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Abstract: In the dentistry field, dental caries is a common issue affecting all age groups.
The presence of dental braces and dental restoration makes the detection of caries more
challenging. Traditionally, dentists rely on visual examinations to diagnose caries under
restoration and dental braces, which can be prone to errors and are time-consuming. This
study proposes an innovative deep learning and image processing-based approach for
automated caries detection under restoration and dental braces, aiming to reduce the
clinical burden on dental practitioners. The contributions of this research are summarized
as follows: (1) YOLOv8 was employed to detect individual teeth in bitewing radiographs,
and a rotation-aware segmentation method was introduced to handle angular variations
in BW. The method achieved a sensitivity of 99.40% and a recall of 98.5%. (2) Using the
original unprocessed images, AlexNet achieved an accuracy of 95.83% for detecting caries
under restoration and dental braces. By incorporating the image processing techniques
developed in this study, the accuracy of Inception-v3 improved to a maximum of 99.17%,
representing a 3.34% increase over the baseline. (3) In clinical evaluation scenarios, the
proposed AlexNet-based model achieved a specificity of 99.94% for non-caries cases and a
precision of 99.99% for detecting caries under restoration and dental braces. All datasets
used in this study were obtained with IRB approval (certificate number: 02002030B0). A
total of 505 bitewing radiographs were collected from Chang Gung Memorial Hospital
in Taoyuan, Taiwan. Patients with a history of the human immunodeficiency virus (HIV)
were excluded from the dataset. The proposed system effectively identifies caries under
restoration and dental braces, strengthens the dentist–patient relationship, and reduces
dentist time during clinical consultations.
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1. Introduction
As technology continues to advance at a rapid pace, artificial intelligence (AI) is

becoming more deeply embedded in numerous industries, with healthcare standing out
as a key area of impact. AI is making significant strides in areas such as heart disease [1],
cancer [2,3], and diabetes [4]. Its applications span from aiding in diagnostics to planning
treatments and developing personalized medical plans, underscoring its tremendous
potential to enhance the efficiency and accuracy of medical services. In dental medical
diagnostics, AI has already demonstrated its transformative potential. Leveraging machine
learning algorithms, AI can process extensive amounts of medical imagery, including
X-rays [5], CT [6], and MRI scans [7], enabling doctors to diagnose diseases more accurately.

Caries are a prevalent issue in dental healthcare, affecting nearly all adults and 60–90%
of children, posing a significant public health challenge, especially with dental braces
or dental restorations [8,9]. Traditional dental examinations relying on visual inspection
or radiographic images [10,11] can be subjective and time-consuming. Related studies
have utilized auxiliary software for oral examinations, such as methods of geometric
alignment to compare noise levels in subtraction images [12], jawbone regeneration [13],
and corticalization measurement [14]. With the rise of AI, automated caries detection using
image processing and deep learning technologies has gained increasing attention [15].
Deep learning techniques such as convolutional neural networks (CNNs) have shown
significant performance in medical image classification by leveraging large-scale annotated
datasets [16,17]. In dentistry, CNNs have been applied to detect apical lesions, offering
objective interpretation and reducing diagnostic time [18]. Bitewing radiographs (BWs) are
commonly used to identify caries and periodontal conditions. Tooth region extraction from
BWs can be performed using filtering, binarization, and projection methods [19–22]. The
YOLO object detection algorithm enables real-time localization with high accuracy and
speed [23,24]. This study uses YOLO to detect caries under restorations and dental braces,
as illustrated in Figure 1.
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enamel caries. Lee et al. [25] applied a U-Net-based CNN for early caries detection, achiev-
ing an accuracy of 63.29% and a recall of 65.02%. Dashti et al. [26] used deep learning on 
2D radiographs and achieved an average precision of 85.9%. In addition to CNN-based 
methods, image enhancement techniques such as noise reduction, contrast adjustment 
[27], intensity value mapping [28], and histogram equalization [29] have been widely 

Figure 1. BW images with disease. (a) Dental braces. (b) The red circle represents the restoration.
(c) The gap in the red circle indicates dental caries under the restoration.

Three primary methods are commonly used to diagnose dental caries: digital radiogra-
phy, simulated radiography, and 3D imaging techniques such as CBCT. For example, Baffi
et al. [10] reviewed 77 studies involving 15,518 tooth surfaces, with 63% showing enamel
caries. Lee et al. [25] applied a U-Net-based CNN for early caries detection, achieving
an accuracy of 63.29% and a recall of 65.02%. Dashti et al. [26] used deep learning on
2D radiographs and achieved an average precision of 85.9%. In addition to CNN-based
methods, image enhancement techniques such as noise reduction, contrast adjustment [27],
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intensity value mapping [28], and histogram equalization [29] have been widely adopted
to improve lesion visibility and classification performance. Well-known CNN models like
AlexNet, GoogLeNet, and MobileNet have also been used for training and evaluating
datasets containing secondary caries and healthy teeth, allowing for comparisons of model
performance and accuracy.

Despite numerous studies employing AI-assisted methods for detecting dental caries,
two key limitations remain. First, the accuracy of most existing models typically ranges
between 88% and 93%, indicating a persistent risk of misclassification. Second, these
studies often exclude cases involving caries under dental restorations and orthodontic
braces, which limit their applicability in more complex clinical scenarios. Thus, we employ
rotation-aware segmentation methods to address the various BW tilt angles to detect
dental caries, ensuring that the most suitable segment angle is used for each BW and
maintaining high detection accuracy despite variations in BW imaging angle. Moreover, an
ablation experiment was conducted to analyze the impact of various image enhancement
techniques on model performance. The proposed system was also benchmarked against
recent state-of-the-art studies to evaluate its precision in detecting caries under dental
braces and dental restoration. This study aims to focus specifically on detecting dental
caries under dental braces and dental restorations. The proposed system is designed to
assist clinicians in interpreting BW images and identifying caries under dental restorations
and braces by leveraging deep learning and image processing techniques. The goal is
to develop an AI-assisted diagnostic tool that reduces the diagnostic burden on dental
professionals, enhances early detection accuracy, and improves clinical efficiency in real-
world dental practice.

