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Background
Eukaryotic genomes are replicated from multiple start sites or origins. To ensure 
genome stability, these origins must initiate replication only once during the cell cycle. 
Strict initiation control first involves the loading of the inactive replicative helicase 
(Mcm2-7) onto DNA only in late M/G1 phase, in a process called licensing. Initiation 
at these licensed origins can then only occur during S-phase, due to the activation of 
S-phase cyclin-dependent kinase (S-CDK) and Dbf4-dependent kinase (DDK). DDK 
phosphorylates the loaded Mcm2-7 helicase, which drives the recruitment of Sld7/
Sld3 (MTBP/Treslin in humans) and the helicase activating protein Cdc45, while CDK 
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Background:  The early embryonic divisions of many organisms, including fish, flies, 
and frogs, are characterized by a very rapid S-phase caused by high rates of replication 
initiation. In somatic cells, S-phase is much longer due to both a reduction in the total 
number of initiation events and the imposition of a temporal order of origin activation. 
The physiological importance of changes in the rate and timing of replication initiation 
in S-phase remains unclear.

Results:  Here we assess the importance of the temporal control of replication initia-
tion using a conditional system in budding yeast to drive the early replication of the 
majority of origins in a single cell cycle. We show that global early replication disrupts 
the expression of over a quarter of all genes. By deleting individual origins, we show 
that delaying replication is sufficient to restore normal gene expression, directly impli-
cating origin firing control in this regulation. Global early replication disrupts nucleo-
some positioning and transcription factor binding during S-phase, suggesting that the 
rate of S-phase is important to regulate the chromatin landscape.

Conclusions:  Together, these data provide new insight into the role of the temporal 
control of origin firing during S-phase for coordinating replication, gene expression, 
and chromatin establishment as occurs in the early embryo.
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phosphorylates Sld3 and another protein Sld2 (RecQL4 in humans), driving interactions 
with Dpb11 (TopBP1 in humans), DNA polymerases, and other factors to form active 
replisomes and initiate replication [1].

In most eukaryotic cells, origins do not all fire at the beginning of S-phase. Although 
all origins are licensed in G1 phase, only a fraction of these (10% in mammalian cells) 
will be activated during a normal S-phase [2]. For those origins that fire, their activa-
tion occurs as a continuum throughout S-phase, resulting in differences in the tim-
ing of genome replication. This temporal order of genome duplication is known as the 
replication timing (RT) programme. Importantly, this RT programme is evolutionarily 
conserved between related species [3], is consistent within particular cell types [4], and 
changes during development [5], differentiation [6], and disease [7].

In budding yeast and metazoa, the signal for early or late replication is established in 
G1 phase during licensing [8, 9]. Several studies suggest that the establishment of RT is 
dependent on the regulation of the chromatin context of origins [10–13] and early ori-
gins differentially bind to the origin recognition complex (ORC) [14, 15] and load more 
Mcm2-7 [16]. We and others have shown that a critical determinant of origin timing 
is the ability of licensed origins to compete for a limiting pool of initiation factors [17, 
18]. The activatory subunit of DDK, Dbf4, and the two critical CDK targets, Sld3 and 
Sld2, and their binding partner, Dpb11 are stoichiometrically limiting for initiation in 
budding yeast, and over-expression of these factors, together with the Sld3 partner pro-
teins, Sld7 and Cdc45, is sufficient to allow the early firing of late and dormant origins in 
yeast [18]. Importantly, the vertebrate orthologues of these factors are also rate-limiting 
for replication initiation during early embryonic divisions [19]. Direct recruitment and 
inhibition of these limiting initiation factors can also influence replication timing, for 
example kinetochores and the forkhead box transcription factors Fkh1/Fkh2 can drive 
the early firing of subsets of origins by directly recruiting Dbf4 [20, 21], while conversely 
Rif1 counteracts DDK activity to delay RT in late-replicating domains [22].

