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The pathogenesis of viral myocarditis includes both the direct damage mediated by viral infection and the indirect lesion
resulted from host immune responses. Myocarditis can progress into dilated cardiomyopathy that is also associated with
immunopathogenesis. T cell-mediated autoimmunity, antibody-mediated autoimmunity (autoantibodies), and innate immunity,
working together, contribute to the development of myocarditis and dilated cardiomyopathy.

1. Introduction

The International Society and Federation of Cardiology of
the World Health Organization (WHO) defined myocarditis
in 1995 as an inflammatory disease of the heart muscle,
diagnosed by established histological, immunological, and
immunohistochemical criteria [1]. Most cases of myocarditis
are of viral origin [2–4]. Many viruses have been implicated
as causes of myocarditis, including coxsackieviruses group
B, parvoviruses, echoviruses, adenovirus, influenza virus
H1N1, Epstein–Barr virus, rubella (German measles) virus,
varicella (chickenpox) virus, mumps virus, measles virus,
yellow fever virus, dengue fever virus, polio virus, rabies
virus, hepatitis A and C viruses, human immunodeficiency
virus (HIV), and Zika virus; while parvovirus B19 (PVB19)
has recently be demonstrated by endomyocardial biopsy
(combined with polymerase chain reaction and in situ
hybridization) as the most frequently detected virus in myo-
carditis, coxsackievirus B3 (CVB3) remains the most exten-
sively studied virus that causes myocarditis both in human
beings and in animal models [5–10]. Viral myocarditis
usually progresses on two stages although the exact patho-
physiology mechanism in humans is still not completely
understood: first, the viral infection generates direct damages

to the myocardium (virus-mediated lysis of myocardial cells),
and then host immune responses produce indirect lesions of
the cardiac muscle by killing virus-infected (antiviral immu-
nity) and uninfected (autoimmunity) cardiomyocytes; some
cases progress to dilated cardiomyopathy, and some may
result in heart failure or sudden death [11–15]. Researchers
found several years ago in animal experiments that the infec-
tion of BALB/c mice with coxsackievirus B3 (an RNA virus)
and murine cytomegalovirus (a DNA virus) led to essentially
the same pathophysiological outcomes in the heart [16]; in
addition, immunosuppressive and immunoadsorption thera-
pies have been reported to alleviate symptoms and ameliorate
heart function in myocarditis and dilated cardiomyopathy
patients [17–20]; these results strongly suggested the impor-
tance of the immunopathological process in the disease(s).
The roles of host immunity in the development of viral
myocarditis and in dilated cardiomyopathy are summarized.

2. T Cell-Mediated Autoimmunity

In cell-mediated immune responses, T cells are the most
important immune-competent cells, and they also play a cru-
cial role in the pathogenesis of viral myocarditis. Woodruff
and Woodruff [21] first established the implication of T cells
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in the pathogenesis of this disease using CD1 and BALB/c
mice in 1974. They demonstrated that pretreatment of CD1
mice with rabbit anti-thymocyte serum greatly suppressed
the production of inflammation and tissue injury in the
hearts after CVB3 infection, and deprivation of T cells by
thymectomy and lethal irradiation led to a decrease in mor-
tality and a decrease in cardiac inflammation and necrosis
in CVB3-infected BALB/c mice. Following that, numerous
researches were conducted to demonstrate the involvement
of T cells in the pathogenesis of viral myocarditis and to
determine T cell subtypes that take part in the immuno-
pathogenesis. Kishimoto et al. [22] examined the changes in
percentages of T and B cells in peripheral blood and the heart
of DBA/2 mice inoculated with encephalomyocarditis virus.
They found a marked decrease in T cell number in peripheral
blood on day 14 but no significant changes in B cell number
throughout the entire period. T cells accounted for about
80% of the cells in the myocardial tissue on days 7 and 14.
Huber and Pfaeffle [23] found that the Th1 cell response
required the activation of γ/δ T cells. In addition, male and
female BALB/c mice differ in response to CVB3 infection.
The viral infection resulted in substantial infiltration of
inflammatory cells and lymphocytes in the myocardium;
while male mice gave predominantly a Th1 cell response,
female mice gave predominantly a Th2 cell response [24].