2. Materials and Methods
This study aims to develop an automated system to help dentists quickly detect caries

under dental restoration and dental brace. However, the diverse shapes and orientations
of teeth in BWs present significant challenges for accurate individual tooth assessment.
Thus, we first locate and segment each tooth in the BW by YOLO. At the same time, we
implemented the proposed rotation-aware segmentation on the BW and evaluated its
performance compared with YOLO-based detection. Subsequently, we applied image
processing algorithms and conducted an ablation experiment to optimize caries detection
under dental restorations and orthodontic braces. These experiments enabled the model
to achieve its highest detection precision by effectively isolating the target regions and
minimizing background interference with CNN training. The overall flow chart is shown
in Figure 2.

2.1. BW Image Dataset Collection

The dataset used in this study was provided by Chang Gung Memorial Hospital,
Taoyuan, Taiwan. It was approved by the Institutional Review Board (IRB) of Chang Gung
Medical Foundation (IRB number: 02002030B0). BW image and corresponding ground
truth annotations were collected by three oral specialists, each with over five years of
clinical experience. Each expert independently annotated the presence of caries under
restorations and dental braces on the BW images using the LabelImg tool version 1.7.0. The
annotation process was conducted without mutual influence among annotators. Final labels
for each BW image were determined by majority voting to ensure annotation reliability.
Patients with a history of the human immunodeficiency virus (HIV) were excluded from
the dataset. All eligible BW images collected during the study period were included in the
dataset to maximize sample size and ensure the generalizability of clinical diagnosis.



Bioengineering 2025, 12, 533 4 of 20

Bioengineering 2025, 12, 533 3 of 19 
 

adopted to improve lesion visibility and classification performance. Well-known CNN 
models like AlexNet, GoogLeNet, and MobileNet have also been used for training and 
evaluating datasets containing secondary caries and healthy teeth, allowing for compari-
sons of model performance and accuracy. 

Despite numerous studies employing AI-assisted methods for detecting dental car-
ies, two key limitations remain. First, the accuracy of most existing models typically 
ranges between 88% and 93%, indicating a persistent risk of misclassification. Second, 
these studies often exclude cases involving caries under dental restorations and orthodontic 
braces, which limit their applicability in more complex clinical scenarios. Thus, we employ 
rotation-aware segmentation methods to address the various BW tilt angles to detect dental 
caries, ensuring that the most suitable segment angle is used for each BW and maintaining 
high detection accuracy despite variations in BW imaging angle. Moreover, an ablation ex-
periment was conducted to analyze the impact of various image enhancement techniques 
on model performance. The proposed system was also benchmarked against recent state-
of-the-art studies to evaluate its precision in detecting caries under dental braces and dental 
restoration. This study aims to focus specifically on detecting dental caries under dental 
braces and dental restorations. The proposed system is designed to assist clinicians in inter-
preting BW images and identifying caries under dental restorations and braces by leverag-
ing deep learning and image processing techniques. The goal is to develop an AI-assisted 
diagnostic tool that reduces the diagnostic burden on dental professionals, enhances early 
detection accuracy, and improves clinical efficiency in real-world dental practice. 

2. Materials and Methods 
This study aims to develop an automated system to help dentists quickly detect caries 

under dental restoration and dental brace. However, the diverse shapes and orientations 
of teeth in BWs present significant challenges for accurate individual tooth assessment. Thus, 
we first locate and segment each tooth in the BW by YOLO. At the same time, we imple-
mented the proposed rotation-aware segmentation on the BW and evaluated its perfor-
mance compared with YOLO-based detection. Subsequently, we applied image processing 
algorithms and conducted an ablation experiment to optimize caries detection under dental 
restorations and orthodontic braces. These experiments enabled the model to achieve its 
highest detection precision by effectively isolating the target regions and minimizing back-
ground interference with CNN training. The overall flow chart is shown in Figure 2. 

 

Figure 2. Caries under dental brace and dental restoration detection flow chart. Figure 2. Caries under dental brace and dental restoration detection flow chart.

Model training, testing, and validation were supervised by senior researchers with
extensive experience. A blinded protocol was implemented during the validation and
testing stages to eliminate operator bias. Specifically, the operator conducting model
evaluation was unaware of whether the BW images contained teeth affected by caries under
restorations or dental braces, ensuring objective assessment. The BW dataset contained
505 images, and the single-tooth dataset included 440 images. For the tooth localization
task using YOLO, 84 BW images were reserved as a validation set, while the remaining
images were split into training and test sets in an 8:2 ratio. For the CNN-based classification
task detecting the presence of caries under restorations and dental braces, 40 single-tooth
images were reserved for validation, and the remaining images were divided into training
and test sets using a 7:3 ratio.

2.2. BW Image Segmentation

This subsection describes our two image segmentation methods. The first method is
rotation-aware segmentation, which extracts single teeth by finding the optimal rotation
angle of the BW slice and segmenting based on horizontal and lead hammer lines. The
second method uses the YOLO deep learning technique to determine tooth coordinates
and segment teeth accordingly. These techniques allow for subsequent image enhancement
and CNN training, improving the model’s ability to localize and classify caries under
complex conditions.

