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Background Accurate forecasting of seasonal influenza epidemics

is of great concern to healthcare providers in temperate climates, as

these epidemics vary substantially in their size, timing and duration

from year to year, making it a challenge to deliver timely and

proportionate responses. Previous studies have shown that Bayesian

estimation techniques can accurately predict when an influenza

epidemic will peak many weeks in advance, using existing

surveillance data, but these methods must be tailored both to the

target population and to the surveillance system.

Objectives Our aim was to evaluate whether forecasts of similar

accuracy could be obtained for metropolitan Melbourne (Australia).

Methods We used the bootstrap particle filter and a mechanistic

infection model to generate epidemic forecasts for metropolitan

Melbourne (Australia) from weekly Internet search query

surveillance data reported by Google Flu Trends for 2006–14.

Results and Conclusions Optimal observation models were

selected from hundreds of candidates using a novel approach that

treats forecasts akin to receiver operating characteristic (ROC)

curves. We show that the timing of the epidemic peak can be

accurately predicted 4–6 weeks in advance, but that the magnitude

of the epidemic peak and the overall burden are much harder to

predict. We then discuss how the infection and observation models

and the filtering process may be refined to improve forecast

robustness, thereby improving the utility of these methods for

healthcare decision support.
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Introduction

Outside of the tropics, influenza viruses produce substantial

burden on healthcare systems in a highly seasonal manner,

with high prevalence in the winter months and very low

prevalence in the summer months. Despite the regularity

with which seasonal influenza outbreaks occur, there is

substantial variation in the outbreak timing (onset and peak)

and outbreak size (cumulative and peak burden), across

different cities and countries in the same season, and also for

the same city or country from season to season.

For this reason, the ability to predict the progression of an

epidemic well in advance is of great utility for enabling

healthcare providers to make best use of the resources at their

disposal. A variety of recursive Bayesian estimation methods

(‘filters’) have been used for such forecasting purposes,1,2

often in combination with Internet search query surveillance

data and mechanistic models of infection.3–8

While it has been shown that these methods may be of

practical forecasting use in future influenza seasons, they

must be adapted to the vagaries of both the surveillance

system from which the data (‘observations’) are collected and

the population being surveilled. Here, we demonstrate that

accurate forecasts of influenza epidemics in metropolitan

Melbourne (Australia) can be obtained from the combina-

tion of a particle filter, an SEIR model of influenza

transmission, an observation model based upon a negative

binomial distribution and influenza-like illness (ILI) data

obtained from Google Flu Trends.9 While Google is no

longer publishing estimates of disease activity (as of August

20, 2015), they continue to provide signal data for research

purposes.10 The methods and results presented here are the

first step towards a decision-support tool that we will use to

generate near-real-time forecasts of the Melbourne influenza

season in 2015 and beyond.

Methods

A recent comparison of filtering methods for influenza

epidemic forecasting (applied to 115 cities in USA) found
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that the peak timing forecasts were comparably accurate for

the six surveyed methods.11 It was also observed that the

particle filters performed ‘slightly better predicting peaks 1–
5 weeks in the future’, while ‘ensemble [Kalman] filters were

better at indicating that the seasonal peak had already

occurred’.

We applied the bootstrap particle filter method to

determine which realisations of an SEIR compartment model

were the most likely to yield in silico observations consistent

with the weekly ILI data reported by Google Flu Trends for

the state of Victoria, for each of the available calendar years

(2006–2014, shown in Figure 1). We assumed that the data

characterised influenza activity in metropolitan Melbourne,

which comprises just over 75% of the Victorian population

and has higher Internet penetration than the rest of the state.

In this approach, a finite set of model vectors (particles) are

used to approximate the continuous model-space likelihood

distribution. As real-world observations are obtained, the

particle likelihoods (weights) are updated and, when the

likelihood is too highly concentrated in too few of the particles,

the particles are resampled to distribute the likelihood more

uniformly.

Each particle encompasses the state variables and model

parameters for an SEIR compartment model, whose initial

values are drawn from prior distributions (see Supplemen-

tary Material section S1 for details). Stochastic noise is

included in the flows between compartments and in the

model parameters, as per Skvortsov and Ristic.6 The entire

population is assumed to be susceptible at the start of the

calendar year, and an initial exposure occurs with daily

probability pseed.