Although differential replication timing of the genome was identified over 50 years 
ago [23] and RT is dramatically altered during differentiation and development [5, 6], 
the functional importance of the RT programme is still very poorly understood. Over-
expression of limiting replication initiation factors, causing the early firing of many ori-
gins in budding yeast, results in cell lethality [18], strongly suggesting that ordered origin 
firing is important. In many organisms including humans, mouse, and Drosophila there 
is a positive correlation between early replication and the probability of gene expression 
[24], while in budding yeast only the highest expressed genes tend to be earlier replicated 
and the lowest expressed genes tend to be late replicated [25]. Despite this, whether 
early replication is a cause or a consequence of gene expression is not clear. Recently, it 
was shown that perturbations in RT caused by loss of Rif1 in human cells is coupled with 
alterations in histone modifications and 3D chromatin compartments, but only causes a 
limited effect on gene expression [26]. In yeast however, early replication of the histone 
genes is required for their maximal expression in S-phase [27].

Here we take advantage of our system that conditionally over-expresses limiting rep-
lication initiation factors in budding yeast [18] to determine the relationship between 
perturbations in DNA replication timing and gene expression in a single cell cycle. By 
driving the early replication of the majority of the genome, we observe dramatic changes 
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in the expression of over a quarter of yeast genes during S-phase. Early genomic rep-
lication causes concomitant changes in chromatin dynamics and transcription factor 
binding events during S-phase. This study provides new insight into the importance 
of ordered origin firing, with implications for how replication rate can influence gene 
expression and the chromatin landscape.

Results
Over‑expression of limiting replication initiation factors causes global early replication

To perturb replication timing genome-wide in a single cell cycle, we took advantage of 
our conditional system in budding yeast that over-expresses six limiting replication fac-
tors Sld2, Sld3, Dpb11, Dbf4, Cdc45, and Sld7 (abbreviated to SSDDCS) upon the addi-
tion of galactose [18]. Galactose induction of the SSDDCS strain speeds up S-phase, as 
measured by flow cytometry, but also leads to the depletion of the dNTP pool, which 
causes activation of the DNA damage checkpoint [18]. To advance replication timing 
without activating the checkpoint, we performed all experiments with strains contain-
ing a null mutation of the ribonucleotide reductase inhibitor SML1. The sml1∆ mutation 
increases the dNTP pool and overcomes the galactose-induced checkpoint activation in 
the SSDDCS strain [18].

To determine the genome-wide impact of over-expression of the limiting replication 
factors on DNA replication timing in a single cell cycle, we analyzed replication progres-
sion by DNA sequencing and copy number analysis. For this, the sml1Δ and the sml1Δ 
SSDDCS strains were synchronized in G1 using the mating pheromone alpha factor, 
galactose was added to these G1 arrested cells for 30 min, and then cells were released 
into a synchronous S-phase in the presence of galactose, whereby samples were collected 
every 5 min to generate libraries for whole genome sequencing. To determine the repli-
cation dynamics of these strains, the ratio of mapped reads at each timepoint compared 
to the G1 sample (copy number) was calculated for each genomic 1-kb bin, as described 
[28]. The median replication time (Trep) for each 1-kb bin was determined by fitting a 
sigmoidal curve to the copy number profile from each bin and extracting the time (in 
minutes after G1 release) at which each bin is half-way between one and two copies. 
Replication profiles were generated by plotting the Trep values along the corresponding 
chromosome position, followed by smoothing using a moving average (Fig.  1A—only 
Chromosome VIII is shown). From such a profile, the peaks (local minima of Trep) rep-
resent origins of replication and troughs (local maxima of Trep) are termination zones 
(note that for these analyses the y-axis is inverted so that origins are peaks—Fig. 1A). As 
expected [18, 29], SSDDCS over-expression advances the replication timing of all origins 
across the whole chromosome, including stimulating the firing of normally passively 
replicated origins, such as ARS810 and ARS821 (Fig. 1A).

