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Abstract: Exposure to air pollutants may elevate the injury severity scores (ISSs) for road traffic
injuries (RTIs). This multicenter cross-sectional study aimed to investigate the associations between
air pollution, weather conditions, and RTI severity. This retrospective study was performed in Taiwan
in 2018. The location of each road traffic accident (RTA) was used to determine the nearest air quality
monitoring and weather station, and the time of each RTA was matched to the corresponding hourly
air pollutant concentration and weather factors. Five multiple logistic regression models were used to
compute the risk of sustaining severe injury (ISS≥ 9). Of the 14,973 patients with RTIs, 2853 sustained
severe injury. Moderate or unhealthy air quality index, higher exposure to particulate matter≤2.5 µm
in diameter, bicyclists or pedestrians, greater road width, nighttime, and higher temperature and
relative humidity were significant risk factors for severe injury. Exposure to nitrogen oxide and ozone
did not increase the risk. Auto occupants and scene-to-hospital time were the protective factors.
Sensitivity analyses showed consistent results between air pollutants and the risk of severe injury.
Poor air quality and hot and humid weather conditions were associated with severe RTIs. Active
commuters were at higher risk of sustaining severe RTI.

Keywords: road traffic injury; injury severity; fine particulate matter; air quality index; active commuters

1. Introduction

Air pollutants, such as particulate matter ≤2.5 µm in diameter (PM2.5), are harmful
to human health, especially the respiratory, cardiovascular, and nervous systems [1]. An
increasing number of studies have elucidated the detrimental effects of air pollutants on
various aspects of human health. Air pollution exposure is significantly associated with
impairment of neurobehavioral performance among Chinese children [2] and adversely
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affects the cognitive performance of high school students in Israel [3] and Iran [4]. Ac-
cording to studies conducted in the United Kingdom (UK) and the United States (US),
acute air pollution exposure may be associated with increased aggressive behaviors [5,6].
Acute exposure causes elevated levels of serotonin [7] and stress hormones [8], including
cortisol, cortisone, and epinephrine, resulting in impulsive and aggressive behavior. In
addition, direct stimulation of the eyes and upper respiratory tract by air pollutants may
cause impatience and bad mood [9].

Road traffic injuries (RTIs) are the eighth leading cause of death worldwide and the
number one cause of death among people aged 5–29 years [10]. Environmental conditions
are risk factors contributing to road traffic accidents (RTAs) [11–13]. Recent studies have
reported the associations between RTIs and various weather conditions such as temperature,
precipitation, and humidity [9,14–17]. However, only a few studies have examined the
association between air pollution and RTIs. Previous studies have suggested that air
pollution increases the risk of death due to unintentional injury, but findings regarding
the effect of air pollution on injury severity have varied [18,19]. However, these studies
included patients with all-cause injuries rather than focusing on patients with RTIs. In a
study conducted in Pakistan, air pollution was determined to cause RTAs [9]. In the UK,
higher PM2.5 concentrations were associated with higher numbers of car crashes owing
to their negative effect on driving performance [20]. In this study, nitrogen dioxide (NO2),
sulfur dioxide (SO2), and air quality index (AQI), but not ozone (O3), were also significantly
associated with the number of car crashes. However, a previous study conducted in
Iran found that O3, particulate matter ≤10 µm in diameter (PM10), NO2, and carbon
monoxide (CO) concentrations were inversely associated with mortality after adjusting
the confounders [21]. Another study conducted in Iran indicated that the concentration
of PM2.5 was significantly associated with the number of traffic accidents. However, no
significant correlation was observed between NO2 and the number of traffic accidents [22].
The association between air pollutants and RTI or mortality was examined in the above
studies, which reported inconsistent results.

In Taiwan, ambient air pollution primarily originates from three sources: long-range
transport of air pollutants from other countries, emissions from local factories and con-
struction, and traffic-related air pollution. According to a study conducted in 2019, on-road
vehicles were the primary source of PM2.5 and nitrogen oxide (NOx) emissions. The annual
average PM10 and PM2.5 concentrations were 35.7 µg/m3 and 17.3 µg/m3, respectively.
For O3 and NO2, their annual average concentrations were 31.4 parts per billion (ppb)
and 11.5 ppb, respectively [23]. As of 2021, Taiwan has more than 14,000,000 motorcycles,
which is one of the major sources of ambient air pollution [24,25]. For the Taiwanese,
these motorcycles, mostly light motorcycles with cylinder capacities of less than 250 cc, are
used for commuting and supporting daily activities. The high demand for motorcycles is
mainly due to their affordability, usage convenience, and other factors, including increased
urban traffic congestion, insufficient public transportation systems, and socioeconomic
conditions [26,27]. The widespread use of motorcycles has caused road safety issues. More
than 474,000 RTIs and 2990 deaths were recorded in 2021; more than 75% of the casualties
were motorcyclists. The RTI rate increased by 109.7% from 2008 to 2021 [28].