While a fraction of the Melbourne population will be

immune to the circulating strain(s), the use of a wholly

susceptible model population is not problematic as we are

not attempting to infer properties of the true population.

Were we to impose some prior immunity (0 < R(0) < N)

the effective reproduction number (REff) would be

unchanged, but the filter would converge on particles with

larger values for R0,
12,13 and the likelihood of observing an

infected individual (which relates model incidence to the

observed data) would only need to be scaled by some

constant.

Particles are initially assigned uniform weights, which are

subsequently adjusted in response to each observation and

normalised so as to sum to one (see Supplementary Material

section S2 for details). When the effective number of particles

drops below the threshold Nmin, the particles are resampled in

proportion to their weights; this is done using the systematic

(deterministic) method, as described by Kitagawa.14

The observation model (see Supplementary Material

section S3 for details) relates disease incidence in the SEIR

model to rates of ILI presentation, based on 2012 population

statistics obtained from Victorian Department of Health &

Human Services (DHHS) reports for the metropolitan

Melbourne regions (Eastern, North & West, Southern).15

Google Flu Trends reports ILI prevalence as integer counts

of ILI cases per 100,000 GP visits, and so we can express the

daily probability of an individual presenting with ILI in the

absence of influenza as a function of the (imposed)

background ILI rate BR and the daily number of GP visits

per individual (vdaily). The value for vdaily was obtained from

the reported annual rate of 5,615 GP attendances per 1,000

population.15 The background ILI rate accounts for both

Figure 1. Google Flu Trends data for Victoria.
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out-of-season influenza importations (which do not lead to

ongoing community transmission) and incidence of other

respiratory infections. This rate was not subtracted from the

weekly ILI estimates, to avoid the introduction of a

systematic bias.

The probability that an infected individual will visit a GP

and be identified as having ILI (pid) is a parameter of the

observation model. The probability that an individual will be

identified as an ILI case is the sum of two independent

events: becoming infectious and subsequently being identi-

fied (pid), or not becoming infectious but presenting with an

ILI. The probability of becoming infectious is defined as the

fraction of the population that became infectious (i.e.

transitioned from state E to state I) during the time interval,

and subsumes both symptomatic and asymptomatic infec-

tions. In the absence of reliable data to the contrary, both

types of infection are assumed to be identically infectious.

The observation probability (pid) therefore represents the

probability of an infection being symptomatic and observed.

The available surveillance data comprise non-negative

integer counts for which the variance is often as large as the

mean; they are overdispersed with respect to a Poisson

distribution. A variety of distributions are suitable for

modelling overdispersed count data,16 but differ in their

mean–variance relationships. The surveillance data exhibit an
(approximately) quadratic mean–variance relationship,

which suggests that a negative binomial distribution is an

appropriate choice17 to define the likelihood of obtaining an

ILI presentation rate from a given particle. This distribution

is frequently used in ecology18,19 and epidemiology20–22

because it allows the mean and variance to be controlled

independently,16 and it provides a good phenomenological

description of count data23 (see Figure 2). The dispersion

parameter k controls the variance: as k increases the variance

decreases and the distribution approaches the Poisson.

To account for the variation in peak incidence and outbreak

duration, we systematically varied the background ILI rate (BR
2 {200,250,300,350}), the dispersion parameter (k 2
{1,10,100,1000}) and the probability of ILI observation per

infection (pid 2 {0�0025, 0�0050,. . ., 0�1000}). For each

combination of these observation model parameters, we

generated forecasts for every calendar year (2006–2014) after
every observation from mid-March onwards. For each fore-

cast, we calculated the estimated ILI incidence over the past

week at every day starting from the forecasting date (i.e. the

date of the most recent observation) until the end of the year

(i.e. the week ending 31 December). In this way, each forecast

comprised estimates of weekly ILI incidence for every 7-day

period from the forecasting date until the end of the year, and

peak incidence could occur in a week ending on any weekday.

