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Identification of novel targets for breast cancer
by exploring gene switches on a genome scale
Ming Wu1, Li Liu2 and Christina Chan1,3,4*

Abstract

Background: An important feature that emerges from analyzing gene regulatory networks is the “switch-like
behavior” or “bistability”, a dynamic feature of a particular gene to preferentially toggle between two steady-states.
The state of gene switches plays pivotal roles in cell fate decision, but identifying switches has been difficult.
Therefore a challenge confronting the field is to be able to systematically identify gene switches.

Results: We propose a top-down mining approach to exploring gene switches on a genome-scale level.
Theoretical analysis, proof-of-concept examples, and experimental studies demonstrate the ability of our mining
approach to identify bistable genes by sampling across a variety of different conditions. Applying the approach to
human breast cancer data identified genes that show bimodality within the cancer samples, such as estrogen
receptor (ER) and ERBB2, as well as genes that show bimodality between cancer and non-cancer samples, where
tumor-associated calcium signal transducer 2 (TACSTD2) is uncovered. We further suggest a likely transcription
factor that regulates TACSTD2.

Conclusions: Our mining approach demonstrates that one can capitalize on genome-wide expression profiling to
capture dynamic properties of a complex network. To the best of our knowledge, this is the first attempt in
applying mining approaches to explore gene switches on a genome-scale, and the identification of TACSTD2
demonstrates that single cell-level bistability can be predicted from microarray data. Experimental confirmation of
the computational results suggest TACSTD2 could be a potential biomarker and attractive candidate for drug
therapy against both ER+ and ER- subtypes of breast cancer, including the triple negative subtype.

Background
Given the complexity of gene regulatory networks,
knowledge of the properties of individual components in
the network are not sufficient to elucidate the cell phy-
siology. Thus systems biology has evolved to uncover
“emergent properties” that arise from the intricate inter-
actions of gene networks. One such emergent property,
“switch-like behavior” or “bistability”, describes a
dynamic feature of a particular gene [1] to preferentially
toggle between two steady-states. Multiple steady states
are often observed in chemical and biochemical reac-
tions (reviewed by [2]) and are characterized by a non-
linear response. Bistability happens to be a special case
involving two steady-states, giving rise to a “switch-like
behavior”. In biochemical reactions, such “bistable”

behavior shows a sharp sigmoid function or a hysteresis
structure (see examples in Figures 1B and 1E), whereby
the state of the variable flips between high and low
levels. Such an “all-or-none” state transition usually
depends on a threshold, i.e., the concentration of the sti-
mulator or regulator. Hysteresis depends further on the
previous state of the system.
The expression level of a gene switch does not change

gradually but rather has two distinct steady-states:
HIGH or LOW, ON or OFF, ALL or NONE. The ability
of switches to convert a graded signal into a binary
response ensures that a cell responds in a decisive man-
ner or unambiguously commit to a specific program [3].
Furthermore switches have been noted for their noise-
filtering capacity. Endogenous noise are typically lower
for fully repressed or induced expression states than in
a gene where the state changes continuously [4,5].
Bistable behavior of gene switches have been reported

to play pivotal roles in many important aspects of cell
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Figure 1 Dynamics of gene switches and bimodality in their expression profiles. A) A synthetic genetic switch [24] that contains a
repressed positive feedback is stimulated by an inhibitor of the repressor. B) The stimulation-response curve of the genetic circuit. C) The
histogram of the steady-state gene expression level of 100 random sample simulations of the genetic switch shown in A. Simulations are
performed with randomly (uniformly) generated initial conditions (initial gene expression level) and 20% Gaussian variance in the parameters. D)
A synthetic genetic toggle switch [16] that contains double negative feedbacks. E) The state space of the gene expression levels. Each trajectory
(blue lines) is the response curve with respect to a particular initial condition. The red arrows represent the asymptotes of the response curves, i.
e. all trajectories converge to the two attractor-states. F) The histogram of the steady state gene expression level of 100 random sample
simulations of the genetic switch shown in B. Simulations are performed with uniformly generated initial conditions (initial gene expression
level) and 20% Gaussian variance in parameters. G) Schematic representation of a phase plane of a gene switch. Single cell dose response
experiments should be able to measure the response curve and uncover the switch-like behavior. H) Experimental measurements of the average
expression level of a cell population will mask the switching behavior. A Gaussian distribution is plotted to represent the cell-cell variances in the
population. Different cells, according to their initial gene expression level, could have different response curve (blue trajectories). The averaging
of the variation in the responses results in a seemingly graded response. I) Experiments across a range of different conditions allowing for the
sampling of a large state space recover the switch-like behavior. Each sample could fall in the neighborhood of a possible steady state (points
on the blue trajectory). The steady states (on/off states of the gene switch) are the dense regions of the possible response curves in the state
space, i.e. the samples occurs at higher frequencies in these states, which results in a bimodal distribution in the observed profiles.
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physiology, including cell fate decisions, cell cycle con-
trol, and cellular responses to environmental stimulation
[6,2]. E. coli lac operon is a famous gene switch that
uses a hysteretic feedback to decide between glucose
and lactose utilization [7]. Many bistable systems have
been discovered in bacteria, including the genetic trans-
formation in Bacilius subtillis and sporulation in many
bacterial species [8]. In mammalian systems, gene
switches and bistability have been postulated as the
underlying mechanism for cellular differentiation, but
rarely has this been confirmed experimentally, until
recently with the work on neutrophil differentiation [9].
Another interesting observation is that cells have “mem-
ory”, and hysteresis has been shown to govern short-
term memory in lymphoid cells, preserving information
of past encounters with antigen [10]. Thus, the discov-
ery of gene switches in cellular responses has become a
milestone in molecular biology and prompt strong inter-
est in understanding the function and design of gene
networks [7].
Despite the importance of gene switches, identifying

multiple steady-states, and in particular switches, has
been difficult. Our understanding of gene switches has
been mostly based on simulations of generic feedback
circuits and well-characterized biological modules
[11-14]. Theoretical studies of feedback circuits have
elucidated general principles of network dynamics, but
they usually lack solid evidence to associate these princi-
ples with real physiological processes in cells. Few stu-
dies have succeeded in demonstrating functional roles of
actual switches in biological systems by coupling
detailed kinetic modeling with rigorous experimentation
[15,10]. This is because well-characterized models with
equations and kinetic parameters are difficult to obtain
for real, complex biological systems, in part because cur-
rent techniques are not able to quantitatively measure
reaction constants at the single-cell resolution for all the
network components. Alternatively, researchers in syn-
thetic biology have designed artificial gene networks
with specific functions and implemented the interactions
by manipulating or bringing together exogenous genetic
components [16-18]. Thus current methods of experi-
mentally studying switches have been limited to well-
characterized or synthetic small modules.
Switches play a central role in cell decision, and the abil-

ity to predict whether switches can occur without a priori
detail information of the network would be significant. For
instance, the ability to identify which genes are turned on
or off in cancer versus normal cells would have a tremen-
dous impact on identifying the most pertinent molecular
signatures or targets for drug therapy. Therefore a major
challenge confronting the field, which we address in this
study, is how to effectively identify gene switches or bis-
table states by mining high-throughput data.