Later, Opavsky et al. [25] used knockout mice lacking an
individual component of the T cell receptor (TCR) or core-
ceptor (CD4−/−, CD8−/−, CD4−/−, and CD8−/−, or TCRβ−/−)
to observe the contribution of T cell subpopulations to host
susceptibility to CVB3 myocarditis. The disease was more
severe in CD8−/− mice but reduced in CD4−/− mice. Removal
of both CD4 and CD8 molecules from T cells by genetic
knockout protected the mice from the disease. In TCRβ−/−

(T cell receptor β chain knockout) mice, prolonged survival
and minimal myocardial lesion were observed after CVB3
infection. In CD4−/−CD8−/− mice, increased interferon-γ
(IFN-γ) and decreased tumor necrosis factor-α (TNF-α)
expression and reduced myocardial damage were observed.
These results indicated that the presence of TCRαβ+ T
cells could boost host susceptibility to viral myocarditis.
One mechanism by which CD4+ and CD8+ T cell subsets
mediate the pathogenesis of viral myocarditis may be related
to the expression of specific cytokines. The findings in the
mice with genetical CD4 and/or CD8 deficiency supported
the conclusion that the cellular inflammatory infiltration
following viral infection in susceptible mouse strains con-
tributes substantially to the mortality and myocardium
lesion associated with viral infection [26].

Increasing evidence supports the earlier findings that
myocarditis is an autoimmune disease that involves the par-
ticipation of CD4+ T cells [27–36]. The activation of T cells
requires costimulatory signals and the respective binding of
CD28 and CD40 ligands on the surface of T cells to B7 and
CD40 molecules on the surface of antigen-presenting cells;
otherwise, the T cells will be in a state of anergy [37–44].
Matsui et al. [45] using transgenic technology effectively
prevented the transmission of costimulatory signals and
thus greatly reduced the severity of experimental autoim-
mune myocarditis, confirming that the activation of T cells

could promote the development of viral myocarditis. More
and more researches demonstrated that the cognate interac-
tion between the inducible costimulatory molecule (ICOS)
and ICOS ligand (ICOSL), a member of the CD28 family, is
an indispensable signaling for the activation of T cells.
Blocking the ICOS–ICOSL signaling with anti-ICOS anti-
bodies can block or attenuate myocarditis resulting from
autoimmunity [46–49].

Most recently, the role of Th17 cells in viral myocarditis
and dilated cardiomyopathy has drawn much attention
[50–53]. The Th17 cell is a CD4+ T cell subpopulation dis-
tinct from IFN-γ-producing Th1 and IL-4-producing Th2
and is characterized by secreting IL-17, a proinflammatory
cytokine [54]; many studies over the past decade have been
focusing on IL-17 and Th17 cell participation in the inflam-
matory process of the autoimmune diseases. Earlier studies
in EAM showed that IL-17 might be the critical effector cyto-
kine responsible for EAM because neutralization of IL-17
could reduce myocarditis and heart autoantibody responses
and that IL-17 promoted the recruitment of monocytes, the
major heart-infiltrating cells in EAM, to the heart [55]. Yuan
et al. [56] reported that IL-17 was related to the progression
of acute viral myocarditis (AVMC) in a mouse model
through regulating autoantibody production and neutraliza-
tion of IL-17 could inhibit autoantibody production in
CVB3-induced AVMC. In the CVB3-induced AVMC
mouse model, Yuan et al. [57] also showed that Th17 cells
contributed to viral replication and that IL-17 was important
for the regulation. Using IL-17 monoclonal antibody-treated
viral myocarditis mice, Fan et al. [58] showed that IL-17 was
critically complicated in the pathogenesis of murine viral
myocarditis and inhibition of IL-17 could alleviate the
myocardium inflammation. Zhu et al. [59] reported that
inhibition of Th17 cells by the newly discovered cytokine
IL-27 could effectively ameliorate CVB3-induced viral myo-
carditis. Myers et al. [60] recently identified a Th17 cell
phenotype of human myocarditis/dilated cardiomyopathy
that had raised CD4+ IL-17+ T cells and Th17-promoting
cytokines including IL-6, IL-23, and TGF-β as well as GM-
CSF (granulocyte-macrophage colony-stimulating factor)
secreting CD4+ T cells. They found that the Th17 phenotype
was associated with the effects of cardiac myosin on CD14+

