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Gastropod molluscs are among the most diverse and abundant animals in

the oceans, and are successful colonizers of terrestrial and freshwater

environments. Past phylogenetic efforts to resolve gastropod relationships

resulted in a range of conflicting hypotheses. Here, we use phylogenomics

to address deep relationships between the five major gastropod lineages—

Caenogastropoda, Heterobranchia, Neritimorpha, Patellogastropoda and

Vetigastropoda—and provide one congruent and well-supported topology.

We substantially expand taxon sampling for outgroups and for previously

underrepresented gastropod lineages, presenting new transcriptomes for

neritimorphs and patellogastropods. We conduct analyses under maxi-

mum-likelihood, Bayesian inference and a coalescent-based approach,

accounting for the most pervasive sources of systematic errors in large data-

sets: compositional heterogeneity, site heterogeneity, heterotachy, variation

in evolutionary rates among genes, matrix completeness, outgroup choice

and gene tree conflict. We find that vetigastropods and patellogastropods

are sister taxa, and that neritimorphs are the sister group to caenogastropods

and heterobranchs. We name these two major unranked clades Psilogastro-

poda and Angiogastropoda, respectively. We additionally provide the first

genomic-scale data for internal relationships of neritimorphs and patellogas-

tropods. Our results highlight the need for reinterpreting the evolution of

morphological and developmental characters in gastropods, especially for

inferring their ancestral states.
1. Introduction
Gastropods are one of the most diverse clades of marine animals [1], and the only

mollusc group to successfully colonize terrestrial environments. With an extant

diversity of many tens of thousands of described species, gastropods also have

a high degree of morphological disparity—snails, limpets and slugs with enor-

mous variation in shell shape, coloration and size—and inhabit all kinds of

environments and depths. Gastropods have embryonic spiral cleavage, an

array of developmental modes (direct and indirect, with more than one type of

larva), and undergo torsion of the body during development. Five main lineages

are currently recognized: Caenogastropoda (e.g. cowries, whelks, conchs,

cones), Heterobranchia (e.g. bubble snails, sea slugs, sea hares, most terrestrial

snails and slugs), Neritimorpha (nerites), Patellogastropoda (true limpets) and

Vetigastropoda (e.g. abalones, keyhole limpets, turban snails, top shells).

Early classifications included members of the vetigastropods, patellogastro-

pods and neritimorphs in the Archaeogastropoda [2,3]. With the first numerical

cladistic analysis of morphological data, patellogastropods were recovered as

the sister group to all other gastropods, which were united in the clade Ortho-

gastropoda [4,5]. The sister group relationship of the most diverse lineages, the

heterobranchs and caenogastropods into the clade Apogastropoda, has been

consistently recovered in most morphological and molecular analyses. Other

than that, almost all possible topologies for gastropod relationships have
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been proposed (for a historical review, see [6]). Early mole-

cular studies had mixed success in recovering even the

well-established monophyly of gastropods or some of

the main lineages [7–11]. Mitogenomic efforts have also pro-

duced discordant results [12–14], but recently have recovered

a topology congruent with orthogastropods [15]. The first

transcriptomic analyses of the group were able to reject

several of the historically proposed hypotheses, including

the clade Orthogastropoda [16]. However, different methods

still resulted in contrasting topologies, and three hypotheses

remain [16]. The major uncertainty is the position of Neriti-

morpha, which is recovered either as the sister group to

Apogastropoda or as the sister group to Patellogastropoda and

Vetigastropoda, in this case forming the traditional Archaeogas-

tropoda. The third remaining hypothesis has vetigastropods as

the sister lineage to all other gastropods [16].