Driving performance is a key component of road safety, and a driver’s cognitive
and behavioral capacities affect the driving performance. Air pollution negatively af-
fects the cognitive and behavioral capacities, thus causing impulsivity, irritability, and
aggression [29,30]. Air pollution also causes haze that diminishes the visibility of roads [31].
Therefore, the association between air pollution, RTAs, and related injuries should be
explored to ensure road traffic safety [32]. As studies exploring these associations are
limited, increased air pollution concentrations might cause more severe traffic injuries.
The primary objective of this multicenter study was to investigate the associations of air
pollution, including six traffic-related air pollutants, and the composite index (AQI) and
weather factors with RTI severity.
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By exploring the association of meteorological factors and air pollution with RTIs,
our study provides useful information for the healthcare authorities in planning effective
interventions to reduce deaths and injuries caused by RTAs. In addition, this exploration
may open a new pathway for trauma research whose results can be applied in a clinical
setting in order to mitigate the severity of RTIs. For the transport sector, it is important
to maintain a convenient public transport system that can decrease the need for private
transport, improve road congestion, alleviate environmental pollution, and decrease the
injury severity after RTAs. Combining the transport and environmental sectors’ efforts
in urban and environmental planning will lead to the implementation of the concept of
green transportation, including electric vehicles, ride-sharing, and green space. Urban
greenery is also an effective strategy for mitigating air pollution [33]. These interventions
will be associated to reducing the air pollution and the severity of RTIs. This study echoes
the United Nations’ Sustainable Development Goal 2030 of reducing global deaths and
injuries from RTAs (Target 3.6) and substantially reducing deaths and illnesses caused by
air pollution and contamination (Target 3.9) [34].

2. Materials and Methods
2.1. Study Design

A multicenter cross-sectional study was performed involving patients from five trauma
centers in Taiwan: Shuang Ho Hospital, Wan Fang Hospital, the Taipei and Tamsui branches
of Mackay Memorial Hospital, and the National Cheng Kung University Hospital. The
locations of these hospitals are shown in Figure 1. Mackay Memorial Hospital (Taipei
branch) and Wan Fang Hospital are located in the central and southern regions of Taipei
City, with 210,447 and 256,942 residents, respectively. Mackay Memorial Hospital (Tamsui
branch) and Shuang Ho Hospital are located in the northwest and southwest regions
of New Taipei City, with 184,660 and 401,086 residents, respectively. National Cheng
Kung University Hospital is located in the northern region of Tainan City, which has
126,579 residents. All five hospitals are university-affiliated teaching hospitals and qualified
as advanced emergency responsibility hospitals in Taiwan, equivalent to trauma centers in
the US that provide comprehensive care for trauma patients. This study was conducted in
accordance with the Strengthening the Reporting of Observational Studies in Epidemiology
guidelines (Table S1). This study was approved by the institutional review boards of the
participating hospitals (16MMHIS168e, N201510012, and A-ER-105-401).

Data were retrospectively collected from the electronic medical records of patients with
RTIs treated at the aforementioned trauma centers between 1 January 2017 and 31 December
2017. The patients’ national identification numbers were used to connect the collected data
to the police traffic accident dataset (PTAD) in order to identify patients whose RTIs were
treated in the emergency department (ED) and obtain information regarding the RTAs in
which they were involved. The identification numbers were deleted upon connection. To
further ensure that RTAs and ED visits were causally related, we only included patients
admitted in the ED within 24 h after an RTA. For each patient who visited the ED several
times after sustaining an RTI, only the records of the initial visit were included. The patient
selection process is illustrated in Figure 2.