Previous approaches addressed this question by ana-
lyzing the network topology. These studies assume that
bistability requires particular feedback structures [19,3],
and discovered dynamic features by searching for these
structures (e.g. positive feedbacks) in protein-protein
interaction and protein-DNA interaction networks [20].
However, these feedback structures do not ensure
switch-like behavior. From modeling and simulations of
genetic circuits, positive feedback (or even feedback
itself) has been shown to be neither necessary [21,6] nor
sufficient [22] to ensure switch-like behavior. Further-
more, it is less likely that one can uncover a dynamic
property from static networks.
Alternatively, we theorize that the dynamic “behavior”

of a switch could be identified by analyzing the gene
expression profiles from a wide range of conditions. We
propose a top-down mining approach to identify gene
switches from microarray gene expression data. Taking
advantage of the tremendous amount of expression data,
our approach aims to identify bimodality, which we
hypothesize is an essential characteristic of a gene
switch. We perform theoretical analysis and provide
proof-of-concept applications on both synthetic and
yeast microarray datasets. We further apply our metho-
dology on an integrated human expression dataset to
probe the characteristic signatures of human cancer and
confirm that our approach is able to identify a gene
with switch-like behavior. To the best of our knowledge,
this is the first attempt at applying mining approaches
to explore gene switches on a genome-scale.
Since the state of gene switches in the genetic network

governs the phenotype [23], we postulate that recogniz-
ing specific gene switches will enable one to identify
biomarkers or molecular signatures that would be better
drug targets for treating a disease. We demonstrate the
utility of our mining approach in human breast cancer
by analyzing a paired breast cancer/normal tissue
expression dataset against the integrated human gene
expression dataset. We uncover two types of potential
gene switches in breast cancer, with one type (denoted
as Type 1) showing bimodality within the breast cancer
and a second type (denoted as Type 2) showing predo-
minantly one modality in breast cancer.
Known therapeutic targets for breast cancer are

uncovered under the Type 1 genes, such as estrogen
receptor (ER, or ESR) and human epidermal growth fac-
tor receptor 2 (ERBB2, or HER2/neu), which are identi-
fied as gene switches for this cancer, and their
bimodality in the cancer samples represent well-known
subtypes in breast cancer. The other type of gene switch
shows predominantly one modality in the breast cancer
samples, and is where we discover the TACSTD2
(Trop2) gene. The expression of TACSTD2 is turned
OFF in most normal samples but ON in almost all of
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the breast cancer samples independent of the subtypes.
We predict through sequence matching of transcription
factor (TF) sites that CREB could regulate TACSTD2,
thereby implicating a novel transcriptional mechanism
by which TACSTD2 is regulated. Our experimental stu-
dies on multiple breast cancer cell lines confirm the
switch-like behavior of TACSTD2 and provide evidences
for the transcriptional regulation of the gene. These
results demonstrate the ability of our mining approach
to identify gene switches that could be candidate bio-
markers and novel therapeutic targets in breast cancer.

Results
A gene switch has two steady states, which will produce
a bimodal distribution in its expression profile when
sampled across different conditions. Figures 1-A and 1D
show the gene network topology of two typical regula-
tory circuits that exhibit bistable behavior. Figure 1-A is
a positive self-feedback transcriptional system under the
control of a transcriptional repressor. Figure 1-D is a
double-negative feedback system, also known as a toggle
switch, which produces mutually exclusive activation of
two genes. Both circuits have been synthesized and
implemented in cell systems [24,16] to confirm their
switching behavior. Simulations based on the kinetic
models of these systems [24,16] (see details of the equa-
tions in the METHOD) confirm the on/off and toggle-
like switching behavior in their response curve (Figure
1-B) and state space (Figure 1-E). By simulating random
samples from a wide range of conditions with different
initial states, this unique feature of two distinct steady-
states of gene switches results in a gene expression his-
togram profile containing two modes (Figures 1-C and
1-F). This bimodality is observed despite the noise (20%
Gaussian noise) imposed on the parameters.
A challenge in experimentally identifying gene

switches is their population effect. In single cell experi-
ments, if obtainable, the response curves would repre-
sent individual cell measurements, and a gene that
switches will exhibit a steep jump between the steady
states (Figure 1-G). However many biological measure-
ments (RT-PCR, Western Blotting), including microar-
ray analysis, provide the population-average. In fact,
even with single cell measurements, individual clones
can contribute cell-cell variances, with differences in the
protein expression levels across different cells. In Figure
1-H the cell-cell variance is modeled by a Gaussian dis-
tribution in the protein expression and different cells in
a clone would then respond differently to stimulation,
leading to a continuous change in the averaged response
curve (see small graph in Figure 1-H). This explains, in
part, the difficulty in identifying switches through stan-
dard experiments.

We proposed that an unbiased sampling across a
range of different conditions could address this issue
and help reveal the dynamic feature of gene switches. In
Figure 1-I we show analytically, potential response-
curves (the blue trajectories) in the whole state space of
a gene switch. Each sample within the system would
asymptotically approach one of the two possible steady
states (dark blue region). Since the on/off states are the
steady states which most cells will concentrated in upon
stimulation, the samples will have higher probability of
staying in these states, leading to a bimodal distribution
in the observed expression profiles. We use a ΔAIC
value (see METHOD) to capture whether a gene is
likely to show multistable behavior. Compare with sim-
pler criteria, such as separation and kurtosis [25], ΔAIC
is more reliable and more resistance to noisy data
(Additional file 1, Figure S1). The ΔAIC value is com-
puted by comparing the goodness of fit of the data to
either a Gaussian mixture model or a single Gaussian
model, and assesses whether a bimodal distribution can
explain the data better.

A Proof-of-Concept application of the E2F-Rb network
The E2F-Rb network is a well-characterized system in
mammalian cell fate determination, whereby the Retino-
blastoma (Rb) protein regulates the transcriptional fac-
tor, E2F, to control the restriction point for the G1-S
transition in cell cycle [26]. A simplified kinetic model
was constructed for the E2F-Rb system [15], in which
two genes Myc and CycD (Cyclin D: Cdk4,6) are acti-
vated by sufficient growth signal (serum) to induce E2F
activation, which then directs the synthesis of down-
stream factors, such as CycE for DNA replication. The
E2F self-activation and CycE-mediated E2F activation
constitute two positive feedbacks in the system. It then
was experimentally [15] confirmed that the level of E2F
switches ON or OFF for cell-proliferation and cell-cycle
arrest, respectively, suggesting E2F acts as a gene switch,
while CycD and Myc do not show such switch-like
behaviors.
We perform simulations based on the kinetic model