In order to determine forecast accuracy with respect to the

original data (reported for weeks ending on Sundays), we used

a tolerance of � 10 days, equivalent to rounding the peak to

the nearest Sunday (i.e. �3 days) and defining accuracy to

mean � 1 week. By summing the accuracy over the 8 weeks

prior to the true peak – similar in concept to calculating the

area under a ROC curve –we obtained annual ‘scores’ for each
observation model. Observations models were then ranked by

their mean annual scores.

Results

Google Flu Trends provides weekly ILI estimates for the

2006–2014 calendar years for the state of Victoria (assumed

to be representative of ILI levels in metropolitan Melbourne),

as shown in Figure 1. Peak incidence rates vary from 390

cases to 3,229 cases per 100 000 GP visits (cf. 2011 and 2007),

and the peak timing varies between mid-June and late

August. Optimal forecasting results were obtained for

BR = 300, k = 10, and 0�004 ≤ pid. ≤ 0�006. Here, we present

the forecasting results obtained using BR = 300 and

pid = 0�05, which are representative of the results obtained

across the optimal range of values for pid. Forecasts for every

calendar year using all combinations of the above parameters

are included in the supplementary material.

The predicted timing of the epidemic peak for each year is

shown in Figure 3 for each value of the dispersion parameter

k, where the x-axis indicates the date at which each forecast

was generated. The effect of the dispersion parameter is

evident in the width of the forecast credible intervals: when

k = 1, the likelihood distribution is overly wide and the

forecasting confidence is necessarily low; when k = 1000, the

likelihood distribution is very narrow and particle degener-

acy is frequently observed (e.g. 2007, 2008, 2013, 2014). The

most accurate and precise forecasts are obtained when k = 10

and k = 100, with particle degeneracy occurring less often for

k = 10 (e.g. 2008).

Figure 2. Distribution of the Google Flu Trends data outside of the

influenza season (i.e, from November to April, inclusive), accompanied by

a kernel density estimate and a maximum-likelihood negative binomial

distribution with parameters k = 5.7 (95% CI: 5.61, 5.75) and E[yk] =

184.9 (95% CI: 184.3, 185.6).
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Figure 3. Predicted timing of the epidemic peaks plotted by forecasting date (until the true peak is reached), for BR = 300, pid = 0.05 and several values

of the dispersion parameter k. The black horizontal lines show the true timing. Note that the scale of the x-axis differs between calendar years, since it

extends from mid-March until the time of the true peak.
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Figure 4. Predicted size of the epidemic peaks plotted by forecasting date (until the true peak is reached) and shown against the Google Flu Trends data,

for BR = 300, pid = 0.05 and several values of the dispersion parameter k. The black horizontal lines show the true size of the peak. Note that the scale of

the x-axis differs between calendar years, since it extends from mid-March until the time of the true peak.
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The predicted size of the epidemic peak for each year is

shown in Figure 4. In contrast to the peak timing forecasts, the

peak size forecasts are both less precise (i.e. wider credible

intervals) and less accurate. This comes as no surprise; when a

nascent epidemic exhibits exponential growth in prevalence,

the size of the resulting epidemic peak is much more sensitive

to the precise growth rate than the timing of the peak (as

measured from the early-growth phase). It can also be seen that

the value of the dispersion parameter k has similar effects on

the peak size forecasts as on the peak timing forecasts. When

k ≥ 100, particle degeneracy frequently occurs (e.g. 2007, 2008,

2012) and when k = 1 the credible intervals are always wide.

When k = 10, the particle filter is sometimes able to predict the

peak size both accurately (� 33%) and precisely, from one or

2 weeks in advance of the true peak (2008, 2013) to up to

5 weeks in advance (2006, 2012).

Both the peak timing and peak size forecasts exhibit

substantial variations from year to year, with the least

accurate fits obtained when there is no clear epidemic peak

(2010, 2011) or when an earlier, smaller peak is present

(2014). The forecasts for 2014 might have been improved by

smoothing the peak in June 2014 for all forecasts generated

after June, once it became apparent that it was not the main

epidemic peak, but smoothing the incoming surveillance

data is beyond the scope of the study presented here.

