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A B S T R A C T   

The recent pandemic Coronavirus disease-19 outbreak had traumatized global countries since its origin in late 
December 2019. Though the virus originated in China, it has spread rapidly across the world due its firmly 
established community transmission. To successfully tackle the spread and further infection, there needs a clear 
multidimensional understanding of the molecular mechanisms. Henceforth, 942 viral genome sequences were 
analysed to predict the core genomes crucial in virus life cycle. Additionally, 35 small interfering RNA transcripts 
were predicted that can target specifically the viral core proteins and reduce pathogenesis. The crystal structure 
of Covid-19 main protease-6LU7 was chosen as an attractive target due to the factors that there were fewer 
mutations and whose structure had significant identity to the annotated protein sequence of the core genome. 
Drug repurposing of both recruiting and non recruiting drugs was carried out through molecular docking pro-
cedures to recognize bitolterol as a good inhibitor of Covid-19 protease. The study was extended further to screen 
antiviral phytocompounds through quantitative structure activity relationship and molecular docking to identify 
davidigenin, from licorice as the best novel lead with good interactions and binding energy. The docking of the 
best compounds in all three categories was validated with molecular dynamics simulations which implied stable 
binding of the drug and lead molecule. Though the studies need clinical evaluations, the results are suggestive of 
curbing the pandemic.   

1. Introduction 

Coronaviruses are giant viruses with positive single stranded RNA 
genomes with characteristic crown like structures called spikes [2]. 
These viruses are widespread in animals and bats, but very few are re-
ported to affect humans. By the end of December 2019, there was a 
cluster of pneumonia-like severe respiratory illnesses in Wuhan, China, 
and it is reported that a novel coronavirus is responsible [9]. The recent 
emergence of a novel coronavirus is named as SARS-CoV2 due to its 
similarities with the past pandemics of coronaviruses, Severe Acute 
Respiratory Syndrome (2002) and Middle East Respiratory Syndrome 
(2012) [24]. On March 11th 2020, the World Health Organisation 
(WHO) has declared the coronavirus disease (CoViD-19), a pandemic 
and as per the situation reports on June 10th, 2020, there stands 7, 145, 
539 confirmed cases and 408, 025 deaths across the world (www.who. 
int.) The virus is airborne and the symptoms include fever, cough, 
gastrointestinal disorders, causes cytokine storm, and ultimately death. 
Spread of the virus is due human to human transmission and thereby 

community transmission at an alarmingly increased rate [8,6]. 
Research is growing in leaps and bounds across the world to inves-

tigate effective interventions to considerably stop the spread of conta-
gious novel coronavirus [53]. Currently studies including reverse 
vaccinology [18], deep learning networks in the diagnosis [8], are 
proposed. There are 2,251 studies under evaluation by clinical trials 
(clinicaltrials.gov/) including dozens of antiviral drugs like ramdesvir, 
and favipiravir [16](www.covid19treatmentguidelines.nih.gov) mRNA 
therapies [63], and diagnostics for CoViD-19. To deal with the difficult 
situation advancements of computational biology techniques, offer fast 
paced diagnostics and solutions [30] whereas a combination of geno-
mics, transcriptomics, proteomics, and metabolomics approaches will 
join the dots to arrive at the key to curb the viral pathogenesis from all 
possible directions [25,59]. Pan-genome analysis is a method to 
enumerate from the entire repertoire of genomes or coding sequences, 
the core genes that are shared by all the strains and accessory genes that 
are shared in the subset of genes. The core genomes summarily contain 
the majority of genes involved in viral life cycle and multiplication 
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whereas dispensable or accessory genes are minimally essential to the 
viral pathogenesis [69]. Small interfering RNAs are exogenous, which 
have an external origin and enter the cell during an RNA viral infection 
[15]. They are recognised by dicer-drosha complex systems as exoge-
nous nucleic acids, which are processed by the argonaute protein and 
initiate cleavage of the exogenous RNAs such as the viral genome or 
viral mRNA [34]. Hence the viral amplification and pathogenesis are 
restricted. As we already know molecular docking, quantitative struc-
ture activity relationships and molecular dynamics altogether offer an 
excellent source of drug screening and development. The decisive aspect 
of the computational approaches is dependent on the analysis of large 
datasets and arriving at an accurate conclusion [29]. 

Viral pathogenesis is multifaceted and hence the investigation 
adhered in the study would be the need of the hour. This study aims to 
identify the promising core genome fragments from the complete 
genome sequences of SARS-CoV-2 and small RNA transcripts that can 
target the core genes. A comprehensive analysis of conserved genes 
across multiple isolates proposes to reveal potential protein targets. The 
research as well focuses on drug repurposing of already available drugs 
using high throughput molecular screening protocols, in addition we 
intend to identify potent natural compound inhibitors of the chosen 
target protein. The present study has extensively evaluated the SARS- 
CoV2 geneome to curb and evade viral pandemic. 

2. Methodology 

2.1. Pan genome analysis 

A total of 942 sequences representing all the countries were retrieved 
and pan genome analysis was performed using the Nucmer algorithm of 
the Spine webserver, and predicted the conserved core genome 

fragments along with the accessory genome fragments [68]. The top ten 
core genome fragments were clustered using clustage tool [47]. Genes 
coded by both core and accessory fragments were predicted based on the 
ab initio gene finding program FGENESH [51]. The motifs and domains 
of the core fragments were also identified from the pfam [21] database. 