The PTAD, which included coded information of the crashes and the involved per-
sonnel, was compiled from records created by on-scene police officers. The PTAD con-
tained information on the road user types and other conditions, including the time of the
RTA, the involved driver, and the involved vehicle, which may have been related to each
RTA described therein. The roadway data included information on the location of each
RTA, while the accident-related data included information on contributing circumstances,
driver/vehicle actions, and collision types.
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2.2. Measurements

The following demographic and environmental factors were retrieved from the PTAD:
sex, age (divided into four groups: <24, 25–44, 45–64, and ≥65 years), day of the crash
(weekday or weekend), time of the crash (daytime (06:00 to 17:59), evening (18:00 to 23:59),
or nighttime (00:00 to 05:59)), rush hour (07:00 to 09:00, 17:00 to 19:00) or non-rush hours,
and road user type (auto occupants, motorcyclists, bicyclists, or pedestrians). Data on
the injury severity score (ISS), ED arrival time, and Glasgow Coma Scale (GCS) score
(which measures the level of consciousness) were retrieved from the hospital data. The
scene-to-hospital arrival time (min) was calculated to determine the delay between the
accident time and time of arrival at the hospital.

The air pollutants examined in this study included hourly concentrations of PM2.5,
PM10, O3, NO2, and NOx.

The hourly AQI was also assessed, which was determined based on the maximum
subindex value among the concentrations of the following air pollutants: PM2.5, PM10, O3,
SO2, CO, and NO2 [35]. The AQI ranges from 0 to 500, with a higher score indicating poorer
air quality. The AQI values were divided into three groups according to the Environmental
Protection Administration regulations: good (0–50), moderate (51–100), and unhealthy
(>100) [36].

In terms of the location of the crash scene, only the address was included in its corre-
sponding record in PTAD. Geographic information system platforms, including Google
Maps application programming interfaces [37] and Taiwan Geospatial One Stop [38], were
used to convert each address into geographical coordinates. The air quality data in each
crash scene from the nearest air monitoring station, which can be downloaded openly
from the Taiwan Environmental Protection Administration [39], were collected. Data were
collected from 18 stations, comprising 15 ambient monitoring stations and three traffic
monitoring stations. The road width at each crash scene, computed from a commercial
digital map using ArcGIS 10.2 (ESRI, Redlands, CA, USA), was used as a surrogate measure
of local traffic flow volume.

The data regarding weather conditions at the time of RTA, such as hourly mean
temperature (◦C), hourly mean relative humidity (%), and 24-h accumulated precipitation
(mm), were obtained from the Taiwan Central Weather Bureau [40]. The 24-h accumulated
precipitation amounts were divided into two levels based on the Central Weather Bureau’s
definition of heavy rain: <80 mm and ≥80 mm.

The hours of each RTA were matched to the corresponding hourly air pollutant
concentration, AQI, temperature, and relative humidity. The cumulative precipitation
within 24 h preceding each RTA event was recorded.

2.3. Outcome

The ISS was used as an outcome measure. Although the patients’ ISSs are not mandato-
rily recorded in EDs in Taiwan, the International Classification of Diseases, Tenth Revision,
Clinical Modification (ICD-10-CM) codes are universally used to record the diagnoses of
patients when they are discharged from the ED. A previously validated package (ICDPIC-R)
for R statistical software [41] was used to translate the ICD-10-CM codes from the hospital
data into ISSs. Because the majority of RTIs in Taiwan are not life-threatening injuries [42]
and because morbidity (rather than mortality) was the primary outcome of interest in our
study, the patients’ ISSs were divided into <9 points and ≥9 points; an ISS of ≥9 indicated
severe injury requiring hospitalization or intensive care [43–45].

2.4. Statistical Analysis

A univariate analysis was conducted to evaluate the association between each inde-
pendent variable and the outcome measure. Pearson’s Chi-square test, Cochran–Armitage
trend test, and Wilcoxon rank-sum test were used to analyze the categorical, ordered cate-
gorical, and continuous variables, respectively. Because the dependent variable was binary
(ISS < 9 vs. ≥9 points), a multiple logistic regression analysis was performed using the
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patient’s sex, age, and the independent variables with a p value of <0.2 in the univariate
analysis [46]. However, as previous studies have identified GCS as a surrogate variable for
injury severity [47,48], GCS was removed from the multiple regression model.

The binary logistic regression model has been commonly estimated in the trauma or
traffic injury literature [45,49,50] to identify the determinant of the outcome variable of
interest, which was dichotomous. In this study, the outcome response of interest (severe
injuries (ISS ≥ 9) vs. non-severe injuries (ISS < 9)) was binary. In contrast to the ordinary
least-squares regression model, the dependent variable in the binary logistic regression
model is not limited by the assumptions of a continuous or normal distribution. Binary
logistic regression is a regression model used to estimate the association between a set of
independent variables, whether categorical or continuous, and binary outcomes.