To address whether all origins genome-wide were equally affected by over-expression 
of limiting factors, replication origins were divided into quintiles according to their 
Trep in the control strain (Fig. 1B). This analysis demonstrated that all groups of origins 
replicate earlier on average upon SSDDCS over-expression, with later origins having a 
greater advance in replication timing than early origins (Fig. 1B). This is consistent with 
our previous data that there is less capacity for the earliest origins to fire even earlier 
when limiting factors are over-expressed [18], as the transition from G1 to S-phase and 
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activation of DDK and CDK is still required before an origin can fire. In the SSDDCS 
strain, the first three quintiles of origins fire at the same time, showing that at least 60% 
of all origins fire at the very earliest time in S-phase (Fig. 1B). The two latest quintiles 
of origins, although not advanced as much as the earliest origins, still fire as early as 
the majority of early origins in the wild type strain (see for example ARS821 in Fig. 1A). 
Therefore, SSDDCS over-expression drives the early firing of almost all origins in yeast.

In budding yeast, the telomeres are among the latest replicating regions of the genome, 
while the centromeres are among the earliest replicating due to the direct recruitment 
of limiting replication factors to centromeres [21]. Consistently with Fig. 1B, SSDDCS 
over-expression does not induce centromeres to replicate even earlier, but does drive the 
early replication of telomeres, such that these regions now replicate at the same time 
as centromeres (Fig.  1C). Analysis of the whole genome as 1-kb bins reveals that the 
vast majority of the genome is replicated earlier upon SSDDCS over-expression (Fig. 1D, 

Fig. 1  Over-expression of limiting initiation factors causes global early replication. A Trep values were plotted 
from the indicated strains along the corresponding chromosome positions to generate genome-wide 
replication profiles and smoothed using a moving average. Chromosome VIII is shown here as an example. 
The y-axis is flipped so that early replicating regions are at the top of the plot and late-replicating regions 
at the bottom. The location of annotated origins (ARS) is shown above. Overall, all origins fire earlier in the 
SSDDCS strain. Arrows indicate termination zones that have a delayed Trep in the SSDDCS strain. B Distribution 
of Trep values for all origins divided into quintiles according to Trep values from the sml1Δ strain. C Box and 
whisker plot of the Trep values for all centromeres and telomeres (within 50kb of chromosome ends).*** 
p-value = < 2.2e−16, Welch two-sample t-test. Centromeres were not significantly affected by SSDDCS 
over-expression (p-value = 0.9578, Welch two-sample t-test). D Scatterplot of the Trep values for the whole 
genome in 1-kb bins. Red dashed line is the line of equal Trep between the sml1Δ and sml1Δ SSDDCS strains
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above magenta line). Despite this, some sites are replicated later after SSDDCS over-
expression (Fig. 1D, below magenta line). We have previously shown that high rates of 
initiation cause topological defects, due to the overwhelming of topoisomerase activi-
ties, resulting in delays in termination [30]. Such delayed termination sites are indeed 
visible on the Trep plots (black arrows, Fig. 1A). Apart from these small number of termi-
nation zones, the SSDDCS over-expression strain clearly induces the early replication of 
the majority of the genome in a single cell cycle.

Global early replication perturbs the transcription of over a quarter of the genome 

in a single cell cycle

To analyze the impact of advanced replication on gene expression during a single cell 
cycle, samples were collected for whole transcriptome sequencing (RNA-seq) from 
synchronized cells as in Fig. 2A. Notably, the advanced S-phase in the SSDDCS strain 
was not caused by differences in the G1-S transition, which are highly similar between 
strains as determined by budding index and the expression of G1 and S-phase cyclins 
(Additional file 1: Fig. S1), but instead are likely due to the advanced global replication in 
this strain (Fig. 1). A principal component analysis (PCA) of the gene expression changes 
during advanced replication timing revealed the absence of batch effects between bio-
logical replicates (Additional file 1: Fig. S2). To address a role for replication timing in 
gene expression control, each timepoint was compared between the two strains using 
DESeq2 [31]. Note that due to the over-expression of the six factors in the SSDDCS 
strain, these six genes were excluded from all downstream analyses. Genes were con-
sidered up- or downregulated in the SSDDCS strain if the log2 normalized fold-change 
(SSDDCS sml1Δ / sml1Δ) was above or below 0 respectively and if the adjusted p-value 
or false discovery rate (FDR) was below 0.01 (DESeq2 Wald test). Using this approach, a 
large number of genes were differentially expressed (DE) in the SSDDCS strain in a sin-
gle cell cycle (Fig. 2B). Importantly, the majority of these expression changes occur after 
20 min, suggesting that S-phase is required for these differences (Fig. 2B). Notably, the 
number of DE genes was greatly reduced by the end of the time course, suggesting that 
any changes in expression are resolved before the next cell cycle (Fig. 2B).