A. Single-tooth extraction algorithm

A complete BW varies due to factors such as angle, exposure size, the number of
teeth, and interproximal spacing. Using fixed parameters and thresholds can lead to
misjudgments and low segmentation efficiency. To enhance flexibility and operability, the
algorithm uses adaptive thresholds tailored to each BW based on brightness, size, and the
number of teeth. Each BW is pre-processed before segmentation due to variations in mouth
shape, tooth shape, and imaging angle. This study first applies to a gaussian high-pass filter
to eliminate noise, reducing segmentation errors. Next, the images undergo binarization
and erosion techniques to clarify background contours, making them easier to distinguish,
as illustrated in Figure 3.
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able angle, multiple calculations will be required within the same range of angles. How-
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result and find out the suitable angle more quickly. After rotating the image of each BW 
to a suitable angle, the height of the trough (y-value) is found. The height of the plumb 
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be divided into upper and lower rows of teeth; the specific segmentation result is shown 
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Figure 3. BW image preprocessing. (a) Original BW. (b) Gaussian filter. (c) Horizontal erosion
after binarization.

Due to angular issues in a BW, horizontal and vertical lines may not fully separate
the teeth. This study addresses this by rotating and binarizing images multiple times to
enhance the contrast between teeth and gaps. High-contrast images allow for accurate
identification of tooth gaps through pixel horizontal projection as shown in Figure 4a.
The image is divided horizontally into three parts, masking the upper and lower sections
to focus on the middle, like the upper and lower sides of the red box in Figure 4b are
masked. The valleys of the projection line in this region are identified as the x-minimum
value, and the y-coordinate of the valley represents the vertical height separating the upper
and lower rows of teeth after rotation. Additionally, during each rotation, a projection
is made to identify the trough position in the middle of the image. The trough values
(x-minimum) at each angle are compared to determining the optimal rotation angle for
horizontal segmentation. Initially, the image is rotated within a range of plus or minus
15 degrees, in increments of 5 degrees. By comparing the trough values at each angle, the
most suitable rotation angle for horizontal cutting is identified, as shown in Figure 4b.
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According to Table 1. After performing small-angle rotations and comparing the
trough values at each angle, it was determined that the lowest trough value (x = 36) occurs
at a rotation of 11 degrees, which is lower than the trough value (x = 40) obtained at the
initial rotation of 10 degrees. Therefore, it can be concluded that a positive 11 degrees is the
most suitable rotation angle for this BW, which is more favorable for subsequent horizontal
segmentation. If a smaller rotation angle is used from the beginning to find a suitable
angle, multiple calculations will be required within the same range of angles. However,
by gradually rotating the image in two steps, one large angle (5 degrees) and one small
angle (1 degree) to obtain the most suitable rotation angle, we achieve the same result and
find out the suitable angle more quickly. After rotating the image of each BW to a suitable
angle, the height of the trough (y-value) is found. The height of the plumb coordinates
of the troughs are found and the horizontal line separating the upper and lower jaws is
plotted using the height of these coordinates. This allows the entire BW to be divided into
upper and lower rows of teeth; the specific segmentation result is shown in Figure 5.
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Table 1. BW rotation based on horizontal projection at every angle.

Angle −15◦ −10◦ −5◦ 0◦ 5◦ 6◦ 7◦

x coordinate 854 785 516 407 261 179 135

Angle 8◦ 9◦ 10◦ 11◦ 12◦ 10◦ 15◦

x coordinate 78 42 40 36 45 40 281
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Figure 5. Segmentation of the upper and lower rows of teeth of the BW. (a) Horizontal line drawing
of the lowest pixel coordinates. (b) Upper row of teeth. (c) Lower row of teeth.

After dividing the BW into upper and lower rows of teeth, each tooth is segmented
individually. Vertical projection and vertical erosion are used to find the troughs (y-
minimum) of the adjacent waveforms, identifying the gaps between teeth to separate each
one. The number of vertical lines required varies with the number of teeth in each row. If
the number of teeth is n, then n − 1 vertical lines are needed for complete segmentation.
These n − 1 lines correspond to the number of troughs found in the vertical projection
of the waveform. The x-coordinates of these troughs are returned to the original image,
where vertical lines are drawn to isolate the teeth. The peaks and valleys are marked with
red circles in Figure 6a,b, which is shown in Figure 6c,d. Because secondary caries mainly
occurs on both sides of the teeth, and since each complete tooth has both a left and right
half, this increases the complexity during training and judgment, resulting in poor training
outcomes. Therefore, each tooth image is further divided into left and right halves, as
shown in Figure 7. This approach reduced the complexity of the data and doubled the
training dataset, providing more data for training.
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B. YOLO Deep Learning Method

Object detection has been a challenging task in computer vision and deep learning.
Traditional methods often require multiple steps, including region extraction, feature
computation, and classification, leading to slow processing speeds and high complexity.
However, recent advancements in deep learning have led to significant progress in object
detection. YOLO achieves excellent accuracy and significantly outperforms traditional
methods in image processing speed. Its uniqueness lies in detecting and locating objects
in the entire image at once, without the need for excessive computation. YOLO is used to
locate the teeth by finding the coordinates of each tooth in the BW. The BW is segmented
according to these coordinates to produce an image of each individual tooth. Training the
YOLO model requires a large amount of data for training and validation, with each piece of
data distinguished from the target. The trained model is then applied to the entire database
of BWs, identifying and labeling the position of each tooth. The BW is segmented to obtain
individual tooth images after determining the coordinates of each tooth. Subsequently, the
length and width data of the four teeth in the BW are used to segment each tooth, which is
shown in Figure 8.
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2.3. Image Enhancement