In the binary logistic regression model, the equation is formulated as follows:

g(x) = β0 + β1x1 + β2x2 + . . . + βpxp (1)

where xj is the value of the jth independent variable, βj is the corresponding coefficient for
j = 1, 2, 3, . . . , p, and p is the number of independent variables.

The conditional probability of a positive outcome given the independent variable is
as follows:

π(x) =
exp(g(x))

1 + exp(g(x))
(2)

The maximum likelihood method was used to estimate the parameters of the logistic
regression model by constructing the likelihood function:

l(β) = ∏n
i=1 π(xi)

yi (1− π(xi))
1−yi (3)

where yi denotes the ith observed outcome with a value of either 0 or 1 and i = 1, 2, 3, . . . ,
n, where n is the number of observations. The best regression estimate of β was determined
by maximizing the log-likelihood expression:

LL(β) = ln(l(β)) = ∑n
i=1{yiln(π(xi)) + (1− yi)ln(1− π(xi))} (4)

The exponentiated coefficient exp(βj), odds ratio (OR), is usually interpreted for a
logistic regression model to reveal the effect of attributes on the likelihood of severe injuries:

OR = exp(β j) (5)

with a 95% confidence interval (CI) of (exp(βj − 1.96sβj), exp(βj + 1.96sβj)), where sβ is the
standard error of coefficient β. An OR of >1 indicated a positive association between the
interest attribute and severe injuries, whereas an OR of <1 indicated a negative association
between the interest attribute and severe injuries. An OR of 1 indicated that no association
was found between the interest attributes and severe injuries.

To assess the model’s fit to the data and determine the best-fit model in multiple
models, the Akaike information criterion (AIC) was defined as follows:

AIC = −2ln(L) + 2k (6)

where L is the log-likelihood estimate, and k is the number of independent variables. A
lower AIC score indicated a better fit for the model.

As the AQI was determined according to the maximum subindex values of the PM2.5,
PM10, O3, SO2, CO, and NO2 concentrations, a separate model was required to avoid
collinearity problems in the multivariable model. In addition, considering that strong
correlations between PM2.5 and PM10 (r = 0.832, p < 0.001) and between NO2 and NOx
(r = 0.968, p < 0.001) were identified in the multiple air pollutant model, these air pollutants
were entered separately in five multivariable models (Model 1: AQI; Model 2: PM2.5, NOx,
and O3; Model 3: PM2.5, NO2, and O3; Model 4: PM10, NOx, and O3; and Model 5: PM10,
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NO2, and O3). The variance inflation factor (VIF) was used for identifying collinearity; a
VIF value of <5 was considered acceptable during variable selection. A sensitivity analysis
was further conducted by removing the auto-occupant patients.

The ORs and 95% CIs were calculated to estimate the risk of sustaining severe injuries.
A two-sided p value of <0.05 was considered significant. Statistical analyses were restricted
to patients with no missing values for each specific variable and were performed using the
SAS software (version 9.4; SAS Institute, Cary, NC, USA).

3. Results

A total of 14,973 patients with RTIs treated at the EDs of the five participating hospitals
were identified; of them, 2853 patients (19.1%) sustained severe injury (ISS ≥ 9 points). The
patient’s mean age was 37 years, and 54.6% of them were men.

The results of univariate analysis are presented in Table 1. Significant differences were
observed in age, GCS, scene-to-hospital arrival time, time of crash, type of road user, road
width, 24-h accumulated precipitation, temperature, relative humidity, AQI, and PM2.5,
PM10, NO2, and NOx concentrations.

Table 1. Summary of independent variables for patients with ISSs of <9 and ≥9.

Variables
ISS < 9

(n = 12,120)
ISS ≥ 9

(n = 2853) p Value

n (%) n (%)

Sex 0.26 a

Male 6591 (89.61) 1585 (19.39)

Female 5529 (81.34) 1268 (18.66)

Age (year) median (IQR) 30 (27) 36 (34) <0.001 b

Age group (year) <0.001 c

<24 4541 (82.80) 943 (17.20)

25–44 4037 (83.31) 809 (16.69)

45–64 2596 (77.86) 738 (22.14)

>64 946 (72.27) 363 (22.73)