Taking advantage of the temporal resolution of this dataset, we analyzed the expres-
sion pattern of each gene during the cell cycle, using the DESeq2 likelihood ratio test 
(LRT) [31]. A significant FDR from this test identifies genes that show a difference 
between the two strains at one or more timepoints after G1 phase. Using this approach, 
a total of 1771 genes were identified as differentially expressed, representing ~27% of the 
genome. From this list, k-means clustering was used to group genes with similar expres-
sion profiles (Fig. 2C,D). This clustering predominantly segregated genes by their normal 
periodic expression [32] (Fig. 2E), for example Cluster 2 genes are significantly over-rep-
resented in S/G2 expressed genes. As the k-means clusters indicated that the genes that 
are differentially expressed in the SSDDCS strain are dynamically regulated even in a 
wild type strain (Fig. 2D), we wondered whether constitutively expressed genes, which 
do not change their expression under different conditions [33], might be less affected 
than inducible genes by advanced replication timing. Figure 2F shows that constitutively 
expressed genes show much less differential expression than inducible genes after early 
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Fig. 2  Global early replication perturbs the expression of 27% of genes in one cell cycle. A Overlay of the 
flow cytometry between the sml1Δ and sml1Δ SSDDCS strains arrested in α factor and released into S-phase 
in galactose. The timepoints (1-12) used to generate time-resolved RNA-seq libraries are indicated. B Table 
showing the number of differentially expressed genes at each of the 12 RNA-seq timepoints between the 
sml1Δ and sml1Δ SSDDCS strains. Cells are color-coded based on the number of DE genes on each timepoint. 
C Heatmap of 1771 genes that are differentially expressed (DE) between the two strains in one or more 
timepoints after G1. Each row corresponds to one individual gene and each column to one timepoint (G1 
to 60 min from left to right, respectively). Genes were clustered according to their expression profiles using 
k-means clustering. The expression levels were z-scored and normalized by row. The maximal and minimum 
expression are colored in red and blue, respectively. D Normalized read counts per timepoint using DESeq2 
size factors for one illustrative gene from each DE cluster from C. E Table showing k-means clusters from C 
with the statistically significant (p-value <0.05) over- (blue) or under- (red) representation of genes designated 
to be cell cycle regulated according to [32]. p-values were calculated using binomial probability tests. F Box 
and whisker plot of the log2 time course-averaged expression fold-change for sml1Δ SSDDCS / sml1Δ strains 
of genes separated into constitutively expressed or inducible according to [33]
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replication, consistent with the observation that these constitutive genes are refractory 
to environmental stimuli [33].

We wondered to what extent replication timing changes might be important for the 
gene expression changes that we observed (Fig.  2B–D). As SSDDCS over-expression 
causes the earlier replication of the majority of the genome (Fig. 1D), it was not surpris-
ing that all DE gene clusters, as well as non-DE genes are on average earlier replicated 
in the sml1∆ SSDDCS strain compared the sml1∆ strain (Additional file  1: Fig. S3A). 
Analysis of the proximity of DE genes to origins revealed that clusters 1, 4, and 5 are 
on average more origin proximal than non-DE genes, and vice versa for the remaining 
clusters (Additional file 1: Fig. S3B). Clusters 1 and 4 show enrichment for genes that are 
proximal to the normally late-replicating telomeres, although the majority of DE genes 
are not telomeric (Additional file 1: Fig. S3C). Interestingly, given that centromeres do 
not show replication timing changes in the SSDDCS strain (Fig.  1C), centromeres are 
not enriched for DE genes from any of the k-means clusters (Additional file 1: Fig. S3D). 
This data suggests that earlier replication is likely to be necessary for the gene expression 
changes that we observe in the SSDDCS strain, but advanced timing is not sufficient for 
these changes as non-DE genes are also earlier replicating in the SSDDCS strain (Addi-
tional file 1: Fig. S3A).