This subsection aims to make symptomatic conditions more apparent, thereby making
the images more suitable for CNN training and analysis. In a BW, tooth decay appears as
black gaps, teeth appear as grayish-white, and dental restorations appear as bright white.
The enhancement process focuses on increasing the contrast between black, gray, and white,
particularly at the junctions of dental restorations, teeth, and cavities (black background).
Non-smooth lines at these junctions indicate the presence of caries. Segmented images
may lack sufficient color contrast or display subtle symptoms, which can hinder the CNN
model’s ability to train and discriminate effectively. To address this, image enhancement
techniques are employed to improve symptom visibility by increasing contrast. Histogram
equalization (HISTEQ) is used to enhance dark and bright areas and increase overall con-
trast, highlighting symptom locations before CNN model training. Additionally, intensity
value mapping (IAM) and adaptive histogram equalization (AHE) are applied to further
enhance image quality, as illustrated in Figure 9.

Bioengineering 2025, 12, 533 8 of 19 
 

hinder the CNN model’s ability to train and discriminate effectively. To address this, im-
age enhancement techniques are employed to improve symptom visibility by increasing 
contrast. Histogram equalization (HISTEQ) is used to enhance dark and bright areas and 
increase overall contrast, highlighting symptom locations before CNN model training. 
Additionally, intensity value mapping (IAM) and adaptive histogram equalization (AHE) 
are applied to further enhance image quality, as illustrated in Figure 9. 

    
(a) (b) (c) (d) 

Figure 9. Image enhancement result. (a) Original. (b) Intensity value mapping. (c) Histogram equal-
ization. (d) Adaptive histogram equalization. 

After the above three types of symptom enhancement, it is found that the sympto-
matic part is not particularly noticeable. The white color of the dental restoration, the off-
white color of the teeth and gingiva, and the black color of the background are not in sharp 
contrast. The edges of the color blocks are blurred. This may make it difficult for the CNN 
model to recognize the symptoms. Therefore, this study uses the above three types of re-
inforcement to enhance the training accuracy through the interaction enhancement model. 
For example, HISTEQ and AHE can increase the contrast in the image and make it easier 
to detect secondary caries in the image. The result of the interaction enhancement is shown 
in Figure 10. 

    
(a) (b) (c) (d) 

Figure 10. Interaction enhancement. (a) HISTEQ add AHE, (b) AHE add IAM, (c) IAM add HISTEQ, 
and (d) IAM, HISTEQ, and AHE. 

2.4. CNN Training and Validation 

Various CNN models were employed for image classification within the domain of 
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ture of each layer with the AlexNet model. During the training phase, each image in the 
validation set was individually verified to calculate the average validation accuracy. The 
CNN model was trained using these classified datasets, with the input image size config-
ured to 227 × 227 × 3. This setup allowed for a consistent and standardized input size for 
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Figure 9. Image enhancement result. (a) Original. (b) Intensity value mapping. (c) Histogram
equalization. (d) Adaptive histogram equalization.

After the above three types of symptom enhancement, it is found that the symptomatic
part is not particularly noticeable. The white color of the dental restoration, the off-white
color of the teeth and gingiva, and the black color of the background are not in sharp
contrast. The edges of the color blocks are blurred. This may make it difficult for the
CNN model to recognize the symptoms. Therefore, this study uses the above three types
of reinforcement to enhance the training accuracy through the interaction enhancement
model. For example, HISTEQ and AHE can increase the contrast in the image and make it
easier to detect secondary caries in the image. The result of the interaction enhancement is
shown in Figure 10.
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2.4. CNN Training and Validation

Various CNN models were employed for image classification within the domain
of deep learning. Using AlexNet as a representative example, Table 2 illustrates the
architecture of each layer with the AlexNet model. During the training phase, each image
in the validation set was individually verified to calculate the average validation accuracy.
The CNN model was trained using these classified datasets, with the input image size
configured to 227 × 227 × 3. This setup allowed for a consistent and standardized input
size for the model. The design of the model involved modifying the last three layers, fully
connected, softmax, and classification layers, and replacing them with fully connected
layers specifically configured to classify the images into two categories, corresponding to
the primary classes being analyzed. After the deep learning model was trained, images
from the test set were randomly input into the model to assess its performance. The model
classified these images based on the features it learned during the initial training phase.
A confusion matrix was then generated to analyze the classification results, providing a
detailed breakdown of the model’s accuracy and performance. This matrix allowed for
a clear visualization of how well the model distinguished between the different classes,
highlighting areas of strength and potential improvement. This systematic procedure
comprehensively assessed the CNN’s performance in classifying BWs.

Table 2. The input and output of the AlexNet model.