GCS median (IQR) 15 (0) 15 (0) <0.001 b

Scene-to-hospital arrival time (min) median (IQR) 35 (42) 31 (18) <0.001 b

Day of crash 0.42 a

Weekday 8910 (81.10) 2076 (18.90)

Weekend 3210 (80.51) 777 (19.49)

Time of crash (time of day) <0.001 a

Day (06:00–17:59) 8040 (81.03) 1882 (18.97)

Evening (18:00–23:59) 3364 (81.77) 750 (18.23)

Night (00:00–05:59) 716 (76.41) 221 (23.59)

Time of crash (rush hour) 0.93 a

07:00–09:00 1741 (80.83) 413 (19.17)

17:00–19:00 1647 (80.70) 394 (19.30)

Nonrush hours 8732 (81.02) 2046 (18.98)

Type of road user <0.001 a

Auto occupant 866 (95.37) 42 (4.63)

Motorcyclist 10,117 (80.95) 2381 (19.05)
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Table 1. Cont.

Variables
ISS < 9

(n = 12,120)
ISS ≥ 9

(n = 2853) p Value

n (%) n (%)

Bicyclist 364 (71.79) 143 (28.21)

Pedestrian 771 (73.08) 284 (26.92)

Missing d 2 (0.02) 3 (0.11)

Road width (m) median (IQR) 10 (10) 11 (11) <0.001 b

Missing d 9 (0.07) 2 (0.07)

24-h accumulated precipitation (mm) Median (IQR) 0 (2.5) 0 (2) 0.008 b

Heavy rain 0.64 a

No (<80 mm) 12,006 (80.97) 2821 (19.03)

Yes (≥80 mm) 112 (79.43) 29 (20.57)

Missing data d 2 (0.02) 3 (0.11)

Temperature (°C) median (IQR) 25 (10) 26 (10) 0.006 b

Relative humidity (%) median (IQR) 71 (15) 71 (15) 0.010 b

AQI median (IQR) 51 (38) 53.5 (43) <0.001 b

AQI level <0.001 c

Good (0–50) 5698 (82.04) 1247 (17.96)

Moderate (51–100) 4845 (81.10) 1129 (18.90)

Unhealthy (>100) 1117 (75.83) 356 (24.17)

Missing data d 460 (3.80) 121 (4.24)

PM2.5 (µg/m3) median (IQR) 16 (15) 16 (17) 0.003 b

Missing data d 653 (5.19) 141 (4.94)

PM10 (µg/m3) median (IQR) 33 (26) 35 (28) <0.001 b

Missing data d 482 (3.98) 106 (3.79)

NO2 (ppb) median (IQR) 15 (14.4) 14 (13.4) <0.001 b

Missing data d 588 (4.85) 140 (4.91)

NOx (ppb) median (IQR) 19 (19) 16 (18) <0.001 b

Missing data d 762 (6.29) 188 (6.59)

O3 (ppb) median (IQR) 29 (25) 29 (25.5) 0.49 b

Missing data d 512 (4.22) 121 (4.24)
a Pearson’s Chi-square test; b Wilcoxon rank-sum test; c Cochran–Armitage trend test; d Note the number of data
points with missing data (percentage of all data points with missing data). AQI, air quality index; GCS, Glasgow
Coma Scale; ISS, injury severity score; IQR, interquartile range; NO2, nitrogen dioxide; NOx, nitrogen oxide; O3,
ozone; PM2.5, particulate matter ≤2.5 µm in diameter; PM10, particulate matter ≤10 µm in diameter; ppb, parts
per billion.

Results of the multiple air pollutant model are listed in Table S2. All multivariable
models consistently demonstrated that air pollution and other weather and environmental
factors were significantly associated with injury severity among patients. The AQI and
best-fit multiple air pollution models are presented in Table 2.
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Table 2. Results of multiple regression analysis of risk factors and ISS ≥ 9.

Variables
AQI Model Best-Fit Multiple Air Pollutant Model

OR (95% CI) p Value OR (95% CI) p Value

Sex

Female Reference Reference

Male 1.102 (1.010–1.202) 0.028 1.108 (1.013–1.211) 0.025

Age group (year)

<24 Reference Reference

25–44 1.023 (0.920–1.139) 0.67 1.046 (0.937–1.168) 0.42

45–64 1.398 (1.247–1.567) <0.001 1.382 (1.228–1.555) <0.001

>64 1.767 (1.517–2.058) <0.001 1.757 (1.502–2.055) <0.001

Time of crash

Day (06:00–17:59) Reference Reference

Evening (18:00–23:59) 0.975 (0.882–1.078) 0.62 1.033 (0.932–1.144) 0.54

Night (00:00–05:59) 1.491 (1.254–1.774) <0.001 1.400 (1.166–1.680) <0.001

Scene-to-hospital arrival
time (min) 0.999 (0.998–0.999) <0.001 0.998 (0.998–0.999) <0.001