2.2. Identification of siRNAs to target the core genomes 

Small Interfering RNAs are significant key factors in eliminating viral 
infections. The siRNAs with ~ 20 base pairs are exogenous and are 
proven to suppress viral pathogenesis [40]. The preliminary step was to 
identify the siRNAs already available in the database VirSiRNA [62] 
with the core fragments being the query sequences due to the fact that 
off target effects are reduced and strong antiviral activity [20]. From the 
resultant 196 hits of siRNA predicted for SARS virus, mutually efficient 
against SARS COV-2, only those with high silencing efficiency above the 
threshold of 85% were filtered. The guide strands and the 3′ UTR 
matching seed regions were predicted with high scores and matches 
above 4, respectively. Few additional siRNAs were modeled from the 
core genomes using InvivoGen’s siRNA wizard software. Understanding 
virus host interaction is the most significant feature in any viral patho-
genesis [10] and so predicting the host genes targeted by the viral core 
genes. Host - SARS CoV2 viral interactions were identified from the 
literature [23] and a network plot of interacting siRNAs, viral targets, 
and human interactions were constructed using cytoscape. 

2.3. Compounds selection and optimisation 

A total of 18,000 recruiting, non-recruiting, and FDA approved drugs 
were retrieved from the website clinicaltrials.gov. One thousand (1,000) 
antiviral natural phytocompound libraries were identified and retreived 

Fig. 1. Core genome fragments clustered with clustage tool.  
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from Traditional Knowledge Digital library (http://www.tkdl.res.in) 
and Indian Medicinal Plant Phtochemicals And Therapeutics database 
(https://cb.imsc.res.in/imppat/home). All the retrieved 3-D compounds 

were prepared and optimized with the ligprep module using OPLS 2005 
force field. Stereoisomers were limited to 10 per ligand structure and 
only the ligand with the least energy was taken further [50,17]. 

Fig. 2. A(Left) Complete interactions of siRNAs with the viral targets and the human guide strands. SiRNAs of SARS-CoV are represented in pink color and siRNAs of 
SARS-Cov2 are shown in Orange colour. The human targets are shown in green and the viral targets in blue. Fig. 2B (right) shows the significant interactions of the 
clusters with SiRNAs of SARS-CoV are represented in green color and siRNAs of SARS-Cov2 are shown in Orange colour with viral targets in cyan. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Silencing RNAs of CoViD-19.  

S. No siRNA Target Sequence Inhibition efficacy GC% 

1 virsi2257 ORF5, M AACCUAGUAAUAGGUUUCCUA 91 33 
2 virsi1323 N GAACAAACCCAAGGAAAUU 83 37 
3 virsi1304 N GAACAAACCCAAGGAAAUU 94 37 
4 virsi1374 N UCAAGGAACAACAUUGCCAAA 51 38 
5 virsi1382 N AAUAAUACUGCGUCUUGGUUC 80 38 
6 virsi2267 ORF9a, N-Protein AAAUUGGCUACUACCGAAGAG 91 43 
7 virsi1330 Pol UAUGACUAUGUCAUAUUCA 80 26 
8 virsi2233 ORF1b, NSP-13 AAGGUGACUAUGGUGAUGCUG 92 48 
9 virsi1351 S AUCUGUUCUCUAAACGAAC 93.4 35 
10 virsi2241 orf1, spike AACCUUACAGAGUUGUAGUAC 91 32 
11 VIRSI2237 ORF2, Spike AAGCUCCUAAUUACACUCAAC 91.2 35 
12 VIRSI1584 3CL Protease GGAUGAAGAAGAUGGCCAU 91 40 
13 VIRSI1696 E CGGAGACAUCAGACAACUA 90  
14 VIRSI1611 NS1 GGAUGAAGAAGAUGGCCAU 88 40 
15 SiCoV2-1 Orf 1a GUUUAUACCUUCCCAGGUA 93.72 42.8 
16 SiCoV2-2 Orf 1a GCACUAGUACUGAUGUCGUAU 93.36 52.38 
17 SiCoV2-3 Orf 1a GGACAACAGGGCAACCUUACA 92.98 47.62 
18 SiCoV2-4 N GACAACAGGGCAACCUUACAA 92.85 42.8 
19 SiCoV2-5 S AGGCUGUUGCUAAUGGUGAUU 92.85 47.62 
20 SiCoV2-6 E GGCUGUUGCUAAUGGUGAUUC 92.74 42.86 
21 SiCoV2-7 Orf1a AGAUGGCUGAUCAAGCUAUGA 92.42 38.1 
22 SiCoV2-8 Orf 1b AGUUGGAUAAUGAUGCACUCA 92.28 38.1 
23 SiCoV2-9 Nsp5 GUUGGAUAAUGAUGCACUCAA 92.1 33.33 
24 SiCoV2-10 E GAACAUAAUACCUCUUACAAC 91.63 38.1 
25 SiCoV2-11 S GUUGUCAUACCAGACUAUAAC 91.62 42.86 
26 SiCoV2-12 M GUUGACAUACUAGGACCUCUU 91.31 38.1 
27 SiCoV2-13 M GGUUCUGUUGCUUAUGAAAGU 91.41 47.62 
28 SiCoV2-14 Orf1a GUGCUCAUGGAUGGCUCUAUU 90.69 41.86 
29 SiCoV2-15 Orf 1b GAAGGUUCUGUUAGAGUGGUA 90.63 52.38 
30 SiCoV2-16 Orf 1b GGCACGGCACUUGUGAAAGAU 90.28 33.33 
31 SiCoV2-17 Orf 1ab GAUGGGUACUUAACAAUGAUU 90.2 33.33 
32 SiCoV2-18 Orf 1b GACAUAUCAGCAUCUAUAGUA 90.04 38.1 
33 SiCoV2-19 N GGUAUUGUAGCUAUCGUAGUA 90.3 37 
34 SiCoV2-20 M GAGCAACAAGAGUCGAAUGUA 90 42.86  
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2.4. Prediction of ADMET properties 