Type Activations

1 Image Input 227 × 227 × 3 × 1

2 2-D Convolution 55 × 55 × 96 × 1

3 ReLU 55 × 55 × 96 × 1

4 Cross Channel Normalization 55 × 55 × 96 × 1

5 2-D Max Pooling 27 × 27 × 96 × 1

6 2-D Grouped Convolution 27 × 27 × 256 × 1

7 ReLU 27 × 27 × 256 × 1

8 Cross Channel Normalization 27 × 27 × 256 × 1

9 2-D Max Pooling 13 × 13 × 256 × 1

10 2-D Grouped Convolution 13 × 13 × 384 × 1

11 ReLU 13 × 13 × 384 × 1

12 2-D Grouped Convolution 13 × 13 × 384 × 1

13 ReLU 13 × 13 × 384 × 1

14 2-D Grouped Convolution 13 × 13 × 256 × 1

15 ReLU 13 × 13 × 256 × 1

16 2-D Max Pooling 6 × 6 × 256 × 1

17 Fully Connected 1 × 1 × 4096 × 1

18 ReLU 1 × 1 × 4096 × 1

19 Dropout 1 × 1 × 4096 × 1

20 Fully Connected 1 × 1 × 4096 × 1

21 ReLU 1 × 1 × 4096 × 1
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Table 2. Cont.

Type Activations

22 Dropout 1 × 1 × 4096 × 1

23 Fully Connected 1 × 1 × 2 × 1

24 Softmax 1 × 1 × 2 × 1

25 Classification Output 1 × 1 × 2 × 1

Hyperparameter Adjustment

In the training stage, each parameter represents different meanings, such as the number
of layers in the neural network, the loss function, the size of the convolution kernel, and
the learning rate. This study describes three modified parameters, including the initial
learning rate, max epoch, and mini-batch size. Detailed hyperparameter values are listed
in Table 3. The experiments were conducted on a hardware platform equipped with
an Apple M1 processor (8-core CPU + 8-core GPU) operating at 3.2 GHz and 16 GB of
DRAM. The software environment included MATLAB R2023a and Deep Network Designer
version 14.6.

Table 3. Hyperparameters in the CNN model.

Hyperparameters Value

Initial Learning Rate 0.0001

Max Epoch 20

Mini Batch Size 16

Learning Drop Period 10

Learning Rate Drop Factor 0.1

3. Results
This section presents the results of the YOLOv8 model and the rotation-aware single-

tooth segmentation algorithm in localizing and accurately segmenting individual teeth
from a BW. Both methods are evaluated to determine their effectiveness in handling image
variability and ensuring reliable segmentation performance. In addition, the CNN model
training outcomes are also reported. Various image enhancement techniques were applied
to the segmented tooth images to investigate the influence of preprocessing. An ablation
experiment was conducted to assess the impact of these enhancement methods on the
performance of the CNN in detecting caries under dental restorations and dental braces.

3.1. Tooth Localization and Segmentation

YOLOv8 was used as the object detection model for BWs to detect single-tooth images.
The training results are illustrated in Figure 11a–d, and a comparison of these results with
other methods is shown in Table 4. YOLOv8 outperforms other versions of YOLO in terms
of precision, recall, and mean average precision (mAP). This study achieved a precision of
99.40%, a recall of 98.50%, and a mAP of 99.40%. Moreover, although the overall detection
performance had a mAP of 0.994, the precision–recall curve slightly declined near the
highest recall range. This may be attributed to a minor imbalance between the two target
classes or varying recall sensitivity. The dataset consisted of two categories, and even a
slight difference in sample distribution or annotation consistency could lead to observable
variations in the curve. The formulas for calculating accuracy, precision, recall, and mAP
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are shown in Equations (1)–(5), and TP is a true positive, FP is a false positive, TN is a true
negative, and FN is a false negative.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

mAP =
1
N∑N

i=1 APi, where APi is the average precision (4)
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The validation results are shown in Figure 12. The accuracy of the judgment of a
single tooth in each BW image is within the range of 80% to 90%. This high level of
accuracy demonstrates that automated tools can be trusted to process large volumes of
image data without requiring extensive time for individually marking the position of
each tooth. Furthermore, we compared the YOLO-based method and the rotation-aware
single-tooth segmentation algorithm developed in this study. As shown in Table 5, the
segmentation average accuracy (ACC) of YOLOv8 is comparable to that of our proposed
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algorithm. However, the proposed method demonstrates a faster inference time (IT) for
individual tooth segmentation and effectively addresses errors caused by variations in
image tilt angles. A paired t-test was performed between YOLO and the proposed model
on 40 validation images. The p-value of 0.013 indicates a meaningful and statistically
supported improvement in performance. The paired t-test is shown in (5), where Xi and
Yi represent the two Intersection over Union (IoU) values of the i-th paired data. The
difference di is calculated by subtracting Yi from Xi, and N denotes the total number of
paired samples.

p-value =
∑N

i=1 (X i − Yi)/N√
1

N(N−1)∑N
i=1 [(X i − Yi)−d

]2
, where d =

1
N∑N

i=1 di (5)

Table 4. Accuracy of single-tooth detection using YOLO and comparison with other research.

Precision Recall mAP

This Study YOLOv8 99.40% 98.50% 99.40%

Method in [30] YOLOv3 86.15% 85.95% 81.43%

Method in [31]

YOLO v5S 61.90% 70.90% 64.90%

YOLO v5M 71.20% 70.80% 70.50%

YOLO v5L 64.30% 68.10% 68.20%
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Table 5. Comparison between YOLOv8 and rotation-aware single-tooth segmentation algorithm.

Method Metrics
Angle

−10◦ −5◦ 0◦ 5◦ 10◦

YOLOv8
ACC 96.23 97.88 98.19 97.11 97.45

IT 3.25 s 3.34 s 3.56 s 3.18 s 3.47 s

Algorithm
ACC 97.58 97.10 97.84 98.09 96.66

IT 1.55 s 2.01 s 1.59 s 1.55 s 2.17 s

3.2. CNN Results

In terms of CNN model accuracy, this study used the validation set for evaluation.
The predictions obtained from the CNN model are compared with the correct categories
of the images to obtain accuracy. The detailed training process diagram of the images
without enhancement is shown in Figure 13. To evaluate the performance and accuracy of
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different CNN models, metrics such as precision and recall are used. The confusion matrix
of the AlexNet classification model on the test dataset shows that 62 images with caries
under restoration and braces (CuRB) were correctly classified, while one CuRB image was
misclassified as non-caries under restoration and dental braces (N-CuRB). Additionally,
56 N-CuRB images were correctly identified, with only one misclassified as CuRB. These
results indicate that the model achieved high classification accuracy with minimal false
positives and false negatives in Table 6.
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Table 6. AlexNet test dataset confusion matrix used for caries under restoration and dental braces
caries (CuRB).