Type of road user

Motorcyclist Reference Reference

Bicyclist 1.457 (1.183–1.795) 0.001 1.429 (1.154–1.770) 0.001

Pedestrian 1.379 (1.180–1.612) <0.001 1.412 (1.202–1.660) <0.001

Auto occupant 0.185 (0.133–0.256) <0.001 0.180 (0.128–0.253) <0.001

Road width (m) 1.014 (1.009–1.019) <0.001 1.013 (1.008–1.019) <0.001

Temperature (◦C, per IQR) 1.238 (1.146–1.338) <0.001 1.165 (1.077–1.262) <0.001

Relative humidity (%, per IQR) 1.195 (1.117–1.278) <0.001 1.136 (1.054–1.224) <0.001

AQI level

Good (0–50) Reference

Moderate (51–100) 1.142 (1.040–1.253) 0.005

Unhealthy (>100) 1.713 (1.486–1.975) <0.001

PM2.5 (µg/m3, per IQR) 1.279 (1.209–1.353) <0.001

NOx (ppb, per IQR) 0.743 (0.696–0.794) <0.001

O3 (ppb, per IQR) 0.838 (0.774–0.906) <0.001

The effect estimate was based on the interquartile range (IQR) increases in temperature, relative humidity, and
air pollutant concentration. The IQRs of temperature, relative humidity, PM2.5, NOx, and O3 were 9.7 ◦C, 15%,
15 µg/m3, 19 ppb, and 25 ppb, respectively. AQI, air quality index; CI, confidence interval; ISS, injury severity
score; NOx, nitrogen oxide; O3, ozone; OR, odds ratio; PM2.5, particulate matter ≤2.5 µm in diameter; ppb, parts
per billion.

In the AQI model, compared with patients aged <24 years, those aged 45–64 years
or >64 years were more likely to have an ISS of ≥9 (OR: 1.398, 95% CI: 1.247–1.567 and
OR: 1.767, 95% CI: 1.517–2.058, respectively). Involvement in a nighttime crash was a risk
factor for obtaining an ISS of ≥9 (OR: 1.491, 95% CI: 1.254–1.774). The risk of obtaining
an ISS of ≥9 was significantly higher among patients involved in RTAs on wider roads
(OR: 1.014, 95% CI: 1.009–1.019). Compared with motorcyclists, bicyclists and pedestrians
were more likely to have an ISS of ≥9 (OR: 1.457, 95% CI: 1.183–1.795 and OR: 1.379,
95% CI: 1.180–1.612, respectively), whereas auto occupants were less likely to sustain
severe injuries (OR: 0.185, 95% CI: 0.133–0.256). With regard to weather conditions, the
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risk of obtaining an ISS of ≥9 increased significantly with every interquartile range (IQR)
increase in temperature (OR: 1.238, 95% CI: 1.146–1.338) and relative humidity (OR: 1.195,
95% CI: 1.117–1.278). Moderate and unhealthy AQIs were risk factors for an ISS ≥9
(OR: 1.142, 95% CI: 1.040–1.253 and OR: 1.713, 95% CI: 1.486–1.975, respectively). The risk
of obtaining an ISS of ≥9 was lower among patients with shorter scene-to-hospital arrival
times (OR: 0.999, 95% CI: 0.998–0.999).