[15] to generate a synthetic gene-expression dataset.
The stimulation-response curve of a single-cell is shown
in Figure 2-A, and confirms a graded response for Myc/
CycD and bistable dynamics for E2F. The downstream
factor CycE, controlled by E2F, also shows a switch-like
response. Introducing a distribution in the expression
level to represent cell-cell variation within a clone, and
averaging multiple simulations (Figure 2-B) shows that
population averaging for any one condition disguises the
switch-like behavior and is indistinguishable from a
graded responses, which is consistent with previous RT-
PCR experiments [15].
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Figure 2 Proof-of-concept example: simulation of the E2F-RB network. The network structure and kinetic model are obtained from [15]. A)
Simulation of the kinetic model based on a fixed initial condition (provided in [15]) represents measurement at the single cell-resolution of the
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We then simulate 100 cell clones, each clone with a
random initial condition, and measure the steady state
expression level of the network components for each
clone. In this way we synthetically generate 100 “micro-
arrays” for 100 different conditions. It is clear genes that
have two steady states, i.e. E2F and CycE (effector of the
gene switch), exhibit two distinct modes in their expres-
sion profiles (Figure 2-C). Each gene’s ΔAIC value is cal-
culated from the synthetic expression data and the
switches exhibit higher ΔAIC values than the non-
switches. Thus ΔAIC can be used to rank and help
uncover genes that are bistable.

A Proof-of-Concept application to Yeast microarray data
We apply our mining approach to an integrated yeast
microarray dataset containing 500 yeast experiments
(see METHOD) and calculate the ΔAIC value for each
gene in the dataset. With such a large set of conditions,
the ΔAIC value is fairly robust (see Additional file 1,
Table S1, for a comparison of the ΔAIC ranking based
on different sub-sets of the data). A histogram of the
ΔAIC value among the yeast genes is shown in Figure
3-A. Most genes have low ΔAIC, and their expression
appear unimodal. However, a few genes have high ΔAIC
values and clearly show bimodality.
The genes with high ΔAIC values have distinct states

under different conditions. By collating and comparing
those conditions under the two distinct expression
states, one can potentially identify the phenotypes in
which the genes are functioning. Given that a phenoty-
pic ontology is not available, it is difficult to compare
conditions. Nevertheless, one approach is to categorize
conditions by the type of perturbations, e.g. heat shock
(with different temperature and length of time), hypo-
osmotic shock (different time points), and extra carbon
sources (different carbon source), etc., and check if one
of the two states of a putative switch is enriched within
a category of conditions. Using this approach, we cor-
rectly uncovered genes that have switch-like behavior,
namely GAL1, GAL2, GAL7 and GAL10 (Figure 3-C).
These genes all have ΔAIC values that rank among the
top 5% and show bimodality, with one of their two
modes containing conditions from the same category, i.
e. “adding extra carbon sources”. The bimodal profiles
show that by adding 2% (weight to volume) extra carbon
sources into the media, with the exception of galactose
as the extra carbon source, the expression of these four
genes shut down. It has been reported that these four
genes function in the same pathway for galactose utiliza-
tion, i.e., the well-known “GAL genetic switch” (review:
[27]). The addition of alternative carbon sources results
in “glucose-repression” of the GAL pathway. During this
process, the high level of glucose or other carbon
sources (other than galactose) induces the formation of

the repressor complex (protein Mig1p and Cyc8-Tup1)
and upon its binding to specific upstream repressing
sequences (URSG) on the GAL promoters, it prevents
the activation of these four GAL genes by the transcrip-
tion factor GAL4, thereby turning off the galatose utili-
zation pathway.
Current knowledge on the existence and functional

machinery of other gene switches is limited. However
we show next that by integrating information of the reg-
ulatory network and proteomic data, the genes with high
ΔAIC obtained from our analysis could be possible
switches or at least important genes with respect to the
phenotypes. We calculate the ΔAIC values of transcrip-
tion factors in the yeast transcriptional regulatory net-
work (based on binding motif data, see METHOD), and
observe that the leaf-nodes — genes that are only regu-
lated by one factor and are not regulating any other
transcription factors —— tend to have significantly
lower ΔAIC value (average ΔAIC = 135 ± 9 compared
with overall average ΔAIC = 223 ± 58 for transcription
factors, p < 0.01, also see Additional file 1, Figure S2).
These genes which have few regulators and do not tran-
scriptionally control transcription factors are less likely
to have feedbacks at the transcriptional level, and there-
fore switching dynamics. Thus the dynamic property we
infer of the molecular components within a network is
contingent on the network organization.
Next, we analyze single-cell proteomic data that

includes noise in the protein expression measurements.
We find a weak but significant negative correlation
between the ΔAIC value of a gene and its coefficient of
variation, which captures the noise of its protein expres-
sion (Figure 3-B and Additional file 1, Figure S3). This
suggests that genes with higher ΔAIC value, showing
bimodality, tend to express relatively lower levels of
noise. This observation that genes with lower expression
noise under normal conditions are more tightly con-
trolled highlights their importance in the network, and
is consistent with previous suggestions that gene
switches have noise-filtering capacity [4,5].

The Application in Human microarray data: Identifying
cancer molecular targets
We further apply the mining approach to an integrated
human gene expression dataset (ArrayExpress E-TABM-
185 [28]) which collated 5897 microarray experiments
performed on the same platform, across a wide range of
conditions and cell types, including normal human tis-
sues, carcinoma cells and tissues, hematopoietic cells,
and other diseases.
A similar ΔAIC distribution (Additional file 1, Figure

S4) is obtained where only a few genes show bimodality.
For example in Figure 4-A, we compare the histograms
of expression levels of two genes, DTL, which is bimodal
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and ranked 32nd in terms of differential expression, and
SNRPE, which is unimodal and ranked 6th. DTL, how-
ever, shows a bimodal distribution with respect to can-
cer/noncancer (Figure 4-A) and is more predictive based
upon information gain (27% for DTL vs. 25% for
SNRPE, see METHOD for the calculation), indicating
the prediction of the cancer phenotype based on DTL is
slightly better than SNRPE. This is consistent with pre-
vious studies where DTL was reported as an essential
regulator of the early G2-M checkpoints [29], and
assumes important roles in cell cycle progression and
differentiation [30]. DTL has been suggested as a gene
marker for breast [31] and prostate cancers [32], while
the SNRPE gene has not been reported to be associated
with cancer. Moreover, among the top 10 most differen-
tially expressed genes for distinguishing the cancer/non-

cancer phenotypes, those with higher ΔAIC values pro-
vide more information (Additional file 1, Figure S5). Fig-
ure 4-B shows the correlations between ΔAIC value and
the information gain for the top 5 most differentially
expressed genes and suggests that bimodality could be a
relevant feature in identifying potential molecular
targets.
This large integrated dataset [28] provides a sampling

of the state-space of the gene network, and interestingly,
the p53 gene (Figure 4-C), reported to be up-regulated
in response to DNA damage [33] shows bimodality.
This information cannot readily be obtained from com-
paring the expression data from just two conditions,
normal and g-irradiation [34] for instance (Figure 4-C).
Recent single cell measurements with high temporal
resolution observed p53 pulses with fixed amplitude and
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duration, suggesting an on/off rapid switching in the
p53 dynamics [35-37]. Although p53 is regulated coordi-
nately on multiple levels (transcription, translation, post-
translational modification), our analysis of bimodality
provide evidence to support a possible switching
dynamics of p53 at the transcriptional level.