For the remaining calendar years (2006–2009, 2012, 2013),
it is clear that, given appropriate observation model para-

meters, the particle filter can steadily refine the forecasts and

narrow in on the epidemic curve. As shown in Figure S1, the

variance of both the peak size and timing forecasts decreases

substantially as the forecasting date approaches the date of the

true epidemic peak. Forecast accuracy increases as the forecast

variance decreases (Figure S2) and so the accuracy increases as

the true peak is approached (Figure S3). For example, when

using a threshold of � 10 days as the definition of an

‘accurate’ prediction of the peak timing (equivalent to �
1 week, when aggregating dates into weekly bins), it can be

seen that in 4 of the calendar years under consideration, more

than 50% of the weighted forecasts accurately predicted the

timing of the peak 5 weeks in advance.

Discussion

Principal findings
For flu seasons where there was a clear epidemic peak, the timing

of this peak was accurately predicted 4–6 weeks in advance

(�10 days); prediction of the peak size was substantially more

difficult and was only ever achieved on an inconsistent basis 1–
5 weeks prior to the peak (�33% of true size).

Study strengths and weaknesses
In this study, we have robustly explored the relationship

between forecasting accuracy and observation model (i.e. the

case ascertainment proportion and overdispersion). The

most accurate forecasts were obtained with a dispersion

parameter of 10 (overdispersed with respect to the Poisson)

and an ascertainment proportion of 5%. Note that we do not

assume that parameters or variables are distributed according

to any specific distribution; this flexibility is a feature of

particle filter methods and allows the model posteriors to

better approximate their true distributions when these

distributions are, for example skewed, overdispersed or

multimodal. The penalty is an increase in the computational

cost of the forecasting algorithm due to the number of

particles required to generate the ensemble forecasts. Our

implementation is written in Python and can generate weekly

forecasts from mid-March until the epidemic peak (as shown

in Figures 3 and 4) in 20–30 minutes on a standard desktop

computer.

Google Flu Trends is a ‘black box’ whose internals are

updated at unknown intervals, so the precise relationship

between the data and ILI incidence in the target population

remains uncertain.24,25 As the algorithm is based on Internet

searches,9 differences in Internet penetration and/or utilisa-

tion between populations presumably influence the quality of

the data,26 which highlights the importance of evaluating

these forecasting techniques in an Australian context. More-

over, this lack of transparency renders it difficult to decide

when and how the observation model should be adjusted to

account for changes to the Google Flu Trends algorithm. In

recognition of these limitations, Google no longer publishes

estimates of disease activity, but continues to provide signal

data to researchers.10

For particular calendar years (e.g. 2008 and 2014 for

k = 10) and choice of observation model, particle degen-

eracy was observed, indicating that the observation model

was inaccurate or that the infection model priors were too

narrow. When producing real-time forecasts in the nascent

stages of an ongoing (‘live’) influenza epidemic, these

forecasts should be discarded and the particle filter

restarted with an adjusted observation model and/or

expanded infection model priors. As the epidemiological

parameters of seasonal influenza strains are relatively well

quantified and the infection model priors are already quite

broad, the observation model parameters should be

adjusted first. Where the effective number of particles

decreases substantially in response to a single observation,

it might be prudent to decrease the dispersion parameter

and recalculate the particle weights. We explored a number

of approaches to improve forecast robustness, including

the use of Gaussian observation models, increasing the

number of particles, and lowering the resampling thresh-

old, but particle degeneracy was only avoided in the

problematic seasons by compromising the forecasting

performance in the remaining seasons (see Supplementary

Material section S4 for details).
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In addition to the peak size being a more difficult quantity

to predict than the timing of the peak, it is also sensitive to

our assumed probability of ILI observation per infection

(Pid), which acts as a linear scaling factor between model

incidence and the surveillance data. Our chosen range of

values for this parameter may have adversely affected the

forecasts for 2007 (where the peak was 50% higher than in

any other year) and, perhaps, for 2011 (where no peak was

evident). Note that ‘2007 saw the most severe influenza

season [in Australia] since national reporting of influenza

began in 2001’,27 and Victorian isolates were mainly type A

(H3N2),27 which is typically associated with more severe flu

seasons. In contrast, the 2011 season was relatively mild28,29

with a substantially higher proportion of influenza B

notifications than in previous years.29

Comparison with other studies
Several studies in recent years have combined recursive

Bayesian estimation methods with mechanistic models of

disease transmission for the purposes of early outbreak

detection, epidemic forecasting and pathogen characterisa-

tion. With regard to seasonal influenza, existing forecasting

studies have focused on cities across the USA, but as Yang

et al. state, ‘the performance of any filter may be application

dependent’.11 The results presented here are the first

application of such forecasting methods to Australian data

and demonstrate that we are able to obtain similar forecast-

ing accuracy in the Australian context.