monocytes and heart failure. Persistent heart failure was
linked with high proportions of IL-17-producing T cells
and IL-17-promoting cytokines and the phenotype contained
within a significantly low proportion of FOXP3+ Tregs; these
may be related to disease severity.

Studies pointed out [61] that Th17 cell differentiation is
mediated by the interaction between the costimulatory signal
CD28 and ICOS, but interaction between cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4) and B7 inhibits
Th17 cell differentiation. Martín et al. [62] showed that the
C-type lectin receptor CD69 inhibited Th17 cell differentia-
tion by promoting the activation of the Jak3 signal transducer
and activator of the transcription 5 signaling pathway. IL-23
is required for Th17 cell’s maintenance and pathogenic func-
tion. The IL-23/Th17 pathway is involved in the pathogenesis
of several autoimmune diseases. Using a CVB3-induced
murine model of viral myocarditis, Yang et al. [63] showed
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that the IL-23/Th17 axis is involved in the viral myocarditis.
A study by Yamashita et al. [64] showed that IL-6 mediated
Th17 differentiation in the onset (but not the progression) of
EAM through RORγt, an isoform of retinoic acid receptor-
related orphan receptor, and RORγt has been suggested as a
master regulator for Th17 differentiation. Lately, Liu et al.
[65] showed that microRNA-21 and -146b are related to the
pathogenesis of viral myocarditis in mice through regulation
of Th17 differentiation. Using microarrays, the authors
detected the upregulation of miRNA-21 and -146b in a
murine model of viral myocarditis. Silencing of miRNA-21
and -146b reduced RORγt expression, decreased Th17 level,
and ameliorated the severity of viral myocarditis.

It has been well established that CD80 (or B7-1) and
CD86 (or B7-2) are crucial costimulatory molecules in T cell
activation, inducing Th1 and Th2 differentiation, respec-
tively, in host immune responses. Most recently, Huang
et al. [66] investigated the role of CD80 and CD86 in Th17
differentiation in AVMC. The authors infected C57BL/6
mice with CVB3 and examined its effects on Th17 differ-
entiation with anti-CD80 and anti-CD86 monoclonal anti-
bodies (McAbs). The results revealed that treatment with
anti-CD80 McAb induced significant suppression of Th17
differentiation and RORγt mRNA expression both in vivo
and in vitro, while anti-CD86 McAb treatment did not show
such effect. Thus, it is CD80 not CD86 that regulates Th17
cell differentiation.

Regulatory T cells (Treg cells or Tregs) belong to a subset
of CD4 T cells that express the biomarkers FOXP3 and CD25
in addition to CD4 and function to keep immune homeosta-
sis by suppressing the development of effector T cells in par-
ticular Th17 cells that participate in the pathogenesis of a
number of autoimmune diseases by producing IL-17 which
promotes inflammation [67–70]. The balance between the
immunosuppressive Treg cells and the proinflammatory
Th17 cells is very important in host immune responses, and
an imbalance between them plays a critical role in many
inflammatory and autoimmune diseases. It has been estab-
lished that the differentiation and proliferation of Treg cells
are controlled by the transcriptional factor Forkhead box
protein P3 (Foxp3) in combination with transforming
growth factor beta (TGF-β), and the immunosuppressive
function of Tregs is depending on the anti-inflammatory
cytokines IL-10 and IL-35, as well as TGF-β, while the differ-
entiation and proliferation of Th17 cells are regulated by the
transcriptional factor RORγt in combination with IL-6 and
the function of Tregs is dependent on the proinflammatory
cytokines IL-17, IL-21, and IL-22. The interleukin-1 family
member 7 or IL-37, the seventh member of the IL-1 family
of eleven members, has recently been recognized as one of
the few anti-inflammatory cytokines and is capable of sup-
pressing a wide spectrum of proinflammatory responses.
An et al. [71] reported that IL-37 suppressed Th17 response
and enhanced Treg response in the spleen of a CVB3-
induced murine viral myocarditis model. IL-37 downregu-
lated the expression of Th17-related cytokines IL-17 and
IL-6 but upregulated the expression of Treg-related cytokine
IL-10 in the murine heart. Thus, IL-37 may exert an anti-
inflammatory function in the mouse model of viral