The Pharmacokinetic properties of the natural compound library 
including the Absorption, Distribution, Metabolism, Elimination, and 
Toxicity (ADMET) parameters were predicted only for the natural 
compounds using the qikprop module, Schrodinger [70]. Pharmacoki-
netic properties such as atom-based LogP, Molecular weight, membrane 

permeability, intestinal absorption, skin permeability levels, P-glyco-
protein substrate or inhibitor are significant in determining the ab-
sorption levels of drugs. The distribution of drugs depend on the 
blood–brain barrier descriptors. Drugs acting as substrates or inhibitors 
of Cytochrome P450 enzymes represent their metabolism ability 
whereas toxicity can be predicted based on AMES toxicity, hERG inhi-
bition and LD50 parameters [27]. These properties were predicted 

Fig. 3. A (left) Scatter plot before feature based selection 3B (right)Regression line plotted for the predicted and actual values of the phytocompounds based on their 
ADMET predictions. 

Fig. 4. A Ramachandran plot of energy minimised M Pro target and 4B the binding site residues predicted from sitemap.  

Table 2 
ADMET properties of the selected natural phytocompounds.  

S. 
No 

Compound Molecular weight g/ 
mol 

Log 
P 

HBond 
Donor 

HBond 
acceptor 

GI 
absorption 

Solubility LD 50 Ames test for 
mutagenicity 

1 Davidigenin 258.27  2.62 3 4 high soluble  2.114 negative 
2 7-hydroxy-2-(4-hydroxyphenyl) 

chroman-4-one 
256.25  2.48 2 4 high soluble  2.213 negative 

3 Agarol 248.32  2.98 1 3 high soluble  2.536 negative 
4 Eugenin 470  3.35 2 6 high soluble  4.03 negative  
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computationally to deduce the druggability of natural compounds. 

2.5. Quantitative structure activity relationship (QSAR) using python 

QSAR based virtual screening predicts a large set of active molecules 
with the desired activity. QSAR coupled with machine learning methods 
are the latest reliable strategies in screening the promising lead com-
pounds to be used in drug development [31]. The pandas, numpy, scipy 
and sklearn modules of python are used to calculate simple linear 
regression of the independent descriptor set [36]. This method is more 
useful in understanding the structure activity relationships. Feature 

selection was done for the predicted variables by removing the null 
values and the insignificant variables less than the threshold of 0.1% 
[38]. The molecules that adhered to the Lipinski’s rule of five were 
filtered to create training and test sets. Actual and predicted values were 
computed and a plot of linear regression was drawn to filter out the best 
molecules [49,65]. 

2.6. Target identification 

The target proteins of Covid-19 were identified based on the ‘bottom 
up approach’ [64] and compared against the core translated proteins. 

Table 3 
Glide XP docking results of drug and phytocompounds.  

S. 
No 

Compound Nature of drug/Plant source Glide 
Energy 

Glide 
Score 

H Bond Hydrophobic Bond 

Residues Distance 
A0 

Residues Distance 
A0 

1 Ligand-N3 Peptide like Inhibitor N3 − 82.229 − 7.784 (HO…O)GLY143 
(HO…O)HIS164 

2.80  

3.07 

THR 25 
THR 26 

3.73 
3.81 

Drugs 
2 Bitolterol Bronchodilator − 84.529 − 6.967 LYS102(NH…O) 

ARG105(NH…O) 
(O…OH)ARG105 
(NH…O)ASN151 
(OH…O)SER 158 

3.25  

3.04  

2.74  

3.71  

2.95 

PHE 294 
PHE 294 

3.61 
3.49 

3 Cyclandelate Vasodilator − 83.966 − 6.741 (NH…O) 
GLN110 
(NH…O) THR 
111 
(NH…O)ASN151 

3.02  

3.20  

3.51 

VAL 104 
ILE 106 
ILE 106 

3.51 
3.83 
3.81 

4 Atropine Nerve agent  − 81.63 − 6.123 (NH…O)GLN110 
(NH…O) THR 
111 
THR 111 (OH… 
O) 

2.29  

2.14  

2.19 

VAL 104 
ILE106 
GLN110 

3.77 
3.72 
3.72 

5 Alosetron Irritable Bowel syndrome − 80.892 − 5.746 ARG105(NH…O) 
(NH…N) GLN 
107 
ASN151 (NH… 
O) 
158 SER (HO… 
O) 

2.51  

3.68  

3.35  

3.25 

ILE106 
GLN110 

3.81 
3.70 

6 Cloperastine Antitussive and 
antihistamine 

− 80.294 − 3.673 Gly143 (HO…O) 3.37 –  

Phytocompounds 
7 Davidigenin Glycyrrhiza Glabra − 88.785 − 7.57 (OH…O) LYS102 

GLN110 (OH… 
O) 
(OH…O)ASP153 
(OH…O)SER 158 
SER 158 (OH… 
O) 

3.12  

2.88  

2.17  

2.11  

2.19 

ASN 151 
ASP 153 

3.77 
3.89 

8 Agarol Aquilaria agallocha − 86.34 − 6.78 (OH…0)SER 158 2.28 ILE 106 
ASN 151 
PHE 294 

3.79 
3.92 
3.45 

9 Eugenin Pisonia aculeata − 86.22 − 7.32 GLN110 (NH… 
O) 
THR 111 (NH… 
O) 
(OH…O)THR 
111 
(OH…O)ASN151 
ASN151 (NH… 
O) 