Although the most diverse gastropod lineages were well

sampled in the transcriptomic analyses of Zapata et al. [16],

the dataset had only one species of Patellogastropoda and

two of Neritimorpha, which are crucial for the proper rooting

of the gastropod tree. As the three remaining hypotheses differ

in their rooting, better outgroup sampling is another key

necessary improvement. Furthermore, several biases known

to be present in large genomic datasets have not been

accounted for in the phylogenetic methods used so far to

resolve gastropod relationships. Heterogeneity in the station-

ary frequency of amino acids among samples is one such

issue that can artificially group taxa that are actually not clo-

sely related based on convergent amino acid composition

[17]. Within-site rate variation through time (heterotachy) is

another likely violation [18]. Some genes with slow rates of

evolution (e.g. ribosomal protein genes) have also been

shown to bias phylogenetic inference [19,20], while genes

with fast rates and high levels of saturation can cause long-

branch attraction [15,21]. An additional model violation

comes from gene tree discordance, not accounted for by conca-

tenation methods, that can be caused by incomplete lineage

sorting and be particularly relevant in areas of the tree with

short internal branches [22–24], such as the radiation of

crown gastropods during the Ordovician [16,25]. More com-

monly considered issues include rate heterogeneity between

sites and missing data.

Our goal was to resolve between the three remaining

hypotheses for the early divergences of gastropods. We present

an extended sampling of Neritimorpha and Patellogastropoda

by producing new transcriptomes, and complement the dataset

with the latest published gastropod transcriptomes. We further

increase representation for the closest outgroups—bivalves,

scaphopods and cephalopods—sampling all of the major

lineages within each of these mollusc clades. We employ a var-

iety of methods and models with strategic gene subsampling to

account for the most widespread potential sources of systema-

tic error in large datasets, namely compositional heterogeneity,

site heterogeneity, heterotachy, variation in evolutionary rates

among genes, matrix completeness, outgroup choice and

gene tree conflict.
2. Methods
(a) Sampling and sequencing
We sequenced the transcriptomes of 17 species, mostly patello-

gastropods and neritimorphs, and combined them with
published transcriptome sequences from 39 other gastropods

and 18 mollusc outgroups, for a total of 74 terminals. All new

data and selected published sequences are paired-end Illumina

reads. New samples were fixed in RNAlater (Invitrogen) or

flash frozen in liquid nitrogen. RNA extraction and mRNA iso-

lation were done with the TRIzol Reagent and Dynabeads

(Invitrogen). Libraries were prepared with the PrepX RNA-Seq

Library kit using the Apollo 324 System (Wafergen). Quality con-

trol of mRNA and cDNA was done with a 2100 Bioanalyzer, a

4200 TapeStation (Agilent) and the Kapa Library Quantification

kit (Kapa Biosystems). Samples were pooled in equimolar

amounts and sequenced in the Illumina HiSeq 2500 platform

(paired end, 150 bp) at the Bauer Core Facility at the Harvard

University. New sequences were deposited in the NCBI

Sequence Read Archive (BioProject PRJNA508436, SRA

SRR8318344–SRR8318360); voucher information, library indexes

and assembly statistics are available in electronic supplementary

material, table S1.

(b) Transcriptome assembly
Both new and previously published transcriptomes were

assembled de novo; a detailed pipeline, scripts and assemblies

are available in the electronic supplementary material. Raw

reads were cleaned with RCORRECTOR [26] and TRIM GALORE!

[27], removing unfixable reads (as identified by RCORRECTOR),

Wafergen library adapters and reads shorter than 50 bp. Filtered

reads were compared against a set of mollusc ribosomal RNAs

and mitochondrial DNA and removed with Bowtie2 v. 2.2.9

[28]. This set was created from the well-curated databases

SILVA [29] (18S and 28S rRNAs), AMIGA [30] (mtDNA) and

from GenBank [31] (5S and 5.8S rRNAs), and is also deposited

in the electronic supplementary material. Reads were assembled

into transcripts with TRINITY v. 2.3.2 [32,33] (–SS_lib_type FR for

our new strand-specific data generated with Wafergen kits; pre-

cise information was not available from published data, so the

default non-strand-specific mode was used for reads down-

loaded from SRA). A second run of Bowtie2 was done on the

assemblies, before removing transcripts with sequence identity

higher than 95% with CD-HIT-EST v. 4.6.4 [34,35]. Transcripts

were then translated to amino acids with TRANSDECODER v. 3.0

[33], and the longest isoform of each gene was retained with a

custom python script (choose_longest_iso.py). The completeness of

the assemblies was evaluated with BUSCO v. 3.0.2 by comparison

with the Metazoa database [36].