 
Actual

CuRB N-CuRB

Predicted
CuRB 62 1

N-CuRB 1 56

Table 7 presents the classification results of caries under restorations and dental braces
during individual validation. BW images were preprocessed and enhanced before being
classified by the CNN. The predicted results were then mapped back to the BW image to
preserve clinical interpretability and ensure the model’s applicability in real-world settings.
These evaluation results were produced using different CNN models: AlexNet, MobileNet,
and Inception_v3. The table compares the models’ performance in identifying N-CuRB
teeth and CuRB. For the N-CuRB group, our approach achieved remarkably high accuracy,
with AlexNet reaching 99.94%, MobileNet reaching 92.18%, and Inception reaching 69.97%,
all outperforming the corresponding accuracies in [32], which were 98.83%, 72.12%, and
52.66%. In the CuRB group, our method showed even greater improvements. AlexNet
achieved 99.99%, MobileNet achieved 99.74%, and Inception achieved 94.95%, which are
significantly higher than the accuracies reported in [32] (79.63%, 83.63%, and 68.09%, re-
spectively). These results confirm the robustness of our approach in accurately classifying
challenging cases involving caries beneath restorations and orthodontic appliances. Ad-
ditionally, Table 8 presents a comparison of ablation experiment results after applying
various image enhancement techniques. The data demonstrate the effectiveness of different
CNN models and enhancement methods in improving the accuracy of dental image clas-
sification. AlexNet achieved the highest accuracy in identifying disease, with significant
improvements observed after image enhancement using methods such as AHE, HISTEQ,
and IAM.
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Table 7. Comparison of clinical data and the validation image.

Ground Truth: Non-caries under
restoration and dental braces

(N-CuRB)
Model This Study Method in [32]
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Table 8. Image enhancement ablation experiment with AlexNet model.

Method Original AHE HISTEQ IAM

Accuracy 95.83% 98.33% 95.00% 97.50%

Method AHE + HISTEQ AHE + IAM IAM + HISTEQ AHE + IAM + HISTEQ

Accuracy 96.67% 95.83% 96.67% 95.83%

Figure 14 illustrates the impact of various image enhancement techniques on the
classification accuracy of three CNN architectures with AlexNet, MobileNet, and Inception
for detecting caries under restoration and dental braces. Among all models and enhance-
ment strategies, the highest overall accuracy (99.17%) was achieved by Inception using the
IAM + HISTEQ combination, highlighting the effectiveness of combining intensity adjust-
ment and histogram equalization in enhancing lesion visibility. AlexNet performed best
(98.33%) when using AHE alone, while MobileNet achieved its highest accuracy (97.5%)
with the HISTEQ technique. Compared to the original, unenhanced images, AlexNet, Mo-
bileNet, and Inception achieved 95.83%, 93.33%, and 95.83%; the enhancement techniques
generally improved accuracy across all models. However, excessive combinations such
as AHE + IAM and AHE + IAM + HISTEQ led to decreased performance, especially for
Inception (down to 90.83%), likely due to overprocessing and feature distortion. These
results suggest that appropriate image preprocessing plays a critical role in improving the
diagnostic performance of CNN models and that the selection of enhancement methods
should be tailored to the model architecture to achieve optimal outcomes in caries under
restoration and dental brace detection.



Bioengineering 2025, 12, 533 15 of 20

Bioengineering 2025, 12, 533 14 of 19 
 

Table 8. Image enhancement ablation experiment with AlexNet model. 

Method Original AHE HISTEQ IAM 
Accuracy 95.83% 98.33% 95.00% 97.50% 
Method AHE + HISTEQ AHE + IAM IAM + HISTEQ AHE + IAM + HISTEQ 

Accuracy 96.67% 95.83% 96.67% 95.83% 

Figure 14 illustrates the impact of various image enhancement techniques on the clas-
sification accuracy of three CNN architectures with AlexNet, MobileNet, and Inception 
for detecting caries under restoration and dental braces. Among all models and enhance-
ment strategies, the highest overall accuracy (99.17%) was achieved by Inception using 
the IAM + HISTEQ combination, highlighting the effectiveness of combining intensity ad-
justment and histogram equalization in enhancing lesion visibility. AlexNet performed 
best (98.33%) when using AHE alone, while MobileNet achieved its highest accuracy 
(97.5%) with the HISTEQ technique. Compared to the original, unenhanced images, 
AlexNet, MobileNet, and Inception achieved 95.83%, 93.33%, and 95.83%; the enhance-
ment techniques generally improved accuracy across all models. However, excessive com-
binations such as AHE + IAM and AHE + IAM + HISTEQ led to decreased performance, 
especially for Inception (down to 90.83%), likely due to overprocessing and feature dis-
tortion. These results suggest that appropriate image preprocessing plays a critical role in 
improving the diagnostic performance of CNN models and that the selection of enhance-
ment methods should be tailored to the model architecture to achieve optimal outcomes 
in caries under restoration and dental brace detection. 

 

Figure 14. Comparison with different image enhancement methods. 