Shaman et al.4,5 used an ensemble adjustment Kalman

filter (EAKF) and an SIRS infection model to predict seasonal

influenza outbreaks in 108 cities across the USA and showed

that outbreak peak timing could be predicted 4–6 weeks in

advance. They also found that predictions that the 2012–13
peak had passed were frequently incorrect, and that the

observations continued to increase; the authors attributed

this in part to intense media attention, although such an

effect is difficult to quantify. Forecasts were sensitive to the

scaling factor used to relate model incidence to the data,

much as our forecasts are influenced by pid, and in some

cities, the cumulative incidence approached and even

exceeded the total population. These difficulties – also

present in our study – highlight the importance and

complexity of selecting an appropriate observation model,

due both the nature of the available data and the difficulty of

relating infections in large, heterogeneous populations to a

meta-population model. Note that in both of these studies, a

baseline ILI rate was subtracted from the weekly ILI estimates

and negative values were set to zero, introducing a systematic

positive bias in the weeks prior to each influenza season.

The same authors also employed EAKF and particle filter

techniques to generate retrospective forecasts for Hong

Kong, which has a humid subtropical climate and experi-

ences irregular influenza epidemics.30 Observations were

obtained by multiplying weekly ILI presentation rates at

outpatient clinics by the proportion of collected specimens

that tested positive for influenza. Both filtering techniques

were able to predict peak timing up to 3 weeks in advance

with comparable accuracy.

Dawson et al., building on an earlier study that used

synthetic surveillance data,6 combined a particle filter with an

SEIR infection model for the purposes of early outbreak

detection, using a dynamic Bayesian network to assimilate

disease surveillance observations provided by an agent-based

model.31 The emphasis on this study was the use of this

method for early outbreak detection (e.g. in the case of a

deliberate biological attack), rather than forecasting the

progress of an extant epidemic. One of the drawbacks of

dynamic Bayesian networks is the difficulty of defining the

conditional probabilities for the network, but these can be

informed by, for example sociological data for the relevant

population. The use of this method as a forecasting tool was

not fully explored, due to a different aim for the work, and

the synthetic observation data were much more precise and

complete than is possible for seasonal influenza outbreaks.

Interestingly, a simpler forecasting framework that used

the ‘method of analogues’ to predict future influenza activity

from past time-series data was first published in 200332 by

Viboud et al. and has since seen ongoing use by the French

GPs Sentinelles network (https://websenti.u707.jussieu.fr/

sentiweb/). This method was shown to outperform autore-

gressive models, but the reliance upon past observed

epidemic patterns to estimate future behaviour means that

a comprehensive body of historical data is required.

More broadly, Lindstr€om et al. presented a weighted

ensemble modelling method that combines outputs from

multiple models to allow for different degrees of model detail

and different mechanistic assumptions about the infection

process.33 This approach, adapted from climate modelling,

was used to compare different interventions for the UK foot

and mouth outbreak in 2001. The results were not evaluated

as forecasts, but were instead used to explore the variation in

projections obtained from a single model for different sets of

model priors and control actions. Using this method with

multiple models for forecasting purposes, one would expect

to obtain forecasts that are less sensitive to individual model

assumptions, although this could conceivably increase the

forecast variance. We are not aware of any forecasting studies

that have used multiple infection models, but combining

meta-population and individual-based models for these

purposes is an interesting possibility (contingent on suffi-

cient demographic data).

Meaning and implications
Predicting the time of the seasonal influenza epidemic peak –
both accurately and precisely – several weeks in advance has

clear benefits for public health decision making and resource

Moss et al.
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allocation. In the urban Australian context, the results

presented here suggest that such predictions can be obtained

in the early stages of future influenza seasons, provided that

an appropriate choice of observation model is made.