The expression of some genes is directly affected by an increase in copy number dur-
ing replication, such as the histone genes [27]. It has also been suggested that to main-
tain expression homeostasis during S-phase, the earliest S-phase genes are buffered 
against copy number changes through the histone acetyltransferase Rtt109 [34]. As early 
replication of the genome in the SSDDCS strain might affect gene expression by increas-
ing the copy number of a gene in early S-phase, we wondered to what extent this might 
influence the differential expression we observe during advanced replication (Fig. 2C). 
Importantly, we observed no correlation between the genes that are DE in the SSDDCS 
strain and the rtt109∆ sensitive or insensitive gene sets [34] (data not shown). In addi-
tion, the k-means clusters that are enriched for genes that are normally expressed in 
S-phase and G1/S-phase (clusters 2 and 6 respectively, Fig. 2E) show reduced expression 
after early replication (Fig. 2C,D), which is the opposite of what we would expect if copy 
number was affecting their expression. Finally, the differences in expression between 
sml1Δ and sml1Δ SSDDCS were significantly greater than 2-fold for many genes (in par-
ticular for Cluster 1, e.g., see Fig. 3A), again suggesting that the expression changes of 
these genes are not simply due to copy number changes. Together these data show that 
genome-wide early replication perturbs the normal expression of a large proportion of 
the genome in a single cell cycle.

Single‑cell analysis of early replication‑induced transcription

From the RNA-seq analysis, we conclude that altering replication timing globally affects 
the expression of many genes across a population of synchronized cells. We wondered 
whether the effect of replication timing on gene transcription was of sufficient magni-
tude to observe these expression changes in individual cells in a single cycle. For this, we 
replaced the THI12 gene with GFP as a fluorescent proxy for THI12 expression. THI12 
is a cluster 1 gene (Fig. 2C,D) that is highly expressed in the SSDDCS strain (Fig. 3A). 
We replaced THI12 with a version of GFP that has a PEST degron from Cln2 to ensure 
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that the protein is short-lived and an NLS to concentrate the protein in the nucleus and 
enhance the microscopy analysis [35]. We performed the same experiment as with the 
RNA-seq (Fig. 3B), except that we took later timepoints, due to the delay between GFP 
expression, translation and folding [35]. Using this system, we observed that GFP was 
not expressed in the sml1∆ strain in galactose as expected, as THI12 is not expressed 
in these conditions (Fig. 3A, D). However, in the SSDDCS strain, GFP was significantly 
expressed in approximately 3% of cells in a single cell cycle (Fig. 3C,D). Although only 
a small percentage of cells appeared positive, we do not know what threshold of GFP 
expression is necessary for a positive signal in this assay. Despite this, it is clear that early 
replication indeed affects gene transcription in individual cells in a single cell cycle.

Delaying replication rescues aberrant transcriptional activation

If early replication is required for the aberrant gene expression that we observe 
(Fig. 2), then we predicted that if we could delay the replication of individual genes in 
the SSDDCS strain, we might be able to restore their normal expression. For this, we 

Fig. 3  Single-cell analysis of early replication-induced gene expression. A RNA-seq data for THI12, a cluster 
1 DE gene, from the data in Fig. 2C. B Flow cytometry of the time course for analysis of GFP expression from 
the THI12 locus. C Representative images from the analysis of GFP expression at the 150-min timepoint. D 
Quantitation of GFP expression from the 150-min timepoint as in C for 3 independent experiments. n=755 
and 1156 for sml1∆ and sml1∆ SSDDCS respectively. Error bars are SD, p-value <0.001 from an unpaired T-test
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identified two cluster 1 genes, IME2 and NDT80, that are highly expressed in S-phase 
in the SSDDCS strain, similar to THI12 (Fig. 3A) and are also proximal to active ori-
gins (Fig.  4A,B). Taking advantage of the fact that replication origins are defined 
genetic elements in budding yeast (autonomously replicating sequences, ARS), we 
deleted the two neighboring ARS elements from the IME2 locus (ARS1008/1009, 
Fig.  4A) and from the NDT80 locus (ARS816/818, Fig.  4B). Importantly, these ARS 
deletions specifically delayed the replication of the target locus (Fig.  4A,B), but the 
replication timing of all other origins remained similar between the strains (Addi-
tional file 1: Fig. S4). Analysis of the expression of the IME2 and the NDT80 genes by 
qPCR showed that these genes are not expressed in the sml1∆ strain but are expressed 
in S-phase in the sml1∆ SSDDCS strain, as expected (Fig. 4C,D). Significantly, dele-
tion of the neighboring origins, which delays replication specifically of the IME2 or 
the NDT80 loci, completely abrogated the aberrant expression of these two genes in 
the SSDDCS strain (Fig. 4C,D). This experiment strongly suggests that it is the early 
replication of these loci that is critical for their aberrant S-phase expression.