Identify characteristic signatures of human breast cancer
We analyze a paired breast cancer/normal tissue expres-
sion dataset (GSE15852) [38] against the integrated
human gene expression dataset [28] to identify charac-
teristic signatures of human breast cancer. First, we cal-
culate the separation value D [39] for the top 10%
ranked genes by ΔAIC to examine whether the expres-
sions of these genes are bimodal when comparing the
breast cancer (1119) samples against all other pheno-
types (4,777 samples for ~300 conditions). Biologically
this indicates whether a gene potentially shows bistabil-
ity and could be involved in the “switching” or transition
to a breast cancer phenotype. D > 2 has been suggested
to indicate whether the separation into two Gaussian
distributions or modes is distinctive [39]. Considering
the large amount of noise in the microarray data, we
accept separation values of greater than or close to 2 (>
1.8) to indicate bimodality, which results in 17 genes
showing distinct bimodality in breast cancer.
Next, an independent microarray dataset (GSE15852)

with 43 paired breast cancer samples of diverse histo-
pathological characteristics is analyzed to test if the 17
genes are expressed differently and show distinct bimod-
ality in breast tumor as compared to normal breast tis-
sues. Comparing such “local” expression profile (paired
normal and cancer conditions) with the “global” expres-
sion profile (across various conditions) identified that of
these 17 genes, 12 genes (ESR1, SPDEF, IRX5, ERBB3,
ERBB2, CRABP2, RAB25, FXYD3, TACSTD2, DSP,
AGR2, CDH1) show bimodality in both datasets (Figure
5 shows the flow chart of the procedure). One type of
genes is bimodal within the breast cancer samples,
herein denoted Type 1, with estrogen receptor-alpha
(ESR1) having the highest separation. The other type of
gene switch shows predominantly one modality within
the breast cancer samples, herein denoted as Type 2,
and is where we find the TACSTD2 (a.k.a. Trop2) gene
having the highest separation value within this group.
Many of the genes that show Type 1 bimodal behavior

also exhibit the biomdality within the breast cancer
samples (Figure 5). Known therapeutic targets for breast
cancer, such as ESR1, ERBB2 (HER2) and ERBB3
(HER3), are identified as showing bimodality in their
gene expression level in breast cancer. Their bimodality
in the cancer samples represents well-known subtypes
in breast cancer, i.e. ER+/ER- and HER2+/HER2- sub-
types. ESR1 (estrogen receptor alpha) is a well-known

transcription factor involved in the development and
progression of breast cancer. Previous immunohisto-
chemical analysis showed a bimodal distribution in
estrogen receptors (ER) expression —— the majority of
breast cancer patients express either ER-negative (low
expression) or unambiguously ER-positive (high expres-
sion), of which (~80%) are ER+, while moderate ER
immunostaining is rarely observed [40]. This supports
our discovery of bimodality of the ESR1 gene expression
within the breast cancer samples. It has been a decade
since researchers attempted to explore the mechanism
underlying such an all-or-none expression pattern of
estrogen receptors. It was previously reported that the
ESR promoter activity is increased by co-transfection of
the wild-type ESR expression vector, suggesting a posi-
tive contribution of ESR to its own expression [41]. A
recent study uncovered that miR-375 is involved in a
forward feedback loop that regulates ESR1 expression,
whereby ESR1 enhances miR-375 expression and miR-
375 targets and reduces the expression level of RASD1
(ras dexamethasone-induced 1) gene, which is a tran-
scriptional inhibitor of ESR1 [42]. These studies provide
evidence of a potential positive-feedback (with a double-
negative circuit) induced bistability of the ESR1 expres-
sion, as shown in Figure 6-A, where the topology is
similar to the toggle-switch design in Figure 1-D. ERBB2
and ERBB3 interact with each other and are known to
be transcriptionally regulated by ESR1 [43]. A recent
study [44] identified a positive feedback of ERBB2
through the transcription factor c-Jun, which could pro-
vide a potential explanation for the bimodality observed
for ERBB2, as shown in Figure 6-B.
The molecular characterization of the Type 1 genes (e.g.

ESR, HER2) suggests the development of therapies for ER
+/PR+ and HER2+ would be effective for these breast can-
cer subtypes, however ~15-20% of the breast cancer tis-
sues expressing low levels of these biomarkers (i.e. triple
negative subtype) have poor prognosis and few treatment
options. Moreover, patients that are responsive to com-
monly used drugs, such as tamoxifen (estrogen antagonist)
and trastuzumab (anti-HER2 agent), eventually acquire
resistance to the drugs. ~30% of tamoxifen-responsive
tumors become resistant [45,46], and the resistance invari-
ably ensues at some point with trastuzumab. Given the
increase in resistance to drugs that target the ESR receptor
alternative therapeutic targets are needed.
The second type of potential gene switch, herein

denoted as Type 2, shows unimodal behavior in the
breast cancer tissue (Figure 5) and is differentially
expressed in almost all the paired breast tumor/normal
tissues as compared with non-breast cancer samples.
The top gene showing this type of switching behavior is
TACSTD2 (tumor-associated calcium signal transducer,
also known as Trop2). Type 2 gene switches uncovered
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by our analysis show a distinct state in the breast cancer
samples, and could be a potential biomarker or drug tar-
get that does not rely on the ESR receptor. We charac-
terized the TACSTD2 gene, and found it to be
distinctively expressed at higher levels in almost all of

the breast cancer samples, ER+/-, HER2+/- subtypes
(Figure 7-A). We confirm that the expression of
TACSTD2 gene is high in breast cancer cell lines MCF7
and MDA-MB-231 (Figure 7-B) as compared with non-
cancer cells (i.e. primary rat astrocyte).

Dataset:
Across a large variety of conditions

Top 10% ΔAIC genes – switches?

17  genes
switching for breast cancer?

Group 1
Two modes in breast cancer 

Group 2
One mode in breast cancer

Independent dataset
breast cancer / normal breast  sample

Search for bimodality
ΔAIC

Search for bimodality corresponding to a certain disease
Breast Cancer
Separation D>2

Turned ON/OFF in breast cancer compared with normal?