Table 9 compares the accuracy between the method proposed in this study and the 
technique used in [32] for detecting individual teeth in a BW. In addition, we employed 
an external validation dataset [33] for the classification of caries under restoration and 
dental braces in the BW image. This open-source dataset contains 2810 BW images and 
was annotated by eight dentists (five senior and three junior practitioners) using rectan-
gular bounding boxes to label carious lesions. The performance and generalizability of the 
proposed method were evaluated through a comparative analysis with the masking tech-
nique introduced in [32], which reduces interference from adjacent teeth without rotating 
the BW image. Classification accuracy was assessed using three convolutional neural net-
work (CNN) models—AlexNet, MobileNet, and Inception_v3. Our method performed 
better than [32], achieving an accuracy of 99.17% with Inception_v3, compared to the re-
ported accuracy of 80.00% using MobileNet in [32]. In addition, we used an external 

95.83

98.33

95

97.5
96.67

95.83 95.83
96.67

93.33
94.17

97.5

95.83 95.83

94.17 94.17 94.17

95.83
96.67

95
94.17

95

90.83

92.5

99.17

90
91
92
93
94
95
96
97
98
99
100

A
cc
ur
ac
y

AlexNet MobileNet Inception

Figure 14. Comparison with different image enhancement methods.

Table 9 compares the accuracy between the method proposed in this study and the
technique used in [32] for detecting individual teeth in a BW. In addition, we employed
an external validation dataset [33] for the classification of caries under restoration and
dental braces in the BW image. This open-source dataset contains 2810 BW images and
was annotated by eight dentists (five senior and three junior practitioners) using rect-
angular bounding boxes to label carious lesions. The performance and generalizability
of the proposed method were evaluated through a comparative analysis with the mask-
ing technique introduced in [32], which reduces interference from adjacent teeth without
rotating the BW image. Classification accuracy was assessed using three convolutional
neural network (CNN) models—AlexNet, MobileNet, and Inception_v3. Our method
performed better than [32], achieving an accuracy of 99.17% with Inception_v3, compared
to the reported accuracy of 80.00% using MobileNet in [32]. In addition, we used an exter-
nal validation open-source dataset [33] to evaluate our model’s generalizability. Without
image enhancement, the classification accuracies were 92.01%, 93.45%, and 93.58% for
AlexNet, MobileNet, and Inception_v3. After enhancement, performance improved to
96.42%, 97.11%, and 97.89%. These results demonstrate the effectiveness and robustness of
the proposed enhancement strategy in improving caries classification accuracy across both
internal and external datasets.

Table 9. Comparison of CNN validation with open-source dataset and state-of-the-art model.

Method AlexNet MobileNet Inception_v3

Before Enhancement 95.83% 93.33% 95.83%

After Enhancement 98.33% 97.50% 99.17%

External [33] Before Enhancement 92.01% 93.45% 93.58%

External [33] After Enhancement 96.42% 97.11% 97.89%

Method in [32] 77.89% 80.00% 69.47%

4. Discussion
This study uses deep learning techniques to detect whether individual teeth in a BW

affected by dental restorations and dental braces exhibit signs of caries. To enhance model
performance, image processing and enhancement techniques are incorporated to improve
the training outcomes of the deep learning models. This system is primarily designed to
support dental professionals in clinical diagnosis and aims to serve as a diagnostic aid,
especially for senior dentists in learning to identify carious lesions. Moreover, this study
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addresses a significant gap in current research, where caries under dental restorations and
dental braces have often been excluded from diagnostic models. Compared to previous
studies, our experiment results better detect caries beneath restorations and around braces.
For instance, Ayhan et al. [34] developed a CNN model using U-Net for caries detection
on bitewing radiographs, achieving a precision of 65.1% and a recall of 72.7%. In contrast,
our model achieved higher precision and recall rates, indicating improved diagnostic
accuracy in complex restorations and orthodontic appliance cases. Furthermore, Pérez
de Frutos et al. [35] utilized deep learning methods for detecting proximal caries lesions
in BW images, emphasizing the potential of AI in enhancing diagnostic capabilities. Our
inclusion of images with restorations and orthodontic appliances in the dataset addresses
the limitations noted in earlier research, where such complexities were often excluded.
Additionally, our model’s performance metrics surpass those reported in prior studies
utilizing similar deep learning architectures for caries detection, indicating a significant
advancement in diagnostic accuracy. This is particularly evident when compared to the
work of Ayhan et al. [36], who implemented a deep learning approach for caries detection
and segmentation on bitewing radiographs, which achieves a precision of 93.4% and a
recall of 83.4%, and in our YOLOv8 detection can reach 99.4% and 98.5%, demonstrating
that our result is better than the state-of-the-art research. Overall, the contributions and
innovations in this study are as follows:

1. We evaluated two segmentation techniques for BWs, including the state-of-the-art
YOLOv8 model and our innovative rotation-aware single-tooth segmentation al-
gorithm, which effectively compensates for errors caused by angular variations in
BWs. While both methods achieved comparable segmentation accuracy (96–98%), our
proposed algorithm showed a faster inference time, at least twice as fast as YOLOv8.

2. We compared our deep learning model with recent BW-based single-tooth detection
studies [30,31]. We observed improvements, with precision increasing by up to 13.25%
and recall by 12.55%. The proposed method achieved a maximum precision of 99.40%
and a recall of 98.50% in detecting the targeted lesions.

3. In detecting caries under restoration and dental braces, we applied various image
enhancement techniques and conducted ablation studies to verify their effectiveness.
The better-performing model is Inception-v3, which achieved an accuracy of 99.17%,
representing a 3.34% improvement over the baseline without enhancement. Compared
with a recent method in [32], our system showed a 26.36% improvement in lesion
detection.

4. To evaluate clinical applicability, we tested the system on external datasets not used
for training or validation. The system achieved over 90% accuracy in identifying
caries under dental restorations and dental braces cases, demonstrating its robustness
and stability in practical diagnostic scenarios.