Fig. 4  Delaying replication rescues aberrant transcriptional activation. A Trep profile from the indicated 
strains as in Fig. 1A, from a segment of Chr X. The position of the IME2 locus is indicated on the sml1∆ SSDDCS 
profile. B As A, except for the NDT80 locus on Chr VIII. C qPCR data of IME2 expression from the indicated 
timepoints for the strains as in A. Error bars are SD, n=3. Gene expression was normalized to actin. D As C, 
except for NDT80 expression
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Global early replication perturbs chromatin conformation in a single cell cycle

To address how galactose induction of the SSDDCS strain might lead to dramatic 
changes in transcription in a single cell cycle, we set out to analyze whether early rep-
lication of the genome affects chromatin organization. For this, we analyzed nucleo-
some positioning and occupancy across the genome by sequencing after micrococcal 
nuclease digestion (MNase-seq). Most genes contain a well-positioned nucleosome 
(+1 nucleosome), just downstream of the transcriptional start site (TSS), which is 
dynamically repositioned during transcription [36, 37]. From our MNase-seq data, 
we observed that the +1 nucleosome remains largely static relative to the TSS in the 
sml1∆ strain, regardless of whether the genes are expressed or not during the time 
course (Fig.  5A). However, in the SSDDCS strain that induces global early replica-
tion, all DE and even non-DE genes displayed greater mobility of the +1 nucleosome 
towards the gene body (Fig.  5A). Importantly this mobility of the +1 nucleosome 
was transient and was restored to the normal position by the end of the time course 
(Fig. 5A).

To analyze nucleosome organization in the gene body, the pattern of the first 4 
nucleosomes was assessed using the autocorrelation function (ACF), as recently 
described [39]. Genes with higher ACF values have well-phased and organized nucle-
osomes, while lower values represent poorly organized chromatin (Fig.  5B, top). 
ACF values were calculated for all genes in each timepoint and plotted as a heatmap 
(Fig. 5B, bottom). This analysis was restricted to genes larger than 700bp (as 4 nucle-
osomes are needed for ACF calculation), which corresponds to approximately 70% 
of all genes. In the sml1∆ control strain, there is a transient decrease in nucleosome 
organization during S-phase, most likely caused by the passage of replication forks, 
but once replication is completed the nucleosome organization is re-established 
(Fig. 5B). Strikingly, greater nucleosome disorganization was observed genome-wide 
in the SSDDCS strain (Fig. 5B), which is in agreement with the +1 nucleosome data 
(Fig.  5A). This decreased nucleosome organization in the SSDDCS strain was not 