Breast Cancer samples

Other cancer/disease/normal samples

ESR1 TACSTD2

Bimodal in breast cancer samples

ESR1, ERBB3, ERBB2 TACSTD2……….
Two types of potential gene switches

Figure 5 Identification of potential gene switches for breast cancer. We analyzed the integrated dataset (E-TABM-185) that contains 5,896
samples from about 300 different conditions to search for bimodality in the gene expression profiles. Genes are ranked based on their ΔAIC
calculations, which represent the significance of bimodality in their expression profiles. The top 10%, or about 2000 genes that have the highest
ΔAIC values are selected to compute the separation D with respect to breast cancer, among which 17 genes are discovered to express at a
distinctive state in breast cancer as compared with all other conditions. An independent dataset (GSE15852, the dotted rectangle box in the
Figure) is then used to examine the expression profiles of this 17 genes. The dataset has 43 pairs of samples, each pair consists of a tumor tissue
and its adjacent non-tumorous tissue from the same patient. 12 of the 17 genes show different distribution between the breast cancer samples
and their paired normal samples. These 12 genes (ESR1, SPDEF, IRX5, ERBB3, ERBB2, CRABP2, RAB25, FXYD3, TACSTD2, DSP, AGR2, CDH1) fell into
two types of expression patterns. One type of genes, Type 1, shows bimodality within the breast cancer samples, and they are differentially
expressed in some but not all of the paired dataset of breast cancer and normal samples. In other words with Type 1, the normal samples are in
the OFF mode while the breast cancer samples contain both ON and OFF states. The other type of gene switch, Type 2, shows predominantly
one modality in the breast cancer samples (ON) vs. in normal samples (OFF), thus the genes are differentially expressed in almost all breast
cancer/normal pairs.
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Currently little is known about the regulation of
TACSTD2. Promoter analysis (Figure 8) identified CREB
as a potential transcription factor that regulates the
expression of TACSTD2. We observe a significant
increase in the correlation between the expression level
of CREB and TACSTD2 in the breast cancer samples.
The correlation coefficients in the normal breast tissue
are 0.15, 0.06, 0.03 for the three CREB probes in the
Affymetrix array, and the correlation coefficients in the
breast tumor tissues are 0.46, 0.21, 0.31, respectively,
suggesting CREB could regulate TACSTD2.
To assess the possible switching behavior and regula-

tion by CREB of TACSTD2, we performed flow cytome-
try to probe the TACSTD2 protein level at single-cell
resolution. For both MCF10A and MCF7 breast cell
lines the TACSTD2 protein level shows a bimodal dis-
tribution in their cell population (Figure 7-D E F),
which is a property of a bistable system. We stimulated
the cells with FI (Forskolin and IBMX) to induce cAMP,
which is an activator of CREB [47], and measured the

TACSTD2 levels. Both TACSTD2 mRNA and protein
levels increased significantly upon stimulation (Figure 7-
C, and Figures 7-D, E, respectively; for quantification of
flow cytometry results see Additional file 1, Table S2),
thereby supporting a possible transcriptional regulation
by CREB. Upon activation of TACSTD2 by FI, a
decrease in one of the modes with a concomitant
increase in the other mode, instead of a gradual increase
in the protein level, (Figure 7-DE) is indicative of a
switching behavior. The activation essentially increases
the number of cells with TACSTD2 levels at the ON
state and decreases the cells with TACSTD2 at the OFF
level. In contrast, the expression of the TACSTD2 pro-
tein in primary rat astrocytes shows a unimodal expres-
sion under the same test conditions. Furthermore
stimulation of astrocytes by FI leads to a non-significant
change in the protein level and with the cells predomi-
nantly remaining in the OFF steady-states (Figure 7-F).
The activation of TACSTD2 has been suggested to

transduce calcium signal, likely by mediating calcium

ESR1 RASD1miR-375

ERBB2 BEX2c-Jun

TACSTD2

ERK1/2

c-Fos AP-1 pCRE

Cyclin D1/E

p27

Promote G1-S transition and proliferation
leading to increased tumor growth

Ca2+

c-Fos AP-1 pCRE

Cyclin D1/E

p27

inhibit gene expression of ESR1

bind to putative promoter
and activate transcription

target and inhibit

activate expression 
and phosphorylation

activate gene expression

bind to promoter
enhance the c-Jun induced expression

Hypothetic

increase cytosolic Ca2+

?

de-regulated activation
in tamoxifen resistance

de-regulated in 
trastuzumab resistance

A

B

C

Figure 6 The potential regulatory mechanism of the identified gene switches for breast cancer. A) ESR1 activates the transcription of a
microRNA, miR-375, probably by binding to the putative promoter of the microRNA. miR-375 targets and inhibits the expression of RASD1 (ras
dexamethasome-induced 1) gene, which is an inhibitor of the ESR1 gene expression. With this positive feedback, ESR1 can activate its own
expression by reducing the inhibition of RASD1 through activation of miR-375. This model was suggested by [42]. B) ERBB2 activates the
expression and phosphorylation of transcription factor c-Jun, which is able to bind to the promoter of ERBB2 to further induce ERBB2
transcription. This potential positive feedback is likely enhanced through c-Jun dependent activation of BEX2 (brain expressed X-linked 2) gene.
This model was suggested by [44]. C) A hypothetical regulatory role of TACSTD2 in breast cancer cells. The activation of TACSTD2 increase the
cytoplasmic calcium (Ca2+) level, which could in turn activate CREB and the MAPK/ERK pathway through calmodulin-dependent protein kinases
(e.g. CaMKII). The activated MAPK pathway can increase the expression of cyclin D1 and cyclin E as well as reduce the level of CDK inhibitor,
p27, to thereby promote cell proliferation. The activated CREB could bind to the promoter of TACSTD2, and form a positive feedback to
promote and maintain the ON state of TACSTD2. Tamoxifen resistance is associated with the disregulation (high expression level) of c-Fos, AP-1
and pCREB activation [68], which could possibly be mediated by a constitutive ON state of TACSTD2. Trastuzumab resistance is associated with
the disregulation of p27 and cyclin D/E (constitutive activation of cyclin D/E and the reason is unclear) [69], which could be modulated by
activation of TACSTD2.
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release from intracellular stores [48]. It has been shown
that the cross-linking (stimulation) of the TACSTD2
gene leads to a significant rise in the cytoplasmic cal-
cium (Ca2+) level [48]. The release of calcium can acti-
vate CREB [49] and the MAPK/ERK pathway [50]

through calmodulin-dependent protein kinases (e.g.
CaMKII). Indeed it is reported [51] in murine system
that a high level of TACSTD2 can activate MAPK sig-
naling to induce c-Fos and AP-1. This results in ele-
vated levels of CycD1 and CycE as well as reduced
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Figure 7 The switch-like behavior of TACSTD2 in breast cancer and its regulation. A) The scatter plot shows the gene expression level of
TACSTD2 in the samples of breast cancer and other phenotypes from the integrated microarray dataset (E-TABM-185). Each datapoint in the
scatter plot represents the TACSTD2 expression in one of the samples, with the x-axis indicating the expression level (the values are Log2
(microarray-Signal)). In order to show all the samples, the values in y-axis are randomly generated to reduce the overlap between samples with
similar TACSTD2 expression level. The breast cancer samples and the breast cancer cell lines, MCF-7 and MDA-MB-231, are separated from other
samples for better comparison. Subtypes of breast cancers are determined by their expression levels of ESR1, PR, and Her2. Overall TACSTD2 is in
the ON state for 99% of all breast cancer samples in the dataset (Additional file 1, Table S3). B) The TACSTD2 mRNA levels in human mammary
epithelial cell line, MCF10A, in breast cancer cell lines, MCF7 and MDA-MB-231, and in primary rat astrocytes were measured by quantitative real-
time PCR (n = 3). **: p < 0.01, ***: p < 0.001. A line indicates comparison between the two bars connected by the line. C) The mRNA-fold
change of TACSTD2 in human mammary epithelial cell line and the different breast cancer cell lines upon FI treatment. Quantitative real-time
PCR was performed to measure TACSTD2 mRNA expression levels in MCF10A, MCF7, and MDA-MB-231. The untreated cells (controls) and cells
treated with 10 μM forskolin and 100 μM IBMX (FI) for 1 day (n = 3) are shown. **: p < 0.01, ***: p < 0.001. D), E), F) Flow cytometry analysis of
TACSTD2 expression in MCF10A, MCF7 and primary rat astrocytes (Black lines). The cells were treated with 10 μM forskolin and 100 μM IBMX (FI)
for 1 day (Red lines) and the two modes of TACSTD2 in MCF10A, MCF7, and primary astrocyte cell population are pointed out by the blue
arrows. Note the primary astrocytes have only one mode.
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levels of the CDK inhibitor, p27, which together can de-
regulate and promote cell proliferation [51].
In light of these studies, our analysis uncovered