2.94  

3.21  

2.80 
3.42  

3.93 

–  

10 7-hydroxy-2-(4-hydroxyphenyl)chroman- 
4-one 

Glycyrrhiza Glabra − 80.86 − 6.31 (HO…O) 
Glu166 
Leu 24 (HO…O) 

2.43   

3.12 

–   
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Protein Data bank has an extensive collection of 3 dimensional protein 
structures and an appropriate Covid-19 target was chosen based on the 
criteria: 1) availability of X-ray crystal structure complexed with an 
inhibitor, 2) a significant match with the core translated protein frag-
ment in pfam and 3) significant match with the Protein Data bank 
structures and 4) a good resolution of structure preferably less than 3.0 
A0 [13]. The target that obeyed the above criteria was found to be the X- 
Ray crystallographic structure of main protease of SARS CoV-2 (PDB ID- 
6LU7) with 2.6 A0 resolution which had a complex inhibitor, and 
matched with 97% identity to translated core genome sequence [57]. 
This target is one of the vastly studied protein targets is the SARS-CoV2 
main protease which is also called MPRO and 3CLPro which is essential for 
processing of polyproteins from viral mRNA [32,19]. Though there are 
enormous silico studies performed with main protease as target, the 
same protein is again taken as target because it is the predominant core 
gene obtained from pangenomics and has lots of significance in the viral 
pathogenesiss [26,22]. In the present study, we concentrated on 
extensive docking analysis of existing FDA drugs and carefully restricted 
our analysis to inhibitor compounds that were not reported yet. 

2.7. Target preparation and binding site prediction 

Protein crystal structure- the Main protease of covid-19 in complex 
with the peptide like inhibitor N3 (6LU7) was retrieved and viewed in 
the maestro window of the Glide module of Schrodinger drug design 
suite 2020–1 [1,41]. Using the protein preparation wizard, water mol-
ecules of the protein were removed, hydrogen atoms were assigned, and 
the protein structure was energy minimized and optimised using OPLS 
(Optimised Potential for Liquid Simulations) force field [14]. Ram-
achandran plot was constructed for the minimized energy structure. The 
binding pockets of the proteins were predicted using the site map 
module and compared with the binding pocket of the original ligand. 
The receptor grid was generated for the active site pocket that was 
mutual to the sitemap prediction and crystallographic binding pocket to 
enable efficient docking of ligands and drugs [11]. 

2.8. Highthroughput virtual screening 

The processed and optimised drugs and natural compounds were 

Fig. 5. (A) Ligand N3 in complex with target in dotted representation; 5(B) Ligand N3 in the active site of Covid-19 protease; 5(C) Interactions of Ligand N3 with 
active site residues of covid 19 main protease. Hydrogen bonds are represented in solid blue lines and hydrophobic interactions in dashed grey lines. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

S. Aishwarya et al.                                                                                                                                                                                                                             



Computational Toxicology 18 (2021) 100156

7

screened as separate groups through high throughput virtual screening 
(HTVS) against the active site of the prepared Covid main protease. The 
screened ligands in their groups were docked using the Standard Pre-
cision (SP) mode of induced fit docking against the target protein [52]. 
This step filtered out the ligands that had good interactions with the 
active site and were still in separate groups. Finally, the groups of li-
gands were docked using the eXtra Precision (XP) mode to narrow down 
the analysis to result in better lead compounds [7]. 

2.9. Molecular dynamics simulation of the target and lead molecules 

Molecular dynamics simulations of the docked ligand and protein 
complex files were performed using Gromacs 2020. The top best XP 
docked complex output file from each group was prepared with the PDB 
reader and ligand reader and modeler module of CHARMM GUI server 
and the resultant trajectory and topology files were processed with 
gromacs [54,58]. The parametrization was done with charmm-36 force 
fields and the processed complex files structure was solvated in a cubic 
box using the model TIPS3 (Transferable Intermolecular potential water 
molecules) [44]. Modified Berendsen thermostat and Parrinello- 
Rahman barostat were used for temperature and pressure coupling, 
respectively [35]. Steepest descent energy minimization was performed, 

followed by two steps of equilibration ensembles - NVT (Number of 
molecules, volume and temperature) and NPT (number of molecules, 
pressure and temperature). MD simulation was done at 100 ns at 5000 
steps for each equilibration ensemble [37]. Long range forces and van 
der Waals interactions were treated with Particle Mesh Ewald summa-
tion and Lennard Jones potential with a cut-off distance of 10 A0 for non 
bonded interactions. A plot of RMSD per residue was constructed to 
confirm the binding of the ligands [55]. 

2.10. Binding free energy calculation with MMPBSA methods 

The binding energy of the protein and ligand complexes were 
calculated by the molecular Mechanic/Poisson-Boltzmann Surface Area 
(MM-PBSA) method which constitutes the potential energy, polar and 
non polar solvation energies [45].  