myocarditis through mediating a balance between Th17 cells
and Treg cells,

Using an EAMmouse model, Yan et al. [72] revealed that
the expression miR-155, a type of microRNA that is closely
related to the immune system, was greatly upraised in
CD4+ T cells and in the cardiac muscle tissue of the EAM
mice; meanwhile, there was a proliferative and functional
imbalance between the Tregs and Th17 cells resulting from
the active induction and proliferation of Th17 cells and an
elevated resistance of Th17 cells to Treg-exerted suppression.
On the other hand, inhibition of miR-155 in EAM mice
resulted in lessened disease severity and cardiac damage,
attenuated Th17 immune response, and reduced secretion
of Th17-polarizing cytokines by dendritic cells. These find-
ings demonstrated that miR-155 could promote the develop-
ment of EAM by driving an imbalance between Tregs and
Th17 cells that favors the development of Th17 cells.

3. Antibody-Mediated Autoimmunity

Studies have demonstrated that autoantibodies play an
important role in the pathogenesis of myocarditis and in
dilated cardiomyopathy [73–80]. Passive transfer of anti-
heart autoantibodies can induce myocarditis and dilated
cardiomyopathy in experimental animals while removal of
autoantibodies with immunoadsorption or other methods
can improve cardiac function of myocarditis and dilated
cardiomyopathy patients [81–88]. Autoantibodies may be
produced by molecular mimicry, in which viral proteins pos-
sess homologous amino acid sequences with cardiomyocyte
proteins (or the virus and the host share the same antigenic
determinant or epitope) and the induction of an immune
response to the viral antigen thus leads to a cross-reaction
with self-antigens (the antibodies produced against the viral
antigen bind to or react with antigens of the cardiac muscle
cells that share the same antigenic determinant with the viral
antigen), resulting in autoimmunity. Alternatively, autoanti-
bodies may be generated through the initial damage to myo-
cardial cells by viral infection that releases a large quantity of
self-antigens into the circulation, in which case the viral
infection is followed by a second phase of immune process
of the disease, recruiting active immunocompetent cells into
the cardiac tissue that favor B cell activation and subsequent
autoantibody production, resulting in myocardium damage
and progression of heart disease [89–115].

A wide spectrum of autoantibodies associated with
human or murine myocarditis has been described in the
literature, of which the most important one is directed
against the contractile protein myosin [116] (For an inclusive
list of the autoantibodies, please refer to Dörner et al. [74],
page 334, Table 1.) The presence of the cardiac myosin-
specific autoantibodies in mice with myocarditis was first
described in 1987 by Rose et al. [117], Alvarez et al. [118],
and Neu et al. [119]. Neu et al. [120] reported that the infec-
tion of a susceptible mouse strain with CVB3 resulted in
myocarditis associated with a high titer of myosin autoanti-
body specific for the cardiac myosin isoform. The injection
of cardiac myosin itself in certain strains of mice also
produces severe myocarditis with high titers of cardiac
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myosin autoantibodies. The mouse strains that are resistant
to cardiac myosin induced-myocarditis did not develop
increased cardiac myosin autoantibodies. On the other hand,
injection of the mice with skeletal muscle myosin did not
produce the expected effect, suggesting that the immuno-
genic epitopes or determinants are specific to the cardiac
myosin isoform.