(c) Matrix construction
We built four matrices to account for extreme evolutionary rates,

amino acid composition heterogeneity and different levels of

matrix completeness. Scripts, gene content for each matrix and

alignment files are available in the electronic supplementary

material. Orthology assignment of the peptide assemblies was

done with OMA v. 2.0 [37]. We then used a custom python

script (selectslice.py) to select all orthogroups for which at least

half of the terminals were represented (50% taxon occupancy),

resulting in a matrix with 1059 genes (matrix 1) (figure 1). Each

orthogroup was aligned with MAFFT v. 7.309 [38], and the align-

ment ends were trimmed to remove positions with more than

80% missing data with a custom bash script (trimEnds.sh). To

avoid possible biases, saturation and long-branch attraction,

matrix 2 was built by removing from matrix 1 the 20% slowest

and the 20% fastest evolving genes, as calculated with TRIMAl

[39], for a final size of 635 genes (figure 1). Matrix 3 is the

subset of 962 genes from matrix 1 that are homogeneous regard-

ing amino acid composition. Homogeneity for each gene was

determined with a simulation-based test from the python pack-

age p4 [17,40], with a custom script modified from Laumer

et al. [41] ( p4_compo_test.py) and a conservative p-value of 0.1.
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Finally, a subset of 149 genes with 70% taxon occupancy consti-

tutes matrix 4 (figure 1). For inference methods that require

concatenation, genes were concatenated using PHYUTILITY [42].

We further reduced composition heterogeneity in matrices 1

and 2 by recoding amino acids into the six Dayhoff categories

[43] with a custom bash script (recdayhoff.sh).

All of our matrices include a dense outgroup sampling from

the closest mollusc relatives. However, most previous molecular

gastropod phylogenies have sampled only a couple outgroup

species and/or very distantly related molluscs. To test the effect

of such limited outgroup sampling, we built four extra datasets

based on the largest matrix 1, each containing all gastropods

plus only one of the other mollusc classes from our complete set

(bivalves, scaphopods, cephalopods or polyplacophorans).

(d) Phylogenetic analyses
Amino acid matrices were used for phylogenetic inference with a

coalescent-based approach in ASTRAL-II v. 4.10.12 [44], with maxi-

mum likelihood (ML) in IQ-TREE MPI v. 1.5.5 [45–47] and with

Bayesian inference in PHYLOBAYES MPI v. 1.7a [48]. The two

Dayhoff-recoded matrices were analysed in PHYLOBAYES

(figure 1). Full details and scripts are explained in a custom

pipeline in the electronic supplementary material. For the

coalescent-based method, gene trees were inferred with

RAXML v. 8.2.10 [49] (-N 10 -m PROTGAMMALG4X) and then

used as input for ASTRAL-II for species tree estimation. For each

concatenated matrix, we inferred the best ML tree with two strat-

egies: a gene-partitioned analysis with model search including

LG4 mixture models and accounting for heterotachy (-bb 1500

-sp partition_file -m MFPþMERGE -rcluster 10 -madd LG4

M,LG4X -mrate G,R,E); and a non-partitioned analysis with

model search also including the C10 to C60-profile mixture
models [50] (ML variants of the Bayesian CAT model [51])

(-bb 1500 -m MFPþMERGE -rcluster 10 -madd LG4

M,LG4X,LGþC10,LGþC20,LGþC30,LGþC40,LGþC50,LGþ
C60 -mrate G,R,E). The search for the models LGþC60

(matrices 1 and 3) and LGþC50 (matrix 1) required more

memory than available, and these models were disregarded

for the respective matrices. Outgroup test datasets were ana-

lysed with the ML profile mixture model. PHYLOBAYES was

run with the CAT-GTR model on a subset of the concatenated

alignments (matrices 1, 2 and 4), discarding constant sites to

speed up computation. Tree figures were edited with the R

package ggtree [52].
3. Results and discussion
(a) Main gastropod relationships
Our main goal was to resolve the deep nodes of the gastro-

pod tree and distinguish between three hypotheses of the

relationships among its five main lineages. All but one of

our inference methods and matrices congruently support a

clade uniting Vetigastropoda with Patellogastropoda,

and Neritimorpha as the sister group to Apogastropoda

(figure 2). The only exception is the coalescent-based analysis

on the smallest dataset of 149 genes (Astral, matrix 4), in

which these two key nodes were left unresolved (all tree

files are available in the electronic supplementary material).