ΔGbind,aq = ΔH − TΔS≈ΔEMM + ΔGbind,solv − TΔS,                   (1)  

ΔEMM = ΔEcovalent + ΔEelectrostatic + ΔEvdW,                            (2)  

ΔEcovalent = ΔEbond + ΔEangle + ΔEtorsion,                                  (3)  

ΔGbind,solv = ΔGpolar + ΔGnon-polar,                                            (4) 

Fig. 6. (A) Bitolterol in the active site of Covid-19 protease; 6(B) Interactions of Bitolterol with active site residues of covid 19 main protease. Hydrogen bonds are 
represented in solid blue lines and hydrophobic interactions in dashed grey lines. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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The changes, ΔEMM (the gas-phase molecular mechanical energy 
change), ΔGbind, solv, (the solvation free energy change) and – TΔS 
(conformational entropy change upon binding) are computed via 
ensemble averages [67]. ΔEMM is the combination of molecular me-
chanics (MM): the covalent energy change (ΔEcovalent), the electro-
static energy change (ΔEelectrostatic), and the van der Waals energy 
change (ΔEvdW). The bond terms (ΔEbond), the angle terms (ΔEangle), 
and the torsion terms (Δetorsion) are represented as ΔEcovalent. The 
solvation free energy change (ΔGbind, solv) includes polar and non- 
polar contributions (ΔGpolar and ΔGnon-polar). The most difficult 
parameter to compute is entropy term which approximated with a 
normal mode method using a few selected snapshots taken from MD 
simulations. The binding affinity calculation of all the ensemble aver-
ages in equations 1–4 were calculated using MMPBSA methods [60]. 
The MD scripts at last 10 ns were extracted and MM-PBSA binding en-
ergy was calculated using the g_mmpbsa module of GROMACS to esti-
mate the interaction of the two best docked complexes with the target 
[61]. 

3. Results 

3.1. Pan genome analysis of CoViD-19 

Pangenome analysis of 942 complete genome sequences using the 

spine webserver revealed 35 genome fragments that were highly 
conserved throughout the isolates and around 5–10 accessory sequences 
specific to each sequence [12]. We filtered out 10 core genome frag-
ments that had identifiable motifs and clustered them as a clustage plot 
of the mutual core fragments and represented in Fig. 1. The coding se-
quences of core fragments were identified and translated into protein 
sequences. The motifs and domains of the protein sequences of each core 
were predicted and represented in Supplementary Table 1. 

3.2. Identification of silencing RNA to target the core fragments 

Small RNAs are of great help in specific gene silencing with the 
recognition of complementary DNA or RNA targets. The small inter-
fering RNAs with high inhibition efficiency of >85% and an estimated 
binding energy of less than 34 Kcal/mol [5] were filtered from the 
ViSiRNA database and represented in Table 1. The viral siRNAs, tar-
geting the viral core genes which interact with the human proteins are 
plotted and mapped with cytoscape and are represented as an interac-
tion network of siRNAs in Fig. 2. In the figure the viral siRNAs mutual for 
SARS CoV and SARS CoV-2 are colored in pink whereas the predicted 
siRNAs of SARS CoV2 core genome are colored in orange. The viral 
targets are colored in blue and the interacting host genes in green. Few 
off-target sites of host genes like GPC5, PDE4D, ILIRAPL2, NSPAS3, Zinc 
finger, and FBOX were also predicted for the siRNA though are very 

Fig. 7. (A) Cyclandelate in the active site of Covid-19 protease; 7(B) Interactions of cyclandelate with active site residues of covid 19 main protease. Hydrogen bonds 
are represented in solid blue lines and hydrophobic interactions in dashed grey lines. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

S. Aishwarya et al.                                                                                                                                                                                                                             



Computational Toxicology 18 (2021) 100156

9

negligible. The most dominant and significant interactions of the clus-
ters were predicted using MCode module of cytoscape and is represented 
in Fig. 2B. 

3.3. ADMET properties 

Two sets of compounds including 18,000 FDA approved drugs and 
1,000 natural phytocompounds were downloaded from pubchem zinc, 
drugbank and were added hydrogens and energy minimised. The 
structures were optimised with OPLS 2005 force field and considered 
suitable for further investigations. The natural compounds were 
screened based on the Absorption Distribution Metabolism Excretion 
Toxicity (ADMET) properties calculated from the qikprop. ADMET 
properties of the selected phytocompounds are shown in table 2. The 
compounds davidigenin, 7-hydroxy 2(4-hydroxyphenyl)chroman-4- 
one, agarol, Eugenin exhibited high gastro intestinal (GI) absorption, 
solubility and tested negative for Ames test for mutagenicity. Further 
these compounds ahered to the Lipinski’s rule of five and attributed to 
promising drug likliness. 

3.4. Quantitative structure activity relationship 

A dataset with properties was created using python 3.2, cleaned from 
all the null values. They were grouped into a test set and a training set 
predicted with 20% and 80% data respectively [48]. Fig. 3A shows a 

scatter plot with molecular weight and partition coefficient (LogP) 
plotted with a sklearn module of python. The feature selection criteria 
called Lipinski’s rule of five was applied. The data which had a molec-
ular weight less than 500 Da, with hydrogen bond donors less than 5, 
hydrogen bond acceptors less than 10 and partition coefficient (log P) 
less than 5 were filtered for further analysis. A regression fit and coef-
ficient of regression were computed for the filtered compounds and a 
plot representing predicted vs actual values is shown in the Fig. 3B. 
Calculated mean absolute error was 1.4124317746614325 and calcu-
lated root mean square error was found to be 1.800150000427347. 
Hence compounds were chosen for docking studies. 