Good estimates of the net and peak burden – in terms of

hospital and ICU admissions, in particular – are also critical

for informing public health, and our results indicate that

these quantities are significantly harder to predict due to

model sensitivity (consistent with other studies4–6,31).

Accordingly, it is essential to determine how the accuracy

of the epidemic size predictions obtained from these

methods might be improved. This would, perhaps, be more

readily addressed in an influenza pandemic, where ‘first few

hundred’ studies would allow for rapid estimates of case

severity and transmission characteristics.34

A critical requirement for obtaining reasonable forecasts is

choosing an appropriate observation model (i.e. in form and

parameter values). This is also, perhaps, the single greatest

challenge in applying this methodology to epidemic fore-

casting and is particularly difficult in the face of surveillance

systems whose characteristics vary over time (e.g. changes to

the Google Flu Trends algorithm, recruitment of additional

surveillance sites for syndromic systems, increased collection

and testing of laboratory specimens for case notification

systems). Such changes can occur from year to year,

presenting a challenge for using data from previous influenza

seasons to infer observation model parameters for future

seasons, or can even occur during a single influenza season

(e.g. as occurred during the 2009 pandemic) and require ‘on

the fly’ tuning or estimation of observation model param-

eters.

Further work
The most obvious and important question that remains

unanswered is: how well did the retrospective forecasts

correspond to the true seasonal influenza outbreaks in

Melbourne for these calendar years? This is fundamentally

very difficult to address, because the true infection process

literally cannot be observed. However, as is true of all

influenza forecasting studies to date, our forecasts were only

compared to the same data source from which they were

derived. Indeed, as recognised by Shaman and Karspeck, ‘we

would prefer an observational estimate of weekly influenza

infections that represents actual incidence as accurately as

possible’.4

Critical to these efforts are robust methods for selecting

observation models that can meaningfully relate observations

to infection model dynamics. Where the observation systems

are sufficiently complex or insufficiently characterised, it is

pragmatic to select observation models based on their

phenomenological description of the data (as in this study),

rather than on being a mechanistic description of the poorly

understood surveillance process.

Regardless, to identify optimal observation model param-

eter values (a key problem, as discussed above), a quantita-

tive assessment of forecast quality is required. While such

techniques have been developed in the atmospheric

sciences,35 they typically require a statistically meaningful

number of ‘true values’. In the context of influenza

forecasting, the unit of forecasting is not a daily or weekly

observation, but is instead an entire influenza outbreak; as

Lindstr€om et al. write: ‘epidemiological predictions suffer

from lack of available data to assess model bias, and we

propose that expert opinions will play a larger role than in

other fields of research’. Thus, the only way to obtain

sufficiently many samples of the ‘truth’ given the limitations

of available data is to generate data in silico and add noise,4,6

thereby approximating – at best – the true infection process

in the target population. The development of methods

applicable to the paucity of influenza epidemics for which

data are available would therefore be of substantial impor-

tance. Investing in data collection efforts that greatly increase

the population coverage (e.g. electronic health records)

would permit substantial improvements to forecasting val-

idation and performance.

Finally, additional data sources – comprising both syn-

dromic surveillance and laboratory-confirmed influenza

notifications – are available for metropolitan Melbourne.36–

39 These systems are well-characterised and have previously

been analysed for spatiotemporal biases by our group.40 We

are in the process of developing observation models for these

and other systems, which will allow us to compare the

forecasting quality obtained from each system. In compar-

ison with Google Flu Trends, these systems provide more

direct and transparent measures of disease activity in the

community and will continue to operate indefinitely. Fur-

thermore, by assimilating multiple data sources in the

filtering process, the filter should be less susceptible to

stochastic variation and noise in each system (thereby

potentially avoiding particle degeneracy), with the result

being more robust model forecasts.41
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decrease as the true epidemic peak is approached; the

variance (log10) of the predicted size is shown on the left, the

variance (log10) of the predicted time on the right.

Figure S2 The accuracy of the peak timing forecasts (left,

�7, 10, 14 days) and the peak size forecasts (right, �10%,

20%, 33%) increase as forecast variance decreases (i.e., as

forecast precision increases).

Figure S3 The accuracy of peak timing forecasts (left) and

peak size forecasts (right) increase as the true epidemic peak

is approached; dashed lines show 50% accuracy.