TACSTD2 gene to have a switch-like behavior, with
CREB as a possible regulator, which is activated in
breast cancer and modulates the transcription of
TACSTD2. CREB can provide a positive feedback in the
transcriptional regulation of TACSTD2 (Figure 6-C), to
thereby support a bimodal distribution in TACSTD2
expression and possible bistable behavior.

Discussion
Mining approach to identify gene switches
Researchers recognized that “genetic switches” behave in
a discrete manner, but this feature is usually lost in

biochemical analysis of large cell populations due to the
difficulty in distinguishing between changes in the pro-
portion of cells and their expression level in the two
states [9]. For example, it is hard to determine from
population measurements whether the expression level
of a gene increases gradually by 70%, or whether 70% of
the cells are “switched” ON. In this study, we provide
an alternative approach to identifying possible gene
switches by capitalizing upon the large amount of avail-
able microarray data. The large sample set enables the
characterization of the state space by uncovering the
presence of the two attractor-states where the majority
of the samples should fall. Thus, if an ON/OFF switch
behavior exists in a system the state space will show
bimodality or bistability, which are relatively stable with

JASPAR MatrixTRANSFAC Matrix

Figure 8 CREB binding sites on the promoter of TACSTD2. We extracted the promoter sequence of TACSTDs from TRED (the Transcriptional
Regulatory Element Database, http://rulai.cshl.edu/TRED), and searched for the CREB binding sites by comparing the promoter sequences with
the position weight matrix (PWM). The TRANSFAC http://www.gene-regulation.com and the JASPAR http://jaspar.genereg.net/ databases provide
different versions of CREB binding PWM. Nevertheless, there are four potential CREB binding sites that are predicted by both of the PWMs on
the promoter of TACSTD2.
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respect to perturbations [52]. It has been suggested that
bistability or multiple steady states [23] exists in large
gene networks [53,54], and these attractor-states repre-
sent different phenotypes [23]. Thus, by sampling across
different conditions, which are less affected by popula-
tion averaging, one can reveal this dynamic feature of
regulatory networks.
Our mining approach demonstrates that in the

absence of a priori knowledge of the specific network
architecture, one can capitalize on genome-wide expres-
sion profiling to capture dynamic properties of a com-
plex network.

Meta-analysis of expression data
The increase in publically available microarray reposi-
tories provides a tremendous potential for data mining
to unravel knowledge of cellular processes. Current
approaches that integrate and analyze the wealth of
expression data continues to emerge. The concept of
“meta-analysis” comes from statistics and has been
extended to integrate analysis of expression data. How-
ever most of the current studies have focused on data-
base comparison, integration, and clustering [55].
Furthermore, the statistical analysis of combining data-
sets of differentially expressed genes [56-58] have been
used primarily to enhance the statistical power, i.e. redu-
cing false discovery rate, as oppose to providing insight
into the biological mechanisms.
Our study provides a different perspective that takes

advantage of the large integrated set of expression data,
and suggests a mechanism-based framework to perform
the meta-analysis. This approach of integrating microar-
ray data from a diverse set of conditions provides a
common “context” of gene behaviors, whereby one can
obtain a better understanding of the specific function of
a gene for a particular condition under investigation.
The example of p53 expression, shown in Figure 4-C is
a case in point. p53 is known to be a major regulator in
response to DNA damage [33], however it is difficult to
identify from a small set of microarray experiment (E-
MEXP-549, 21 samples, collected under the condition of
DNA damage response) since it does not appear in the
top ranked differentially expressed genes ([34], http://
www.ebi.ac.uk/gxa/experiment/E-MEXP-549). This is
likely due to its multi-level regulation (transcription,
translation, post-translational modification) and also the
lack of appropriate control conditions in the experiment.
Nevertheless, by comparing the small set of samples
against the global expression of the integrated dataset
provides a “context”, whereby one observes a significant
reduction in the variance in expression within the small
set of microarray experiment (E-MEXP-549), and sug-
gests tightly-controlled regulation of this gene in DNA
damage response.

Although p53 has both switching and oscillation
dynamic features [35-37], we only discovered and dis-
cussed its switching property with our novel approach.
Our approach identifies switch-like behavior based on
the bimodal distribution induced by the feature of bist-
ability. Oscillatory dynamics could have multiple (more
than two) steady states and furthermore, the cells in the
microarray experiments are not necessarily synchronized
according to the periodic feature of the oscillation
dynamics being investigated, thereby making it difficult
to uncover this type of dynamics. Our approach is
designed to discover gene switches and currently cannot
be directly apply to identify oscillatory dynamics.

TACSTD2 is an attractive candidate for drug therapy of
breast cancer
Our mining approach uncovered a unique expression
pattern of TACSTD2 in breast cancer, and experiments
confirmed TACSTD2 show bimodal behavior in breast
cancer cell lines. TACSTD2 (Trop2) is a cell surface gly-
coprotein, first discovered to be highly expressed in tro-
phoblast cells that become invasive and metastasized to
form the outer layer of blastocyst in embryo develop-
ment [59]. Recent studies, along with our analysis of
breast cancer samples, found TACSTD2 to be highly
expressed in a variety of epithelial cancers and show low
to no expression in normal somatic cells. High expres-
sion of TACSTD2 in squamous-cell carcinoma [60],
pancreatic [61], colorectal [62] and gastric [63] cancers
have been associated with poor prognosis and higher
incidence of metastasis and death. TACSTD2 was iden-
tified as an oncogene in colorectal cancer cells [64].
Although not essential for cell proliferation under nor-
mal condition, ectopic expression of TACSTD2
enhances anchorage-independent cell growth, promotes
tumorigenesis and metastasis in colon cancer cells.
Knock-down or inhibition of the protein reduces the
invasiveness of aggressive colon cancer cells [64]. In our
analysis we also found TACSTD2 to be highly expressed
in many colon cancer samples and shows bimodality
(Additional file 1, Figure S6), however the percentage of
colon cancer samples with TACSTD2 at the ON state
(~60%) are less than in breast cancer (~99%), suggesting
TACSTD2 could be a better target for breast cancer.
In previous microarray analysis of breast tumors, [65]