In the multiple air pollutant model (Table 2), the risk of obtaining an ISS of ≥9 was
higher among patients aged 45–64 or ≥65 years (OR: 1.382, 95% CI: 1.228–1.555 and OR:
1.757, 95% CI: 1.502–2.055, respectively) than among patients aged <24 years. Involvement
in nighttime crashes was a risk factor for sustaining severe injury (OR: 1.400, 95% CI:
1.166–1.680). Compared with motorcyclists, bicyclists and pedestrians were more likely
to have an ISS of ≥9 (OR: 1.429, 95% CI: 1.154–1.770 and OR: 1.412, 95% CI: 1.202–1.660,
respectively), whereas auto occupants were at a lower risk of obtaining an ISS of ≥9 (OR:
0.180, 95% CI: 0.128–0.253). Each IQR increment in temperature and relative humidity
was associated with a significant increase in the risk of obtaining an ISS of ≥9 (OR: 1.165,
95% CI: 1.077–1.262 and OR: 1.136, 95% CI: 1.054–1.224, respectively). With regard to air
pollutants, each IQR increase in PM2.5 concentration was also associated with a significant
increase in the risk of sustaining severe injury (OR: 1.279, 95% CI: 1.209–1.353). NOx and
O3 concentrations were negatively associated with an ISS of ≥9. IQR increments in NOx or
O3 concentrations were not associated with increases in the risk of obtaining an ISS of ≥9
(OR: 0.743, 95% CI: 0.696–0.794 and OR: 0.838, 95% CI: 0.774–0.906, respectively). The risk
of obtaining an ISS of ≥9 was lower among patients with shorter scene-to-hospital arrival
times (OR: 0.998, 95% CI: 0.998–0.999).

Finally, the sensitivity analysis results, including five models (Table S3), revealed that
the association between air pollutants and the risk of obtaining an ISS of ≥9 was consistent
with the findings of the multivariate analysis.

4. Discussion

To the best of our knowledge, no large epidemiological studies have elucidated the
associations between air pollution, other weather and environmental conditions, and RTI
severity. A high resolution of the temporal and spatial information collected in this study
is crucial for clarifying such associations. The time between environmental exposure and
the occurrence of RTA is often short, and the incident time is correlated with different risk
factors. The precise location of a crash can be used to investigate the road features, compute
the transportation time from the scene to the hospital, and identify the nearest weather
or air quality monitoring station. Furthermore, previous studies have mostly focused on
investigating RTAs rather than on the RTI severity. Analyzing the injury burdens associated
with different ISSs is useful for formulating appropriate public health policies.

Active commuters (pedestrians and cyclists) inhale higher doses of air pollutants
compared with commuters who use motorized transport [51]. A previous study in China
revealed that PM10 and PM2.5 concentrations are correlated with RTA rates [32]. In the UK,
one study identified a 0.3–0.6% increase in the number of vehicles involved in RTAs per
day for each 1 µg/m3 increment in PM2.5 concentration [20]. The present study revealed
that unhealthy AQIs were associated with an increased risk of sustaining severe RTIs. In
addition, the patients involved in RTAs that occurred in periods with higher hourly PM2.5
concentrations were more likely to sustain severe RTIs. To our knowledge, this study was
the first to address the association between air pollutant exposure and RTI severity. For
active commuters, a higher inhalation rate and longer commuting time increase the amount
of air pollutant exposure. Among all traffic-related air pollutants, exposure to PM2.5, the
primary pollutant emitted from vehicles, can lead to acute and chronic cardiovascular
injuries [52]. In addition, outdoor air pollution exposure might affect the central nervous
system (CNS), impair cognitive function, and increase the incidence of stroke and other
neuropathological problems in humans [53]. The possible biological mechanisms that
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trigger RTIs include acute cardiovascular or CNS disorders. Further studies are required to
explore these mechanisms.

An inverse association was observed between NOx and O3 concentrations and the
risk of sustaining severe injury. A possible reason for this association is the lagged effect
of NO2 (NOx) and O3, as they are secondary and photochemical oxidants [54]. In this
study, the time of each crash was linked to the corresponding hourly concentration of
air pollutants; therefore, only primary pollutants, such as PM2.5, PM10, or those with
the maximum sub-index values (reflected using the AQI), were clearly associated with
RTI severity. The existing strategies to reduce air pollution in urban environments have
mainly focused on the reforming sustainable transport systems to reduce the health risks of
air pollution (https://www.who.int/publications/i/item/WHO-HEP-ECH-AQH-2021.6
accessed on 3 May 2022). Urban planning of greenspaces might also help reduce the
air pollution levels. Green space plays a role in improving air quality through particle
deposition, dispersion, and modification [55]. Another study conducted in China showed
that the overall abundance of green spaces in urban areas can significantly reduce the PM10
concentrations [56]. Green space might play a role in mitigating the air pollutant levels and
indirectly reduce the incidence of RTA.

A previous study using the National Health Insurance database and National Traffic
Crash Dataset in Taiwan from 2003 to 2012 revealed that bicyclists were at a higher risk
of sustaining severe injury than motorcyclists (OR: 1.11, 95% CI: 1.08–1.14) [57]. The
present study also discovered that bicyclists were at a higher risk of sustaining severe
injury (OR: 1.5) compared with motorcyclists. The main reason for this is that the helmet
utilization rate among cyclists is low, whereas that among motorcyclists is high, particularly
because helmets have been required by law for motorcyclists since 1997.