Figure S4 A comparison of our original forecasts (k = 10)

with forecasts generated using the Gaussian observation

model of Shaman & Karspeck (“N S&K”, where variance is a

function of the mean) and other Gaussian observation

models with reduced variances (“N #1”. . . “N #4”).

Figure S5 A comparison of our original forecasts

(k = 100) with forecasts generated using the Gaussian

observation model of Shaman & Karspeck (“N S&K”, where

variance is a function of the mean) and other Gaussian

observation models with reduced variances (“N #1” . . . “N

#4”).

Figure S6 A comparison of our original forecasts (k = 10)

with forecasts generated using a Gaussian observation model

(“N #4”) where the number of particles was increased five-

fold (“Npx = 18K”) and with a lower resampling threshold

(“Npx = 18K, Neff > 25%”).

Figure S7 A comparison of our original forecasts

(k = 100) with forecasts generated using a Gaussian obser-

vation model (“N #4”) where the number of particles was

increased five-fold (“Npx = 18K”) and with a lower resam-

pling threshold (“Npx = 18K, Neff > 25%”).

Figure S8 A comparison of our original forecasts (k = 10)

with forecasts generated using Gaussian observation models

with constant variances (“N (r = 100)” and “N (r = 170)”),

and with a lower resampling threshold (“N (r = 170),

Neff > 25%”).

Figure S9 A comparison of our original forecasts

(k = 100) with forecasts generated using Gaussian observa-

tion models with constant variances (“N (r = 100)” and “N

(r = 170)”), and with a lower resampling threshold (“N

(r = 170), Neff > 25%”).

Figure S10 A comparison of our original forecasts

(k = 10) with forecasts generated using the original model

where the number of particles was increased five-fold

(“Npx = 18K”) and where the resampling threshold was

decreased (“Neff > 25%” and “Neff > 50%”).

Figure S11 A comparison of our original forecasts

(k = 100) with forecasts generated using the original model

where the number of particles was increased five-fold

(“Npx = 18K”) and where the resampling threshold was

decreased (“Neff > 25%” and “Neff > 50%”).

Figure S12 A comparison of our original forecasts

(k = 10) with forecasts generated using the Gaussian obser-

vation model of Shaman & Karspeck (“N S&K”, where

variance is a function of the mean) and other Gaussian

observation models with reduced variances (“N #1” . . . “N

#4”).

Figure S13 A comparison of our original forecasts

(k = 100) with forecasts generated using the Gaussian

observation model of Shaman & Karspeck (“N S&K”, where

variance is a function of the mean) and other Gaussian

observation models with reduced variances (“N #1” . . . “N

#4”).

Figure S14 A comparison of our original forecasts

(k = 10) with forecasts generated using a Gaussian observa-

tion model (“N #4”) where the number of particles was

increased five-fold (“Npx = 18K”) and with a lower resam-

pling threshold (“Npx = 18K, Neff > 25%”).

Figure S15 A comparison of our original forecasts

(k = 100) with forecasts generated using a Gaussian obser-

vation model (“N #4”) where the number of particles was

increased five-fold (“Npx = 18K”) and with a lower resam-

pling threshold (“Npx = 18K, Neff > 25%”).

Figure S16 A comparison of our original forecasts

(k = 10) with forecasts generated using Gaussian observation

models with constant variances (“N (r = 100)” and “N

(r = 170)”), and with a lower resampling threshold (“N

(r = 170), Neff > 25%”).

Figure S17 A comparison of our original forecasts

(k = 100) with forecasts generated using Gaussian observa-

tion models with constant variances (“N (r = 100)” and “N

(r = 170)”), and with a lower resampling threshold (“N

(r = 170), Neff > 25%”).

Figure S18 A comparison of our original forecasts

(k = 10) with forecasts generated using the original model

where the number of particles was increased five-fold

(“Npx = 18K”) and where the resampling threshold was

decreased (“Neff > 25%” and “Neff > 50%”).

Figure S19 A comparison of our original forecasts

(k = 100) with forecasts generated using the original model

where the number of particles was increased five-fold

(“Npx = 18K”) and where the resampling threshold was

decreased (“Neff > 25%” and “Neff > 50%”).
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