS acquisitions at various altitudes, flight patterns, and camera angles by Swayze et al.

18] using a Phantom 4 Pro UAS over a 1-hectare study area, averaging 243 red-green-blue 20-

egapixel images from each acquisition. Processing the imagery in Agisoft Metashape 1.6.4 generated

ense SfM point clouds, following Tinkham & Swayze [17] . The resulting point clouds had point

ensities ranging from 916 to 6,086 points m 

−2 , with varying levels of detail for understory vegetation

nd stem reconstruction. High-density point clouds in similar open-canopy forest systems should

e suitable for this method. However, point clouds of forest systems with higher canopy cover or

ubstantially reduced point densities will likely have less detail in the understory and stem regions.

uch datasets may not be suitable for the DBH extraction techniques due to a lack of points in this

egion. The accompanying supplemental material includes a 0.25 ha (50 m × 50 m) UAS SfM-derived

oint cloud from Swayze et al. [18] acquired at 65 m altitude above ground level at 90% front and

ide image overlap, using a crosshatch flight pattern and nadir camera orientation. 

UAS-SfM point clouds underwent a series of steps to prepare them for tree metric extraction,

ncluding 1) ground classification, 2) height normalization ( Fig. 2 A and Fig. 3 A), and 3) canopy height

odel (CHM) rasterization. First, the SfM point cloud was imported into RStudio statistical software

.0.4 [23] using the lidR Package [24] . Next, ground points were classified using a cloth simulation

lter approach outlined in Zhang et al. [25] , with a class threshold of 20 cm, a cloth resolution

f 20 cm, medium rigidness, 500 iterations for simulating the cloth, and a stock time step setting

f 0.65. Following ground classification, the point cloud was height normalized (i.e., replacing the

levation of each point with its height above the ground classified point surface) using a spatial

nterpolation k-nearest neighbor approach. The interpolator used an inverse-distance weighting of 10

earest neighbors, using a power of 2 for inverse distance weighting and a maximum radius of 50

m. The normalized point clouds were rasterized to a 10 cm spatial resolution CHM using a point to

aster algorithm, which uses the highest point found in a pixel to assign the height value. 

ree height and DBH extraction 

Following the generation of 10 cm CHMs, extraction of individual tree locations and heights was

ompleted using a local maximum variable window function from the R ForestTools package [26] . The

unction was parameterized based on research conducted in similar forest systems [16–17] , and only

etected trees greater than 1.37 m tall. The function utilized a moving window search algorithm with

 variable radius ( Equation 1 ) to analyze CHMs identify local maximum pixels as single tree locations

 Fig. 2 B). Based on the height of each pixel, the variable window radius (meters) is adjusted based on

he local maximum pixel height (meters) by a factor of 0.1. The outputs from this function return a

ist of single tree locations (x and y) and heights estimated in meters. 

v ariable window radius = local maximum pixel x 0 . 1 (1)

After individual tree height extraction, the point cloud is processed to extract DBH measurements

sing the R TreeLS package [27] . DBH extraction happens through five interconnected steps: (1) point

loud filtering, (2) tree mapping, (3) tree ID attribution, (4) stem point classification, and (5) DBH

etection ( Fig. 3 ). First, points below 0.1 m and above 4.0 m were removed from the normalized

oint cloud to focus on points representing the stem segment for DBH characterization ( Fig. 3 B) and

ubstantially reducing processing time. Second, the treeMap function identifies candidate tree stem

ocations using a hough transform circle search algorithm ( Fig. 3 C). The algorithm detected the radius

nd circle center coordinates of potential tree locations by analyzing a two-dimensional slice of the

oint cloud between 1.32 and 1.42 m above ground. The tree mapping algorithm was parameterized

o analyze points with a minimum point density of 0.001 points per square meter and a maximum

otential stem diameter of 1 m. Third, the treePoints function crops points within a 0.5 m radius

f each tree map coordinates and assigns a unique tree ID ( Fig. 3 D). Fourth, points with tree ID

eatures are filtered for outliers and classified as stem points using the stemPoints function ( Fig. 3 E).
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Fig. 1. Workflow diagram of tree metric extraction, spatial matching, regional filtering, and UAS prediction (adapted from Swayze et al. [18] ). 
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Fig. 2. Example of the variable search window for tree extraction being scaled for different tree heights in the supplemental dataset. 
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Fig. 3. Progression of DBH extraction steps including (A) an example of the normalized point cloud, (B) the subset stem section from 0.1 to 4.0 m above ground, (C) the identified 

candidate tree locations, (D) classified tree points with tree IDs, (E) classified stem points, and (F) extracted DBH inventory. 
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he outliers are identified by applying a hough transform circle search noise filtering algorithm with a

aximum stem diameter of 1.5 m and a minimum point density of 0.1 points per square meter. Points

elonging to each tree ID are iteratively fit by the hough transform circle algorithm in 0.5 m vertical

egments; points falling too far outside of the circle fit to each stem segment are removed from the

esulting point cloud. Finally, each assigned tree ID iteratively feeds into the tlsInventory function to

stimate the tree’s DBH. The function operates by extracting a slice of the classified stem points that

s 0.1 m thick and centered at 1.37 m, setting the height of all extracted points to 1.37 m, rasterizing

he points, and fitting a circle to the raster through least-squares estimation using a random sample

onsensus approach. The resulting output of these steps is a file with stem locations (x and y) and

tem radius estimated in centimeters ( Fig. 3 F). All point cloud processing and tree metric extraction

teps are demonstrated in Supplemental Script Part 1 for use in the R environment. 