Despite the significant technical progress made in this study, several limitations re-
main. First, the limited size of the original dataset may affect the model’s generalization
capability. Although data augmentation techniques were employed to alleviate sample
insufficiency, further validation using large-scale and diverse datasets is necessary. We
addressed this concern by using an external open-source dataset [33] that was entirely
separate from the training and validation data to evaluate the model’s robustness. In
addition, we plan to conduct prospective real-world validation in collaboration with mul-
tiple medical institutions, aiming to expand our radiographic database and improve the
clinical applicability and stability of the proposed system. Second, although classic CNN
architectures such as AlexNet and Inception-v3 have demonstrated strong accuracy in this
study, they were primarily chosen due to their stability on moderately sized datasets and
relatively low computational requirements, making them suitable for initial validation
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stages. However, recent studies have shown that Vision Transformer (ViT) models exhibit
superior performance in medical image analysis, particularly in capturing long-range
dependencies and global features, which are essential for identifying complex structures.
ViT typically requires large-scale datasets to achieve high accuracy. Azad et al. [37] have
shown that the effectiveness of ViT architectures in medical imaging tasks is significantly
influenced by the availability of extensive training data. In future work, we will collect
more BW datasets and combine ViT and assess their potential benefits in enhancing model
performance and generalization capability.

Third, while effective, the current image enhancement strategy retains substantial
background information during lesion detection, especially when identifying implants,
where non-lesion areas may remain overly prominent. Future work will explore alternative
enhancement and preprocessing techniques to suppress irrelevant backgrounds better and
emphasize pathological regions. Fourth, this study did not consider the phenomenon of
cervical burnout, which can mimic carious lesions on BW images and potentially lead to
false-positive detections. In future work, we will explore artifact-reduction techniques and
model adaptations to distinguish true lesions from cervical burnout. This study did not
specifically address the issue of radiolucent restorative materials, such as certain composite
resins, which may mimic carious lesions on radiographs. These materials can appear as
radiolucent and may be mistakenly identified as caries, posing a risk of false-positive
diagnoses. In future work, we plan to investigate methods to differentiate true caries from
radiolucent artifacts. Additionally, integrating the system into clinical practice requires
addressing compatibility with existing dental software and meeting regulatory standards.
We will work closely with practitioners to optimize usability and ensure compliance with
clinical guidelines.

5. Conclusions
The primary objective of this study is to enable the automated and accurate diagnosis

of caries under restoration and dental braces, assisting dental professionals in improving
treatment efficiency. The final experimental results demonstrate that the proposed method
effectively detects this specific type of lesion. This aligns with the study’s specific aim of
addressing diagnostic challenges in cases where conventional image interpretation may be
obscured by restoration or dental braces. In future work, we aim to collaborate with dental
practitioners to validate the model in real-world clinical settings, ensuring its practicality
and reliability. Clinically, the system has the potential to serve as an assistive tool that
supports early detection, reduces diagnostic workload, and enhances decision-making in
routine dental practice. By achieving these goals, this study seeks to advance the field of
dental imaging and provide a valuable tool for the early detection and treatment of dental
diseases, contributing to more intelligent and efficient dental care solutions.
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34. Ayhan, B.; Ayan, E.; Karadağ, G.; Bayraktar, Y. Evaluation of Caries Detection on Bitewing Radiographs: A Comparative Analysis
of the Improved Deep Learning Model and Dentist Performance. J. Esthet. Restor. Dent. 2025. [CrossRef] [PubMed]

35. Pérez de Frutos, J.; Holden Helland, R.; Desai, S.; Nymoen, L.C.; Langø, T.; Remman, T.; Sen, A. AI-Dentify: Deep learning for
proximal caries detection on bitewing x-ray—HUNT4 Oral Health Study. BMC Oral. Health 2024, 24, 344. [CrossRef]

https://doi.org/10.14245/ns.1938396.198
https://doi.org/10.1007/s12065-020-00540-3
https://doi.org/10.3390/rs13224712
https://doi.org/10.3390/s21217049
https://doi.org/10.3390/bioengineering9120777
https://doi.org/10.1109/ACCESS.2022.3220335
https://doi.org/10.3390/s21134613
https://doi.org/10.3390/app112411904
https://doi.org/10.1109/ICCVW60793.2023.00273
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1038/s41598-021-96368-7
https://doi.org/10.7717/peerj-cs.2371
https://doi.org/10.1109/ICSCAN.2019.8878706
https://doi.org/10.1109/ICEDSS.2016.7587782
https://doi.org/10.1109/COMPSAC.2019.10234
https://doi.org/10.3390/diagnostics12071679
https://doi.org/10.3390/oral3020016
https://doi.org/10.3390/bioengineering10070802
https://universe.roboflow.com/project-hjkow/bitewing-zmohp
https://doi.org/10.1111/jerd.13470
https://www.ncbi.nlm.nih.gov/pubmed/40191981
https://doi.org/10.1186/s12903-024-04120-0


Bioengineering 2025, 12, 533 20 of 20

36. Ayhan, B.; Ayan, E.; Bayraktar, Y. A novel deep learning-based perspective for tooth numbering and caries detection. Clin. Oral.
Investig. 2024, 28, 178. [CrossRef]

37. Azad, R.; Kazerouni, A.; Heidari, M.; Aghdam, E.K.; Molaei, A.; Jia, Y.; Jose, A.; Roy, R.; Merhof, D. Advances in Medical Image
Analysis with Vision Transformers: A Comprehensive Review. Med. Image Anal. 2023, 91, 103000. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s00784-024-05566-w
https://doi.org/10.1016/j.media.2023.103000

	Introduction 
	Materials and Methods 
	BW Image Dataset Collection 
	BW Image Segmentation 
	Image Enhancement 
	CNN Training and Validation 

	Results 
	Tooth Localization and Segmentation 
	CNN Results 

	Discussion 
	Conclusions 
	References