In human beings, the α-myosin isoform exists exclusively
in cardiac myocytes, whereas the β-myosin isoform is found
both in cardiac myocytes and in slow skeletal muscle cells.
Pummerer et al. [121] mapped the pathogenic epitopes on
the myosin molecules in 1996. They found that α-myosin is
the dominant immunogenic isoform that induces myocardi-
tis (with high severity and prevalence) whereas β-myosin
seldom causes the disease. So, the immunogenic epitopes of
α-myosin (amino acid sequences) must reside in regions dif-
ferent from β-myosin. Three immunogenic amino sequences
were identified. One sequence (AA 614–643) located in the
head of the α-myosin heavy chain induced severe myocardi-
tis, whereas two others (AA 735–747 and AA 947–960) that
reside in the rod of the α-myosin heavy chain only induced
minor pathologic changes in BALB/c mice. The autoimmu-
nogenic epitope is located in a different region in A/J mice:
between amino acid residue 334 and 352 of the α-myosin
molecule [122]. Schwimmbeck et al. [123] identified the
immunogenic epitopes of human myosin using synthetic
peptides. More than 44% of the seral samples from patients
with myocarditis or dilated cardiomyopathy bound to a
region corresponding to amino acids 345 to 352 of the
human myosin heavy chain, while only 4% of the sera from
healthy controls reacted with this peptide. Circulating auto-
antibodies to whole myosin molecules were detected in
26%–46% of the patients who had myocarditis or dilated car-
diomyopathy; in these patients, the autoimmune reactivity
did not show significant difference between α-myosin and
β-myosin [124–126].

Caforio et al. [127] investigated whether anti-heart auto-
antibodies are directly pathogenic to the host by passive
transfer of affinity-purified anti-heart autoantibodies from
sera of patients with myocarditis to normal BALB/c mice to
induce experimental myocarditis. The results showed that
myocarditis was present in 52% of the mice that received
purified sera from patients; in contrast, only 2% of the
control mice were complicated with the disease. Yuan
et al. [128] examined whether the immune tolerance to
swine cardiac myosin could protect BALB/c mice that
have myosin-induced myocarditis from myocardial injury.
The results showed that myocardial degeneration, necrosis,
and inflammatory cell infiltration were found in the nonto-
lerance mouse group but not in the immune tolerance group,
suggesting the protective effect of immune tolerance on the
development of autoimmune myocarditis.

Lately, the role of β1-adrenoreceptor autoantibodies in
the pathogenesis of dilated cardiomyopathy attracted much
attention [129–139]. Dilated cardiomyopathy is a common
cause of heart failure which remains a main health problem
because of its high prevalence and the sudden cardiac death.
The cardiopathogenic role played by autoantibodies directed
against β1-adrenoreceptors has been established in the last

two decades. Experimental mouse models have shown that
β1-adrenoreceptor autoantibodies caused progressive dilated
cardiomyopathy. Clinical studies also revealed that β1-adre-
noreceptor autoantibodies are frequently detected in sera
from dilated cardiomyopathy patients and are closely associ-
ated with the disease. Autoantibodies with β-adrenergic
effects were first isolated from sera of idiopathic dilated
cardiomyopathy patients [140]. Not long after, the presence
of autoantibodies (a γ-globulin) against the β1 adrenore-
ceptor in sera of idiopathic dilated cardiomyopathy patients
was confirmed [141].

The first step in the development of idiopathic dilated
cardiomyopathy might be a viral myocarditis. Several viruses
might be implicated in the pathogenesis of dilated cardiomy-
opathy [142]. One hypothesis was that the destruction of
cardiac myocytes releases the β1 adrenoreceptor as an auto-
antigen that induces the autoimmune response. An alterna-
tive hypothesis was that β1-adrenoreceptor autoantibodies
are produced in antimicrobial immune responses as the
microbes have cross-reacting antigens with the receptor.
Levin and Hoebecke [143] recently put forward a “bystander”
explanation. Certain viruses, bacteria, and fungi have
sequence similarity with the second extracellular loop of the
β1 adrenoreceptor. Nearly all sequences show homology
with either the epitope targeted by β1-adrenoreceptor auto-
antibodies detectable in Chagas disease patients or the epi-
tope recognized by β1-adrenoreceptor autoantibodies from
idiopathic dilated cardiomyopathy patients. In consideration
of the fact that the microbial flora of the human intestinal
tract as well as most of the symbiotic microorganisms
habiting in the human body are mostly unknown, it is
most possibility that similar or common epitopes are present
among them and that under pathological conditions these
epitopes may be presented to the adaptive immune system
and induce pathological immune responses [143].