Huang et al. studied “aggregate patterns of gene expres-
sion” with respect to lymph node status and recurrence,
and identified “metagenes” that could predict the out-
comes of the patients. TACSTD2 is found among the
metagenes in their list; however the list consists of more
than a hundred genes with potential predictive value. In
contrast, we find the TACSTD2 gene to be the top gene
in the list (Additional file 1, Table S3) that shows the
Type 2 behavior. Interestingly, the distinctive HIGH/
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LOW expression level of the TACSTD2 gene has been
implicated as a marker for stem cell characteristics in
prostate basal cells [66] and hepatic oval cells [67]. The
prostate basal cells and hepatic oval cells, considered
progenitor cells, show HIGH expression of the
TACSTD2 gene and maintain self-renewal capability
[66,67], and thereby implicating a potential role of
TACSTD2 in cancer initiating stem cells.
Although TACSTD2 has been reported to be asso-

ciated with cancer, the regulatory mechanism of
TACSTD2 remains unclear. Combining computational
prediction and experimental analysis, we found that
CREB could regulate TACSTD2 in breast cancer cells,
and suggest a potential feedback structure of TACSTD2
regulation (Figure 6-C). To the best of our knowledge,
this is the first regulatory circuit discovered to control
TACSTD2 expression.
Studies of tamoxifen-resistant breast cancer cells

found these cells develop altered activation of CREB
and AP-1 [68], which we speculate could be related to
TACSTD2 signaling. Trastuzumab resistance in HER2
+ breast cancer cells is reported to involve elevated
CycE expression level which is associated with the
desensitization of p27 regulation [69]. Given that
TACSTD2 could increase CycE level by inhibiting
p27, it provides a possible mechanistic connection
with the TACSTD2 gene as a potential target for
ERBB2/HER2 regulation and trastuzumab resistance
(Figure 6-C).
Overall, our computational analysis demonstrate a dis-

tinctively high expression of TACSTD2 in almost all ER
+/-, HER2+/- subtypes of breast cancer. Experiment
shows that TACSTD2 expression is high in breast can-
cer cell lines, MCF-7 and MDA-MB-231 (Figure 7-B),
and FI treatment enhances the expression of TACSTD2
(Figure 7-C and Additional file 1, Table S2). Comparing
MCF-7 (an ER+/ERBB- cell line) and MDA-MB-231 (a
triple negative cell line) cells, many more cells in the
MDA-MB-231 than in the MCF-7 cell line have
TACSTD2 in the ON state (Additional file 1, Table S2
and Figure S7). In fact most cells in the MDA-MB-231
cell line have TACSTD2 turned ON. This observation,
together with the information extracted from the micro-
array data (Figure 7-A), highlights TACSTD2 as an
important biomarker for both ER+ and ER- breast can-
cer subtypes, as well as an attractive candidate for drug
therapy against the triple negative (ER-, PR- (progester-
one receptor) and HER2-) subtype of breast cancer, with
potential implications for treating drug-resistant cases
that are non-responsive to ER/HER2-targeted therapies.
In addition, the presence of TACSTD2 on the cell sur-
face makes it more accessible to antibody-based
therapeutics.

Conclusions
We propose a top-down mining approach to exploring
gene switches on a genome-scale level. Our mining
approach demonstrates that in the absence of a priori
knowledge of the specific network architecture, one can
capitalize on genome-wide expression profiling to cap-
ture dynamic properties of a complex network. To the
best of our knowledge, this is the first attempt in apply-
ing mining approaches to explore gene switches on a
genome-scale. By applying the computational analysis
on human microarray data, we uncovered a unique
expression pattern of TACSTD2 in breast cancer, and
experiments confirmed TACSTD2 show bimodal beha-
vior in breast cancer cell lines, further, our perturbation
study suggest a potential bistable mechanism is involved.
To the best of our knowledge, this is a first case a single
cell level bimodality and bistability can be predicted
from microarray data. Combining our computational
and experimental analysis, together with previous stu-
dies in the literature, we suggest TACSTD2 could be an
attractive candidate for drug therapy against both ER+
and ER- subtypes, including possibly the triple negative
(ER-, PR- (progesterone receptor) and HER2-) subtype
of breast cancer, and finally with potential implications
for treating drug-resistant cases that are non-responsive
to ER/HER2-targeted therapies.

Methods
1. Kinetic models and simulation
The ordinary differential equations (ODEs) for synthetic
system in Figure 1-A are as follows:

dA
dt

= p
[

A2

1 + A2

] [
1

1 + R2

][
1 − A

2.5

]
− deg(A)

R(i) = 10
[

1 − Ki

1 + Ki

]

A represents the expression level of Gene A, pA2/[1
+A2] describes the self-binding and activation of the
transcription, and 1/1+R2 is the effect of the repressor,
in which R depends on the stimulation i–the concentra-
tion of the inhibitor i. deg(A) is a linear function for the
degradation of A. The model is constructed by [24] for
a mammalian cell system.
The ordinary differential equations for synthetic sys-

tem in Figure 1-D are as follows:

dA
dt

=
a

1 + B2
− deg(A)

dB
dt

=
a

1 + A2
− deg(B)
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A, B represents the expression level of Gene A and B,
respectively. a is a parameter about the strength of the
cross-repression of the two genes. deg() is a linear func-
tion for degradation. The model is constructed by [16]
in E.Coli.
The kinetic equations and parameters for the E2F-Rb

system is obtained from the previous study by Yao et al.
[15].
ODEs are implemented in MATLAB and numerically

simulated with Runge-Kutta Method. Multiple simula-
tions with different initial conditions are performed with
customized MATLAB codes.

2. Quantifying the bimodality
Usually researchers use the DIP statistics [70] or Gaus-
sian mixture model to [25]http://www.astro.lsa.umich.
edu/~ognedin/gmm/ identify bimodal distributions. The
DIP method provides a statistical test for uniform distri-
bution (the null distribution is uniform; data distribution
is estimated by empirical kernel function and compared
with the null distribution). But what is needed is not
only a quantity for bimodality, but also an explicit
separation of the conditions into two categories corre-
sponding to two expression levels, thus we choose the
Gaussian mixture model. The Expectation Maximization
algorithm is implemented to separate the data distribu-
tion into two Gaussian models. We compare the fit of
the data to the two Gaussian models vs. the one Gaus-
sian model to see if the distribution is bimodal. The cri-
terion used to assess the fitting is the Akaike
information criterion from information theory.