Accordingly, the few analyses with lower support on these

nodes also refer to the smaller matrix 4, which is unsurprising

given that it comprises fewer informative sites in concate-

nated analyses and fewer genes in the coalescent-based
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analysis [53]. In summary, the resulting topology is congru-

ent based on an array of analyses testing for the major

common sources of systematic error in phylogenomic
datasets, including gene tree discordance, compositional het-

erogeneity, heterotachy, site heterogeneity, variation in

evolutionary rates and missing data.
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To explore the signal of genes with heterogeneous amino

acid composition, we used the ML and coalescent-based

methods to infer trees for the set of 97 genes that failed the

p4 homogeneity test (trees available in the electronic sup-

plementary material). Interestingly, in the ML partitioned

analysis that had a simpler site heterogeneity model, Patello-

gastropoda was recovered as the sister group to all other

lineages. This is possibly the most commonly used strategy

for phylogenetic inference, highlighting the risks of not

accounting for high complexity in sequence data, in this

case, site and composition heterogeneity combined. Even

with exclusively heterogeneous genes, analyses that do not

rely on a concatenated matrix (coalescent-based) or that con-

sider more complex models of site heterogeneity (ML with a

profile mixture model) still recovered the same relationships

of figure 2.

Our enriched taxon representation ensured that all major

lineages within each of the closest outgroups (scaphopods,

bivalves and cephalopods) were represented, mitigating

issues of long-branch attraction to the outgroups (figure 2).

However, most previous molecular studies of gastropods

had limited outgroup representation, often resulting in long

branches leading to the ingroup [9,10,14,15]. We tested the

sensitivity of our results to restricted outgroup sampling by

limiting outgroups to just one mollusc class at a time in

matrix 1 (trees available in the electronic supplementary

material). Datasets with only cephalopods, only bivalves

and even with the single polyplacophoran resulted in the

same topology of figure 2. Only the dataset restricted

to scaphopods produced a different topology, finding

patellogastropods as the sister group to all other gastropods,

but with low support. Scaphopods and patellogastropods

have respectively the longest internal branch among out-

groups and gastropods, pointing to an effect of long

branch attraction. These results highlight the importance of

maximizing outgroup sampling when targeting hard and

ancient nodes.

Our inferred topology for gastropod relationships

(figure 2) has been previously recovered by a few molecular

[16,54] and total evidence [6] analyses, with numerous alterna-

tives proposed in the literature (e.g. [5,6,10,12,13,15,53]), even

within the same studies. With 17 analyses (combinations of

four subsampled matrices, two data types—amino acids and

Dayhoff recoding—and four inference methods/models), for

the first time, we find strong congruence towards this single

topology for deep gastropod relationships. With that we

reject the clade Archaeogastropoda, proposed almost a century

ago by Thiele [2], which united Neritimorpha, Vetigastropoda

and Patellogastropoda. Although this grouping had given

way to other predominant hypotheses along the years (e.g.

Eogastropoga versus Orthogastropoda divergence), this classi-

fication is still used in the organization of malacology and

paleontology collections of many natural history museums,

and was one of the three resulting hypotheses from the

transcriptomic study of Zapata et al. [16].

The close relationship of neritimorphs and apogastropods

had already been recognized based on early developmental

characters [55,56], such as the time of formation of the 4d

blastomere (mesentoblast). In these groups, the differen-

tiation of this key embryonic cell, which gives rise to the

mesoderm in spiralians [57–59], is accelerated, happening

at an earlier cell stage than in vetigastropods and patellogas-

tropods [55,56]. Other traits shared by neritimorphs and
apogastropods include complex reproductive anatomy,

internal fertilization and encapsulated eggs, which hatch

into a feeding veliger larva or directly into a juvenile

[6,25,60–62]. By contrast, vetigastropods and patellogastro-

pods are mostly broadcast spawners, with embryos that

develop in the plankton into non-feeding larvae, first as a tro-

chophore that later gives rise to a veliger [6,25,60,62,63].