atching, filtering, and modelling of missing DBH values 

Extraction of tree metrics from the point cloud resulted in two datasets, each containing

oordinates for either the tree heights or DBHs ( Fig. 4 A). Although the DBH extraction process

rovides reasonable estimates for many trees within the dataset, it is known that the precision of

BH values extracted from point clouds can vary widely based on the removal of outliers from the

ircle fitting process and issues during SfM image alignment. Additionally, past work has shown these

pproaches can range in the percentage of tree DBHs successfully extracted between 10 and 80% [28–

9] . To tie these metrics together, both datasets went through a multistep spatial matching process to:

1) predict DBH from a regional function for all extracted tree heights, (2) spatially match extracted

BHs with tree heights, (3) filter matched tree values using the regional height to DBH relationship,

nd (4) predict missing DBH values using matched UAS tree values. These steps are demonstrated in

upplemental Script Part 2 for use in the R environment. 

First, to aid in filtering any possible outlier DBH values, regional forest inventory data is used

o develop a height to DBH relationship to filter matched UAS DBH and height values. The original

mplementation of this method drew upon the United States Forest Inventory and Analysis (FIA)

rogram [30] to create this relationship. Regional FIA data were filtered to contain plots with a site

ndex within ±2 m of the study site and with > 70% of the basal area belonging to the study site’s

ominant species (ponderosa pine). The remaining data were used to generate a regional model using

 power function to predict DBH as a function of height ( Fig. 5 A) using the R nlme package [31] .

his regional function predicted DBH for each of the extracted tree heights for use as a filter while

atching the extracted height and DBH values. The regional inventory dataset from Swayze et al.

18] is available as a Supplemental file. 

Second, an extracted tree DBH was targeted and matched with extracted heights and their

orresponding regionally predicted DBH values within a 4 m radius ( Fig. 4 B). The absolute difference

etween the extracted DBH and the regionally predicted DBHs was determined for all candidate

eights. The pair with the smallest difference was considered the correct match and removed

rom further consideration ( Fig. 4 C). This process continued until all extracted tree DBHs had been

teratively matched with the extracted height that minimized the regional DBH difference. 

Third, the matched height and DBH values were filtered to remove DBHs outside of the 90 th

ercentile bounds of the regional tree height to DBH relationship ( Fig. 5 B). Filtering against the

egional prediction bounds helped remove any outlier DBH values that might impact subsequent

odeling of missing DBHs. Fourth, a UAS-based height to DBH regression using a power function was

reated using the successfully matched and filtered tree values. The UAS model was used to predict

issing DBH values for unmatched tree heights, resulting in a complete dataset of extracted tree

ocations with heights and DBHs ( Fig. 6 ). 

ethod validation 

This method was initially presented and validated by Swayze et al. [18] using an intensively

tem mapped site of nearly 900 trees. The validation augments what is presented here by spatially

atching the UAS extracted and matched trees with field stem mapped trees characterized for height



8
 

N
.C

.
 Sw

a
y

ze
 a

n
d
 W

.T.
 T

in
k

h
a

m
 /
 M

eth
o

d
sX
 9
 (2

0
2

2
)
 10

17
2

9
 

Fig. 4. Progression of extracted tree height and DBH dataset matching process, including (A) an example canopy height model with extracted tree height (fuchsia) and DBH locations (blue), 

(B) 4 m buffer (shown in red) identifying three candidate extracted tree heights for a targeted DBH value, and (C) the final paired height and DBH values (shown as black triangles). 
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Fig. 5. Height to DBH predictive model from (A) regional FIA data and (B) UAS-extracted and matched data. The regional model 

is always shown in black and UAS model in blue. 

Fig. 6. Maps of supplemental UAS dataset including orthophoto and canopy height model overlaid with UAS extracted tree 

locations and summarized histograms of extracted tree heights and UAS modeled DBHs. 

a  

o  

w  

e  

c  

w  
nd DBH using traditional field methods. In total, validation used 30 UAS datasets collected at a range

f altitudes, camera angles, and flight patterns. This analysis revealed that tree extraction accuracy

as maximized at over 90% of trees for nadir camera angles using a crosshatch flight design. The

xtracted tree heights had errors smaller than traditional field inventory techniques. While off-nadir

amera angles and crosshatch flight patterns increased the rate of DBH extraction to > 40%, filtering

ith regional inventory data during the matching process removed an average of 60% of the extracted
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DBH values as they created a height to DBH relationship that did not conform to the regional height

to DBH model. However, the filtering process caused the R 

2 values between UAS and stem mapped

DBH values to exceed 0.75, significantly improving previous methods [ 19 , 29 ]. 

Within Swayze et al. [18] , prediction of DBH from the UAS extracted and matched height and DBH

values provided a strong approximation of the stem mapped distribution of DBH values. The greatest

DBH errors were noted for the smallest diameter trees, which were generally underrepresented in 

the UAS extracted DBH data, leading to overestimation of these DBHs. The study also points out

how other UAS extracted tree metrics like crown area or local stem density might improve the

representation of the smallest diameter trees when modeling DBH. Following the modeling of missing 

DBH values, Swayze et al. [18] summarized plot-level estimates of trees per hectare and basal area

per hectare with correlations typically exceeding 0.8 for most of the 30 tested UAS acquisitions. The

best performing acquisitions characterized the study site’s basal area within 5% of the stem mapped

value, with off-nadir or crosshatch flight patterns maximizing precision. 
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