AIC = 2k − 2log (L)

Where k represents the number of parameters, and L
is the goodness of fit, defined by the likelihood of obser-
ving the data given the model (one or two Gaussian in
this case). The lower the AIC value, the better the
model fits the data. Thus we defined a “ΔAIC “ value as:

�AIC = AIC1 − AIC2

in which AIC1 is the AIC of the gene expression pro-
file assuming a unimodal distribution, while AIC2

assumes the profile is a bimodal distribution. ΔAIC
compares the fit with a unimodal vs. a bimodal distribu-
tion. The higher the ΔAIC value, the more likely the
expression profile shows bimodality. Comparing with
simpler criteria such as separation and kurtosis, ΔAIC is
more reliable, and is more resistance to noise in data
(see Additional file 1, Figure S1).
ΔAIC provides a measure for an “unconditional”

bimodality in which the profiles show bimodal but the
condition for the “switch” is yet to be investigated.
When a particular condition is specified (e.g. “the breast

cancer phenotype”), the separation D can be used to
identify if there is a distinct state for the condition, or, a
“conditional specific” bimodality:

D =
| μ1 − μ2 |√

σ2
1 + σ2

2

2

Where (μ1, s1) are the mean and deviation of samples
in the specified condition, while (μ2, s2) are the mean
and deviation for all other samples.

3. Datasets
The “Mega Yeast Gene Expression Data” is downloaded
from http://gasch.genetics.wisc.edu/datasets.html. The
dataset contains 500 yeast microarray experiments. The
conditions include environmental stress [71], cell cycle
[72], sporulation and various other perturbations. A
yeast putative transcriptional regulatory network based
on the known motifs on the gene promoters is obtained
from the YEASTRACT database [73]. Information on
the noise of the yeast protein expression is extracted
from the Integrate Single-cell Proteomic Analysis data
[74].
The human gene expression dataset (ArrayExpress E-

TABM-185) is a per platform integration provided by
ArrayExpress database http://www.ebi.ac.uk/arrayex-
press/. The dataset integrates (and normalized) 5897
microarray experiments performed on the same Affyme-
trix GeneChip Human Genome HG-U133A platform
[28]. A variety of conditions and cell types are involved,
including normal human tissues, carcinoma cells and
tissues, hematopoietic cells, Alzheimer’s disease, asthma,
Down syndrome, Huntington’s Disease, etc. Although it
is an integration of experiments from different sources
(different labs), the providers have cleared and normal-
ized the dataset such that “the biological signal in these
data is significantly stronger than the laboratory effects”
[28].

4. Calculating information gain to identify prediction
value of genes
Based on information theory, we apply Shannon Entropy
to represent the uncertainty of the phenotypes, which is
defined as:

H(X) = −
n∑

i=1

p(xi) log p(xi)

where X is the sample set (dataset with different phe-
notypes), p(xi) is the probability (calculated by fre-
quency) that the sample exhibits a particular phenotype
or category of phenotypes. Conditional Entropy is then
calculated to identify the uncertainty retained given the

Wu et al. BMC Genomics 2011, 12:547
http://www.biomedcentral.com/1471-2164/12/547

Page 16 of 19

http://www.astro.lsa.umich.edu/~ognedin/gmm/
http://www.astro.lsa.umich.edu/~ognedin/gmm/
http://gasch.genetics.wisc.edu/datasets.html
http://www.ebi.ac.uk/arrayexpress/
http://www.ebi.ac.uk/arrayexpress/


extra information, i.e. the expression level of a gene:

H(X | Y) =
∑
y∈Y

p(y)H(X | Y = y)

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(y)

p(x, y)

Here Y represents the expression level of a gene. Since
the expression level is continuous, we discretize this
attribute into several categories with equal frequency.
Choosing different number of categories in the discreti-
zation changes the entropy value in the calculation but
does not affect the comparison made in estimating the
contribution of genes to the prediction of the
phenotypes.
Thus, the entropy reduction (or percentage of infor-

mation gain) can be defined as

H(X) − H(X | Y)
H(X)

%

which represents the contribution of gene Y to the
prediction of the phenotype (defined by the reduction in
the uncertainties given the information of gene Y).

5. Experimental studies of TACSTD2
Cell culture and materials
Human mammary epithelial and breast cancer cell lines
were obtained from Dr. Kathleen Gallo in Michigan
State University. MCF7 and MDA-MB-231 were cul-
tured in Dulbecco’s modified Eagles’s media (DMEM,
Gibco BRL, Paisley, PA, USA) with 10% fetal bovine
serum (FBS), 2 mM glutamine and penicillin/streptomy-
cin. MCF10A cells were cultured in DMEM/F12(1:1)
with 5% horse serum, 10 ug/ml insulin, 20 ng/ml EGF,
100 ng/ml choleratoxin, 0.5 ug/ml hydrocortisone and
pen/strep. Primary astrocytes were maintained in
DMEM/F12 (1:1) plus 10% FBS and pen/strep. Cells
were maintained at 37°C and 10% CO2. Forskolin
(Sigma, St. Louis, MO, USA) and isobutylmethyl-
xanthine (IBMX) (Sigma) were used at the concentra-
tions of 10 M and 100 M, respectively.
Quantitative real time polymerase chain reaction
mRNA was extracted using the RNA extraction kit (Qia-
gen, Valencia, CA, USA), then mRNA was reverse tran-
scribed into cDNA using the cDNA synthesis kit (Bio-
Rad, Hercules, CA, USA). The following primer sets
(Operon, Huntsville, AL, USA) were used for PCR:
human-TROP2 (5’- GAGATTCCCCCGAAGTTCTC
-3’,5’- AACTCCCCCAGTTCCTTGAT -3’), rat-TROP2
(5’-TACTGCTACTGCTGGCGATC-3’,5’-GCAGGCACT
TGGAAGTTAGC-3’), rat-actin (5’-CTCTTCCAGCC
TTCCTTCCT-3’, 5’-AATGCCTGGGTACATGGTG-3’),

human-actin (5’- TGGACTTCGAGCAAGAGATG -3’,
5’- AGGAAGGAAGGCTGGAAGAG -3’). Amplifica-
tions of the cDNA templates were detected by SYBR
Green Supermix (Bio-Rad) using Real-Time PCR Detec-
tion System (Bio-Rad). The cycle threshold values were
determined by the MyIQ software.
Flow cytometry
Cells were washed with PBS and collected by trypsiniza-
tion. Cells were then incubated with TACSTD2 primary
antibody (BD bioscience, CA, USA; Santa Cruze, CA,
USA) at 4°C for 30 min. After washing twice with wash
buffer, the cells were incubated with Alexa Fluor-488
conjugated goat anti-mouse secondary antibody for 30
min at 4°C in the dark. Cells were washed twice with
wash buffer and resuspended in staining buffer, and
then subjected to flow cytometry analysis by BD
FACSVantage.
Statistical analysis
All experiments were performed at least three times, the
results were shown as mean ± standard deviation, and
representative results are shown. Statistical analysis were
performed by an unpaired, two tail student t-test. * indi-
cates p < 0.05, ** indicates p < 0.01 and *** indicates p <
0.001.

Additional material

Additional file 1: Supplementary Tables and Figures. Supplementary
Tables S1-S3 and Supplementary Figures S1-S7.
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