Character states shared by patellogastropods and vetigastro-

pods have historically been interpreted as plesiomorphic

based on the phylogenetic hypothesis in which patellogastro-

pods were the sister group to all other gastropods, or due to a

misguided notion that these are ‘primitive’ taxa [5,55]. In the

light of a sister group relationship between Patellogastropoda

and Vetigastropoda, it is not possible to confidently infer

which were the ancestral gastropod conditions without an

extensive comparative analysis. Sampling of morphological

and developmental data from a larger diversity of gastropods

and especially their closest outgroups—bivalves and scapho-

pods—will be needed to reinterpret their evolution under the

framework presented here (figure 2).

Although exceptions exist in such diverse clades, we use

the most general features of the reproductive strategy and

early life history of gastropods, irrespective of their ancestral

state, to name the two major lineages in figure 2: Psilogastro-

poda, new taxon, from the Greek psilos meaning bare, naked.

This is the most inclusive clade containing Vetigastropoda

and Patellogastropoda, but not Neritimorpha, Caenogastro-

poda or Heterobranchia, therefore also accounting for stem

taxa. The name represents the unprotected nature of the

gametes, which are released in the water for external fertiliza-

tion, and of the embryos and larvae that develop in the

plankton, exposed to the environment. Angiogastropoda,

new taxon, from the Greek angeion meaning vessel, capsule.

It is the most inclusive clade containing Neritimorpha, Cae-

nogastropoda and Heterobranchia, but not psilogastropods.

The name reflects the enclosed nature of the embryo after

internal fertilization, which is encapsulated during early

development, followed by either direct development or a

late stage veliger larva hatching from the egg.

We then propose the adjusted classification of Gastropoda

(table 1). Important questions that remain regarding major

gastropod relationships include the position of Cocculinifor-

mia and Neomphalina, smaller deep sea clades that have

been considered somehow related to vetigastropods, neriti-

morphs, patellogastropods or as independent branches in

the gastropod tree [60]. They are yet to be sampled in a phy-

logenomic analyses, and we therefore keep their independent

status relative to the other major lineages, but note that future

phylogenomic studies could reveal either one as part of

psilogastropods or angiogastropods.

Regarding overall mollusc relationships, we recover a

well-supported clade of gastropods, bivalves and scapho-

pods in all analyses; however, as in previous phylogenomic

efforts [65,66], relationships between these three groups are

unstable (figure 2). The Dayhoff datasets and most of the

ML analyses with the profile mixture model result in a

clade of gastropods and scaphopods; while most coalesc-

ent-based trees recover a clade of bivalves and scaphopods;

and finally, the ML partitioned analyses produce a clade of

gastropods and bivalves. Perhaps a way ahead to resolve

such hard nodes will be to use other types of data, such as

genomic rearrangements and presence/absence of genes

from complete genomes.



Table 1. Higher level classification of the extant Gastropoda proposed here.
We follow [64] in not presenting the authority of high level names because
some of them have a taxonomic composition that differs substantially from
that of the original author.

classification proposed here

Class Gastropoda

Psilogastropoda, new taxon

Patellogastropoda

Vetigastropoda

Angiogastropoda, new taxon

Neritimorpha

Apogastropoda

Caenogastropoda

Heterobranchia

Incertae sedis

Neomphalina

Cocculiniformia
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(b) A note about convergence in PHYLOBAYES
While PHYLOBAYES runs converged on the Dayhoff-recoded data-

sets presented here, analyses on the more complex amino acid

matrices did not converge for all parameters. The problem

was especially pronounced for the large matrices (a summary

table with convergence metrics for all analyses is given in the

electronic supplementary material). We observed that some

convergence issues were due to small differences between

chains regarding the position of one or few derived terminals

within the outgroups or within apogastropods, whose relation-

ships were not the goal of this study. We suspect this may be

caused by a problem in topology proposals for these derived

nodes, leading some of the chains to get stuck in local

maxima. One example comes from the Dayhoff analysis of

matrix 1: the initial two chains seemed to be very far from topo-

logical convergence (maxdiff¼ 1) even after more than 20 000

generations. Upon closer inspection, both trees were basically

indistinguishable, with the only variation being the position

of Charonia or Crepidula as the sister group to Neogastropoda.