3.5. Protein target identification and preparation 

The target protein chosen for further studies was the crystal structure 
of CoViD-19 main protease in complex with an inhibitor N3 (6LU7). The 
energy of the target was − 1415.91 Kcal/mol after hydrogen bond 
optimization, removal of water molecules, minimised and processed 
using OPLS 2005 force field [33]. Fig. 4 is a representation of Ram-
achandran plot constructed after the energy minimization step (Left 
Fig. 4A) and the site map module predicted six binding pockets of the 
prepared protein (Right Fig. 4B). Binding site 1 had high score of 0.759 
and volume of 247.30 with the residues 3 Val, 4 Leu, 26 Thr, 27 Leu, 41 
His, 45 Thr, 46 Ser, 49 Met, 140 Phe, 141 Leu, 142 Asn, 143 Gly, 144 Ser, 
145 Cys, Asn151, Ser 158, 164 His, 165 Met, 166 Glu, 192 Glu 

Fig. 8. .(A) Atropine in the active site of Covid-19 protease; 8(B) Interactions of atropine with active site residues of covid 19 main protease. Hydrogen bonds are 
represented in solid blue lines and hydrophobic interactions in dashed grey lines. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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containing the co-crystallized inhibitor hence receptor grid was gener-
ated for the site 1 and was set for molecular docking. The other sitemaps 
had comparatively less volume and scores and were eliminated from 
docking 

3.6. Molecular docking analysis of the original ligand N3 

Molecular docking was performed using the Glide module of 
Schrodinger for the optimized original ligand of the target using XP 
mode. Table 3 represents the glide energy score and interactions of all 
the best docked inhibitors of Covid-19 main Protease. The binding en-
ergy obtained was − 82.29 Kcal/mol and was found to interact with the 
binding site residues of Gly 143, and His 164, with good hydrogen bond 
distances of 2.80A0 and 3.07A0, hydrophobic bonds with Thr25 and Thr 
26 at a distance of 3.73A0 and 3.81A0, respectively. The docked co- 
crystallized ligand and the interaction of co-crystallized ligand with 
binding sites are represented in Fig. 5A Dotted representation of the 
ligand with target, 5B- docked ligand complex and 5C interaction of 
active site residues 

3.7. Drug repurposing through molecular docking of FDA approved 
generic drugs 

A total of 18,000 drug compounds were optimized with the 
OPLS2005 force field and were screened using high throughput virtual 
screening (HTVS) against the target. There were 2000 compounds that 
passed HTVS and were subsequently screened using SP mode, and the 
resulting compounds of SP were docked in XP mode and the final 50 
compounds were filtered. Among them, the top five drugs were filtered 
based on energy less than 80Kcal/mol to aid comparison with the co 
crystallized ligand. Bitolterol, cyclandelate, atropine, alosetron, and 
cloperastine exhibited lesser energy and good interaction with the 
binding sites of the target. The top lead bitolterol docked into the protein 
active site, and residues interacting are represented in Fig. 6A(left) and 
6B(right). Bitolterol showed an energy of − 84.529KCal/mol with H 
bonds at a distance of 3.25A0, 3.04A0, 2.74A0, 3.71A0 and 2.95A0 with 
the residues Lys102, Arg 105, Arg105, Asn151 and Ser158 respectively. 
The drug also exhibited hydrophobic interactions of 3.61A0 and 3.49 A0 

with Phe 294. Cyclandelate was the next drug that showed an energy of 

Fig. 9. (A) Alosetron in the active site of Covid-19 protease; 9(B) Interactions of alosetron with active site residues of covid 19 main protease. Hydrogen bonds are 
represented in solid blue lines and hydrophobic interactions in dashed grey lines. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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− 83.96 KCal/mol with H Bond interactions with the residues of Gln110, 
Thr111 and Asn151 at a distance of 3.02A0, 3.20A0 and 3.51A0 

respectively shown in Fig. 7A and B. Hydrophobic interactions of Val 
104 at 3.51A0, Ile106 at 3.83A0 and 3.81A0 were also found. From 
Fig. 8A,B Atropine which is a nerve agent exhibited an energy of 
− 81.63KCal/mol with Hbonds at the residues Gln110, Thr111, with a 
distance of 2.29A0, 2.14A0 and 2.19A0 and hydrophobic interactions of 
3.74A0 with Val104, 3.72A0 with Ile106 and 3.72A0 with Gln110. Alo-
setron an irritable bowel syndrome drug showed an energy of − 80.892 
and four H Bonds with Arg105, Gln107, Asn151 and Ser158 at distances 
of 2.51A0, 3.68A0, 3.35A0 and 3.25A0 respectively.Hydrophobic in-
teractions of 3.81 with Ile106 and 3.70 with Gln110 was also observed 
and is represented in the Fig. 9A,B. Finally the antitussive drug cloper-
astine showed an energy of − 80.294 with only one hydrogen bond with 
Gly143 at 3.37A0. 

3.8. Highthroughput virtual screening of natural phytocompounds 

Molecular docking in the XP mode of the phytocompounds [46] 
revealed 4 prominent compounds Davidigenin, Agarol, Eugenin and 7- 
hydroxy-2-(4-hydroxyphenyl)chroman-4-one, with energy values of 
− 88.78 Kcal/mol, − 86.34Kcal/mol, − 86.22Kcal/mol, and − 80.86Kcal/ 
mol respectively. Fig. 10A,B show Davidigenin(C15H14O4), a hydroge-
nated metabolite of liquiritigenin (C15H12O4) found in licorice roots 

[43] showed good interactions with Lys102, Gln110, Asp153, Ser158 
showing a distance of 3.12A0, 2.88A0, 2.17A0, 2.11A0 and 2.19A0 

respectively along with the hydrophobic bonds at Asn151 and Asp153 at 
3.77 and 3.89 respectively. The phytocompound agarol from Aquilaria 
agallocha represented in Fig. 11A, B showed a hydrogen bond at Ser158 
with 2.28A0 and hydrophobic interactions at Ile106, Asn151 and 
Phe294 at 3.79A0, 3.92A0 and 3.45A0 respectively. From Fig. 12A,B, a 
phytocompound Eugenin of Pisonia aculeata exhibited hydrogen bonds 
with residues Gln110, Thr111, and Asn151 at distances of 2.94A0, 
3.21A0, 2.80A0, 3.42A0 and 3.93A0. One more compound from licorice 
roots, 7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one with Cys145 and 
Gly143 showed up in the top list. Other compounds though passed SD 
screening, did not yield satisfactory energy and interactions. 