Weather conditions may be associated with the incidence or severity of RTIs. Under hot
and humid conditions, crashes may be attributed to the changes in the behavior of drivers
or pedestrians. On hot days, limited skill or power performance may cause tiredness and
impaired effectiveness, resulting in a higher risk of accidents [58]. However, under extreme
weather conditions, such as heatwaves, people may adopt protective behaviors, resulting
in fewer accidents [58]. One study in Hong Kong utilized fine-resolution weather data
(1-h interval) to determine the correlation between weather factors and traffic crashes [59].
Results indicated that the maximum relative risks of high temperature, humid weather, and
precipitation were 1.11, 1.14, and 1.34, respectively. Another study conducted in Nebraska,
USA, indicated that rain and warmer air temperatures were associated with more severe
crash injuries in single-vehicle truck crashes [60]. However, humidity is inversely associated
with injury severity. Another study on the effects of weather conditions on pedestrian
injury severity reported that high temperatures and rainfall were associated with fatal
and severe injuries [61]. In our study, high temperature and high relative humidity were
associated with severe injuries. The cumulative 24-h rainfall before a crash was insignificant
in the final model.

At night, poor visibility may result in a higher risk of RTI and RTA mortality. A 5-year
epidemiological study in Ghana revealed that the relative risk of mortality in a nighttime
traffic crash was 1.3 times higher than that in a daytime traffic crash [62]. The present study
showed that individuals involved in RTAs late at night (0:00 to 5:59) were at a 1.5 times
higher risk of sustaining severe injury than those involved in RTAs during the day. Low
light levels result in delayed reaction times [63]. A cross-sectional study in Bangladesh
indicated that patients who sustained from RTAs that occurred after midnight tended to
have higher ISSs [64].

Age is an important risk factor for RTIs, particularly in older adults. A previous review
indicated that 23.6% of RTIs are sustained by older adults [65]. In addition, the clinical
severity of RTIs and the mortality rate associated with RTAs are relatively high among
older adults [66]. These findings are consistent with our results, in which individuals
aged ≥65 years were at the highest risk of sustaining severe injury (ISS ≥ 9). Middle-aged
adults (45–64 years) had the second-highest risk of sustaining severe injury.

https://www.who.int/publications/i/item/WHO-HEP-ECH-AQH-2021.6
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This multicenter approach strengthened the generalizability of our results. The find-
ings of this study were derived from the data of 14,973 patients with RTIs, making our
analysis the first with a sufficient sample size to report an association between air pol-
lution and injury severity in patients with RTIs. To assess for collinearity, five models
were established for different air pollutants to more effectively demonstrate the association
between air pollution and RTI severity. Finally, the consistency of the sensitivity test results
among the five models proved the reliability of the study results. Our study provides
useful information for the prevention and control of RTIs.

Limitations

This study has some limitations. First, exposure to air pollution might have triggered
the acute exacerbations of underlying diseases and resulted in severe RTIs. However, the
underlying diseases of these patients are unknown. Nevertheless, age can be used as a
surrogate measure. Second, the lower risk of sustaining severe RTIs among motorcyclists
may be attributable to the increased utilization of helmets among the motorcyclists in
Taiwan. In this study, information on helmet use among the cyclists was not obtained. Third,
this analysis focused on investigating the association between acute pollution exposure
and RTI severity. However, if the modes of transport remain similar from day to day, the
cumulative effects of air pollution exposure on RTI severity may also be possible. Finally,
data on drug use were lacking, and 18% of the data related to alcohol consumption among
victims was missing. Therefore, these two factors were not included in our analysis.

5. Conclusions

Male sex, older age, and time of crash being nighttime were associated with a higher
risk of sustaining severe RTI. Active commuters, including bicyclists and pedestrians, are
at higher risk of sustaining severe RTI. Poor air quality measured based on the AQI or
PM2.5 concentration, and hot and humid weather conditions are all associated with severe
RTIs; therefore, real-time environmental monitoring data should be incorporated into the
traffic warning systems. This study highlights the positive associations between RTI, air
pollution, and weather factors. Further in-depth evaluation of the aforementioned air
pollution factors may yield valuable insights for the prevention of severe RTIs.
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