Removal of either one of the two terminals from the treelist

files with a custom script (remove_terminal_treelist.py) resulted

in the same converged topology (tree files in the electronic sup-

plementary material). For that particular analysis, we ran two

additional independent chains that converged without present-

ing this issue. This behaviour was recently discussed [67], and

perhaps has been underreported in the literature.
(c) Relationships within gastropod lineages
This is the first genomic-scale dataset for Patellogastropoda

and Neritimorpha. Internal relationships of patellogastropods

have presented incongruent results even among studies using

the same type of data (reviewed in [60,68]). We consistently

recover Nacellidae (Cellana, Nacella) as the sister group of Patel-

lidae (figure 2), a clade originally supported by some of the

earliest morphological [69] and mitochondrial phylogenies

[70]. Nacellids have also been placed either as a grade at the

base of the tree [71] or closer to Lottiidae [72], and the current

taxonomic classification has Nacellidae in the superfamily
Lottioidea [64,73]; our results indicate the family should be

transferred to Patelloidea. Another interesting finding regards

Eoacmaea, which had gained family and superfamily status

due to being recovered as the sister taxon to all other patello-

gastropods with mitochondrial markers [72]. None of our

results recover this position, but rather indicate that the

genus is either part of Lottiidae (most ML and Bayesian

results), which was its original assignment, or is sister group

to the Lottioidea families Neolepetopsidae (Paralepetopsis)
and Lottiidae (Patelloida, Nipponacmea, Lottia, Testudinalia)

(coalescent-based trees and one ML tree) (figure 2).

Neritimorphs had mostly congruent phylogenies

recovered from 28S rRNA [74] and mitogenomes [75]. Our

reconstruction supports the same topology, with Neritopsoi-

dea (Titiscania) as the sister group to all other neritimorphs,

followed by the divergence between Helicinoidea (Pleuropoma)

and Neritoidea (figure 2). Within the latter, we recover a mono-

phyletic Neritidae as the sister group of Phenacolepadidae

(Thalassonerita). The nested position of Smaragdia inside

Neritininae disagrees with the current classification of the

genus in its own subfamily [64,73].

Vetigastropoda and Heterobranchia had similar taxon

representation as in Zapata et al. [16] (with newly sequenced

replacements for some vetigastropod families). As expected,

the relationships are the same, and highlight the need for

future studies focused on each group, given the uncertain

position of Haliotis in Vetigastropoda, and low resolution of

internal relationships of panpulmonates in Heterobranchia

(figure 2). Our results contrast with recent mitogenomic ana-

lyses of vetigastropods, which recovered a monophyletic

group of Seguenzioidea (Granata), Lepetodriloidea (Lepetodrilus)
and Haliotoidea (Haliotis) [14,76,77].

We substantially increased sampling of Caenogastropoda

by adding the latest published transcriptomes of eight

families. Despite that, caenogastropods are the most diverse

gastropod lineage, with over a hundred families, and the fol-

lowing results are still limited in sampling. We recover a

monophyletic Neogastropoda; its internal relationships

differ from a molecular study with denser taxon sampling

[78], in that we find Buccinoidea (Cumia, Volegalea) closer to

Conoidea (Conus, Crassispira) than to Muricoidea (Urosalpinx).

We also recover a monophyletic Truncatelloidea (Bithynia,

Oncomelania) as the sister group to all other Hypsogastropoda

(figure 2). The relative position of Tonnoidea (Charonia) and

Calyptraeoidea (Crepidula) regarding Neogastropoda is

unclear; nonetheless, the close relationship between Tonnoi-

dea, Neogastropoda and also Stromboidea (Lobatus) agrees

with previous molecular studies [78,79]. The branching pat-

tern of the closest relatives of neogastropods reveals a

paraphyletic Littorinimorpha.
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