Davidigenin also followed Lipinski’s rule of 5. The molecular weight 
and its lipophilicity of davidigenin were 258.27 g/mol and 1.97, the 
Hydrogen bond acceptors were 4, and donors were 3 and had a very high 
absorption rate of 80%. ADMET studies of davidigenin proved that it is 
an efficient lead compound and is exhibiting drug likeness. 

3.9. Molecular dynamics simulations 

The dynamics and stability of the docked complexes are evident only 
from the molecular dynamics simulations. The conformational changes 
in the biological environment of the protein upon ligand binding is 

Fig. 10. (A) Davidigenin in the active site of Covid-19 protease; 10(B) Interactions of Davidigenin with active site residues of covid 19 main protease. Hydrogen 
bonds are represented in solid blue lines and hydrophobic interactions in dashed grey lines. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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identified by simulating the top drug and the natural compound with the 
target using the Charmm 36 force fields. Structural perturbations and 
Root mean square deviations of the backbone atom of target protein 
with ligand N3, drug bitolterol and the natural compound davidigenin 
when bound with the target MPro is represented in the Fig. 13. The 
average deviations of the target protein with the ligand N3 was identi-
fied as 0.35 nm. The ligand was very stable throughout the simulation 
time of 100 ns. The average deviation of drug bitolterol was found to be 
0.5 nm. With exception to the maximum deviations of 0.6 nm around 20, 
70 and 90 ns, the drug was stable. The natural phytocompound davi-
digenin was found to be the most stable ligand with the protein and 
shows an average deviation of 0.3 nm. There were no higher deviations 
found in the trajectory and hence the compound davidigenin is found to 
have strong binding affinity to the target M protease. The negligible 
deviations of the bitolterol-protease complex is significant and states 
that the drug is more stable with the target and is close to be compared 
with the experimental results. 

3.10. Hydrogen bond analysis 

Hydrogen Bonds are the predominant elements responsible for the 
stability and interactions of the ligands and target. We estimated the 

number of hydrogen bond interactions that were formed during the 
simulation of 100 ns and are represented in the Fig. 14. The original 
ligand N3, exhibited an average of 3 hydrogen bonds with a minimum of 
0 and maximum of 8 bonds. The ligand formed a maximum of 8 
hydrogen bonds around 93 ns. Bitolterol was found to be stable with an 
average of 2 hydrogen bonds with a minimum of 1 and a maximum of 5. 
At 5 ns and 97 ns, there were 5 hydrogen bond interactions observed 
between bitolterol and protease of SARS-CoV2. The average of H bonds 
was identified to be 5 in case of davidigenin binding with protease. The 
minimum was 1 and the maximum was 9. The higher numbers of H 
bonds observed upon davidigenin binding is an indication of the sig-
nificant stability [4,66]. On comparing with the original ligand N3, 
davidigenin and bitolterol formed better hydrogen bonds with the target 
and are significant. The results signify the prominent interactions of the 
drug bitolterol and davidigenin throughout the simulation period of 100 
ns. 

3.11. Root mean square fluctuations 

Root mean square fluctuations of the individual target and in com-
plex with the drug bitolterol and natural compound davidigenin 
revealed their flexibility. From the Fig. 15, it is observed that both 

Fig. 11. (A) Agarol in the active site of Covid-19 protease; 11(B) Interactions of agarol with active site residues of covid 19 main protease. Hydrogen bonds are 
represented in solid blue lines and hydrophobic interactions in dashed grey lines. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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bitolterol and davidigenin complex are stable compared to the receptor. 
The overall RMSF of both is less than 1A0 which represents the stability 
of the receptor upon ligands binding. The fluctuations were very low and 
are less than the standard cut off of 3A0 and proves their stability 
throughout the run. 

3.12. Binding free energy calculations 

The average free binding energy calculations were performed for the 

two systems bitolterol and davidigenin to estimate their decomposition 
energies with standard deviation and errors. A total of five trajectories at 
every 20 ns were extracted to perform MMPBSA with GROMACS [60]. 
The binding free energy (ΔG) is composed of the binding energy of the 
receptor in its bound state and unbound state. Table 4 represents the 
calculated average free binding energy of the bitolterol and davidigenin 
complexes. Total binding free energy for bitolterol complexed with 
protease is observed to be − 108.904 ± 22.011 and that of davidigenin is 
− 134.584 ± 31.916. Per energy contribution plot is represented in the 

Fig. 12. (A) Eugenin in the active site of Covid-19 protease; 12(B) Interactions of eugenin with active site residues of covid 19 main protease. Hydrogen bonds are 
represented in solid blue lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. RMSD calculations of protease 6LU7 in complex Bitolterol in yellow, ligand N3 in blue and davidigenin in green. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 14. Hydrogen Bond analysis of Bitolterol in yellow, ligand N3 in blue and davidigenin in green. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Fig. 15. Root mean square fluctuations of Protease receptor (green), Bitolterol (red) and Davidigenin (blue). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

Table 4 
Binding free energy calculations of top lead compounds.  