Compared with autoantibody-negative cases, dilated car-
diomyopathy patients who are positive in β1-adrenoreceptor
autoantibodies showed a poorer left ventricle function, a
higher occurrence of severe ventricular arrhythmias, and a
higher incidence of sudden cardiac death [144]. It was found
that the existence of stimulating β1-adrenoreceptor autoanti-
bodies is independently associated with a roughly threefold
increase in cardiac death risk in dilated cardiomyopathy
patients [145]. The pathogenic role of β1-adrenoreceptor
autoantibodies was confirmed in animal experiments in
which peptides corresponding to the second extracellular
loop of β1 adrenoreceptors could trigger similar changes in
the myocardium to those observed in dilated cardiomyopa-
thy patients [146]. Some researchers have proposed that even
though β1-adrenoreceptor autoantibodies are not the only
autoantibodies detectable in sera of dilated cardiomyopathy
patients, they tended to play a more important part in the
initiation and development of dilated cardiomyopathy than
did other autoantibodies [147].

4. Innate Immunity in Viral Myocarditis

Innate immune responses also play an important role in the
development of myocarditis and are responsible for the
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progression to dilated cardiomyopathy. The roles of Toll-like
receptors (TLRs) are discussed below.

When host cells are faced with pathogens, pattern recog-
nition receptors (PRRs), most importantly TLRs, recognize
pathogen-associated molecular patterns (PAMPs) and acti-
vate an intracellular network of signaling pathways that
results in the production of numerous cytokines that may
exert protection andmay also cause inflammation [148–151].

Of all PRRs, TLRs are first described and the most inten-
sively studied. A total of thirteen TLRs (TLR1 through
TLR13) have been identified, of which the latter two
(TLR12 and TLR13) are not found in humans [152–155].
TLRs are able to recognize different PAMPs presented on
various microorganisms including viruses, bacteria, and
fungi [156–164]. In addition to immune cells, TLRs are
expressed in various tissues, in particular in the myocardial
tissue; the latter may account for the links between the
immune system and cardiac injury [165–167].

TLR3, which recognizes viral double-stranded RNA, is
important in the early response to virus infection. Hardarson
et al. [168] examined the role of TLR3 in protection from
encephalomyocarditis virus (EMCV) infection. They infected
TLR3-deficient (TLR3−/−) mice with EMCV. These TLR3−/−

mice were more susceptible to EMCV infection and had a
much higher viral load in their heart tissue than TLR3+/+

mice. Histopathological examination indicated that myocar-
dial inflammation was less obvious in TLR3−/− mice than in
TLR3+/+ mice. TLR3−/− mice also produced less proinflam-
mation cytokines and chemokines after EMCV infection.
Gorbea et al. [169] reported that individuals carrying
mutated TLR3 (genetic variant P554S or L412F) had a
reduced innate immune response to enteroviruses and
increased viral replication through a mechanism involving
inhibited NF-κB and type I interferon signaling, which
diminished viral clearance and increased the chance of
cardiac pathology. Gorbea et al. [170] also found that
depletion of extracellular mutant 29 (Ecm29), an adaptor
protein of a proteasome subset, increased the abundance
of TLR3 in HEK-293 cells and in HeLa cells. The absence
of Ecm29 increased TLR3 signaling, increased phosphoryla-
tion/activation of effector kinases downstream of TLR3, and
enhanced nuclear localization of interferon regulatory factor
3 (IRF3) and the building up of signaling molecules in juxta-
nuclear recycling endosomes. Thus, Ecm proteasomes are
related to the trafficking of TLR3 and the attenuation of
TLR3-dependent signaling.