Complex ΔGbinding (kJ/mol) SASA (kJ/mol) ΔEpolar solvation (kJ/mol) ΔEElectrostatic (kJ/mol) ΔEVan der Waal (kJ/mol) 

Ligand − 75.895 ± 56.436 − 15.343 ± 5.760 − 23.652 ± 20.12 17.553 ± 0.675 − 54.453 ± 31.231 
Bitolterol − 108.904 ± 22.011 − 17.231 ± 4.208 − 38.248 ± 8.01 13.441 ± 0.837 − 66.866 ± 17.553 
Davidigenin − 134.584 ± 31.916 − 10.791 ± 3.787 − 62.696 ± 43.497 16.408 ± 2.084 − 77.505 ± 30.658  

Fig. 16. Per residue binding free energy contribution plot of the ligand N3 (blue), bitolterol (red) and davidigenin(green). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 16 which depicts the decomposition energies of the protease resi-
dues upon the ligand binding. The binding site residues like Arg105, 
Gly145, Ser158, His164 and Gln192 showed least energy contributions 
of − 9.4KJ/mol, − 8.9KJ/mol, − 10.1KJ/mol, − 4.1KJ/mol and − 5.6KJ/ 
mol respectively upon binding of bitolterol with the protein. The orig-
inal ligand inhibitor N3 showed least energies at the residues Leu4 and 
THR25 with energies − 4.3KJ/mol and − 14.9KJ/mol respectively. The 
complex davidigenin significantly had least binding energies of 
− 13.2KJ/mol , − 13.9KJ/mol , − 11.2KJ/mol, − 15.1KJ/mol and 
− 6.3KJ/mol at the residues Lys 102, Gln110, Asp 153, Ser 158 and His 
164 respectively. From the binding free energy calculations it is inferred 
that the drug bitolterol and the compound daviigenin show promising 
results and stable binding with the active site residues of the target. 

4. Discussion 

Viruses integrate into the host, replicate, spread at a faster rate, and 
build up mutations. With the advent of recent sequencing technologies, 
it is possible that the nature of viral pathogenesis is estimated. Pan-
genome analysis is a strong evidence that the core genome of the virus is 
maintained across strains and is available as perfect targets. The study 
identified ten core fragments of coronavirus-2 from 942 complete 
genome sequences of the same. Though the virus sequences acquired 
mutations and have spread across the globe and caused innumerable 
deaths, there are few conserved regions called core genes that are 
mutual to all the different isolates and are identified as Core fragments 
NSP1, hypothetical protein, NSP3, single stranded poly A binding 
domain, C3 endo peptidase, NS7 and NS8 replicase, NSP11, RNA poly-
merase N terminal domain, NSP16, Matrix and S2 glycoprotein and 
spike receptor binding protein and X4 like protein of SARS. Thirty four 
Small RNA transcripts with high inhibition efficacy were identified to 
specifically target the viral genes of core regions such as Nucleocapsid, 
Memebrane glycoprotein, NSP3, Spike glycoprotein [42], Envelope 
protein and 3CL Protease with guide strands being predominantly GPC5, 
PDE4D, ILIRAPL2, NSPAS3, CTNNAI, Zinc finger and FBOX. Covi-19 
main protease protein was a chosen target since the sequence of it 
remained the same all through the isolates. Drug repurposing of FDA 
approved drugs and antivirals through molecular docking predicted 13 
small molecules with good interaction and binding energy to be able to 
inhibit the target. Bitolterol, a bronchodilator, topped the results of 
docking and dynamics and turned out to be a good treatment option and 
needed clinical research. Quantitative structure activity relationships 
studies enabled identification of potential phytocompounds that are 
generally less toxic and are most widely formulated drugs [28]. A 
phytocompound davidigenin metabolite of licorice roots [56], also 
docked against the target well and resulted in a better lead molecule to 
target SARS-CoV2. Both the compounds bitolterol and davidigenin upon 
molecular dynamics simulations exhibited strong stability with the 
target protease. Bitolterol, with an RMSD 0.4 nm, with hydrogen bonds 
of 5 and root mean square fluctuations of 0.2 A0, proves its stability with 
the protease of Covid-19. The phytocompound davidigenin exhibited an 
RMSD of 0.3, maximum of 9 hydrogen bonds and RMSF of 0.2 A0, 
signifying its stability with the active site residues of target. MMPBSA 
results also show the preferential least binding energy values of both the 
drug and phytocompound to be taken to further research in the design of 
attractive CoViD-19 suppressors. The results throughout were compared 
with the co crystallised ligand N3 and the better leads were identified as 
davidigenin, a natural compound and the existing drug bitolterol can be 
repurposed to treat covid-19. The current study proves to target the 
SARS-CoV2 pandemic efficiently with not just a single approach but 
with multiple efforts simultaneously. 

5. Conclusion 

Severe Acute Respiratory Syndrome –Coronavirus 2 is creating havoc 
all over the world, though there are claims with proven drug efficacy 

and vaccines in trials, no prominent cure has been made so far [3]. The 
pandemic has not only blown down the health and survival of millions of 
people but also has stalked the economic situations of nations [39]. 
Intrusions at multiple levels will be beneficial and the current study has 
engaged a novel approach to tackle the pandemic and halt down its 
spread. From the study, we conclude that the core genes identified are 
significant in understanding the viral pathogenesis [63]. Small inter-
fering RNAs of corona viruses can intrude the viral targets and can be 
used in therapeutics and diagnosis as well. Through molecular docking, 
ADMET predictions and dynamics approaches we have enumerated both 
repurposable drugs and natural phytocompounds that can be used as 
therapeutics upon clinical research. Thus, bioinformatics research will 
be more subtle in bringing out an eminent solution. The main Protease 
enzyme of the SARS-CoV 2 is a strong, conserved and viable target which 
can be efficiently targeted by atropine, bitolterol, and also by a natural 
compound davidigenin. The studies show promising features that can be 
taken further for invitro and clinical evaluations. 
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