TLR4, the first TLR to be found in human beings, has
been reported to perform a variety of functions in a number
of pathological conditions, including myocarditis, and its
level in the heart is the highest compared with other TLRs
[171–173]. TLR4 recognizes lipopolysaccharide (LPS), which
leads to the activation of numerous transcription factors via
two signaling pathways: MYD88- (myeloid differentiation
primary response 88-) dependent pathway and MYD88-
independent pathway [174–177].

Studies have shown that inhibition of the TLR4 system
could reduce the severity of myocardial inflammation.
Fairweather et al. [178] studied the effects of TLR4 deficiency
in CVB3 infection and myocarditis. They found that the

severity of myocarditis, degree of viral replication, and levels
of IL-1β/IL-18 expression were significantly reduced in
TLR4-deficient mice and that TLR4 as well as IL-12Rβ1
aggravated CVB3 infection and myocarditis but IFN-γ
inhibited viral replication. TLR4 and IL-12Rβ1 might
share common downstream pathways that directly affected
IL-1β and IL-18 production, and IL-1beta and IL-18
played an important part in the pathogenesis of CVB3-
induced myocarditis.

Fuse et al. [179] examined the role of MYD88, an
important adaptor protein in the TLR4 signaling pathway,
in the pathogenesis of CVB3-induced myocarditis. They
found that the MYD88 level in cardiac tissue was increased
significantly in wild-type mice after infection of CVB3.
MYD88−/− mice showed a significantly higher survival rate
than did MYD88+/+ mice after exposure to CVB3. Patholog-
ical examination displayed a significant decrease of heart
inflammation in MYD88−/− mice. Cardiac viral concentra-
tions were significantly decreased in MYD88−/− mice. The
levels of mRNAs for IL-1β, TNF-α, IFN-γ, and IL-18 were
significantly decreased in the heart of MYD88−/− mice, and
serum levels of Th1 cytokines were significantly decreased
in these mice as well. By contrast, cardiac levels of activated
IRF3 and IFN-β (but not other usual upstream signals of
IRF3) were significantly increased in these MYD88−/− mice.
These results indicated that MYD88 may be a very important
mediator in cardiac inflammation, inducing cytokine pro-
duction and maintaining Th1/Th2 cytokine balance. Defi-
ciency of MYD88 may provide protection to the host heart
through direct activation of IRF3 and IFN-β.

5. Differing Perspectives or Interpretations

5.1. Roles of CD4+ Regulatory T Cells. CD4+ and CD8+ T cells
have been reported to be involved in the pathogenesis of
myocarditis by many authors; however, regulatory T cells
(Tregs), a subset of CD4+ T cells, have been shown to have
protective effects [180, 181]. Shi et al. [181] recently demon-
strated that the adoptive transfer of Treg cells protected the
mice intraperitoneally challenged with CVB3 from myocar-
ditis through the TGF-β–CAR (transforming growth factor
β-coxsackie virus and adenovirus receptor) pathway,
which maintained the antiviral immune response against
CVB3 and thus suppressed the immune response to the
cardiac tissue.

5.2. Viruses as Pathogens or Passengers. A large number of
viruses have been detected in cardiac tissue, but the inter-
pretation of their role in myocarditis is controversial. Nielsen
et al. [182] examined the prevalence of three strains of
viruses (adenovirus, enterovirus, and PVB19) in myocar-
dial autopsy specimens from deceased individuals with
myocarditis and in noninflammatory control hearts. They
found that adenovirus, enterovirus, and PVB19 were rare
causes of myocarditis. The detection of PVB19 in myocar-
dial autopsy specimens, in particular, most likely repre-
sents a persistent infection with no or limited association
with myocardial inflammation.
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6. Summary

Immune responses in viral myocarditis function as a double-
edged sword: it may be beneficial to the host by limiting viral
spread and eliminating the viruses; nevertheless, excessive
immune responses can damage cardiac muscle cells and con-
tribute to destructive consequences which could lead to
dilated cardiomyopathy. The boundary between the protec-
tive antiviral effects and the harmful immunopathological
process is usually not clear [183–186]. Careful clinical and
laboratory examinations could help doctors to make good
judgment and to choose proper medications.
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