(See figure on next page.)
Fig. 5  Global early replication perturbs chromatin conformation in a single cell cycle. A Position of the 
+1 nucleosome relative to the transcriptional start site (TSS) represented as a heatmap for the DE genes 
separated into their k-means cluster (Fig. 2C) plus 250 random non-DE genes with an annotated +1 
nucleosome. Blue represents the most upstream position of the +1 nucleosome, while green represents the 
most downstream position (into the gene body). Data is normalized by row as done for previous heatmaps. 
Each row corresponds to a single gene and each column to a single timepoint (G1 to 60 from left to right, 
respectively). B Top: The nucleosome occupancy and organization of the first 4 nucleosomes after the TSS 
was analyzed using an autocorrelation function (ACF) analysis: nucleosomes in green are well phased (i.e., 
well defined peak and valleys) and well positioned (similar inter-nucleosome distance), corresponding to 
high ACF values. On the other hand, nucleosomes in black are poorly phased and disorganized, resulting 
in low ACF. Bottom: Heatmap of ACF values for the DE genes and 350 random non-DE genes longer than 
700bp. Each row corresponds to a single gene and each column to a single timepoint (G1 to 60 from left 
to right, respectively). The two strains are separated by a white vertical line. White and green represents the 
timepoints at which the chromatin is mostly disorganized and organized, respectively. C Plot of statistical 
significance versus effect size for Kruskal-Wallis tests applied to chromatin mutant gene expression data from 
[38]. Red dashed horizontal and vertical lines represent a Bonferroni-corrected p-value threshold of 0.001 and 
a high-effect threshold (η2 = 0.14), respectively. D Box and whisker plot of the averaged gene expression 
change in the SSDDCS strain for the k-means clusters from the RNA-seq data in Fig. 2C. p-values are from 
Holm-corrected Wilcoxon rank sum tests relative to 300 random non-DE genes (black). **** p < 0.0001. E 
Box and whisker plot of the RNA expression changes in the cac1∆ strain (data from [38]). p-values are from 
Holm-corrected Wilcoxon rank sum tests relative to 300 random non-DE genes (black). **** p < 0.0001
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specific to the DE genes and was restored back to normal levels of organization by 
the end of the time course (Fig. 5B). Together, this data shows that genome-wide early 
replication perturbs the nucleosome positioning and organization of many genes.

Figure  5 A and B demonstrate that driving early replication genome-wide perturbs 
chromatin organization during S-phase. One mechanism that might cause this defect 
could be that the high rate of replication early in S-phase overwhelms the histone sup-
ply and assembly machinery, leading to a transient period when new nucleosome 

Fig. 5  (See legend on previous page.)
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deposition/positioning cannot keep pace with replication. If such transient chromatin 
assembly defects are responsible for the global gene expression changes that we observe 
in the SSDDCS strain, then it would follow that strains that are defective in chromatin 
assembly should mimic the gene expression changes in the SSDDCS strain. To investi-
gate the relationship between chromatin defects and expression of the SSDDCS-depend-
ent genes, we compared our data with the gene expression changes in a compendium 
of 165 chromatin machinery deletion mutants, which includes nucleosome remodelers, 
histone chaperones, histone modifiers, and transcription co-regulators [38]. As the gene 
expression data for these chromatin machinery deletion datasets is from only a single 
asynchronous timepoint, we converted our gene expression data (Fig. 2C) to an average 
gene expression value for the entire time course (Fig. 5D). Importantly, even after aver-
aging the gene expression time course data, each k-means cluster remained highly signif-
icantly different to the non-differentially expressed control group (Fig. 5D). This data was 
then used to quantify the similarity between the SSDDCS data and the 165 chromatin 
machinery mutants using Kruskal-Wallis tests. A plot of statistical significance against 
effect size clearly identified six mutants with highly significantly similar expression pro-
files to our SSDDCS data (Fig. 5C): the CAF-1 histone chaperone complex (Cac1, Cac2, 
Msi1), the Rtt106 and Asf1 histone chaperones, and the Ssn6 transcriptional co-repres-
sor. Direct comparison of the cac1Δ dataset with our SSDDCS data mimicked the signif-
icant upregulation of the clusters 1/4/5 and the downregulation of clusters 2/3 (Fig. 5D 
versus E). The magnitude of the fold-change in the cac1Δ data was smaller than for 
our SSDDCS data (Fig. 5D versus E), but this might reflect methodological differences 
from comparing our RNA-sequencing data with the cac1Δ microarray data from asyn-
chronous mid-log yeast populations [38]. Importantly, the similarity between the gene 
expression changes in the cac1Δ strain and the SSDDCS over-expression experiment is 
not because the CAF-1 complex is downregulated by global early replication (Additional 
file 1: Fig. S5). Together, the dramatic defect in chromatin organization in mid-S-phase 
(Fig. 5A,B) combined with the correlation of our gene expression data with chromatin 
assembly mutants (Fig. 5C–E) strongly suggests that earlier replication of the majority 
of the genome causes a transient chromatin assembly defect, which may explain to some 
extent the changes in gene expression that we observe.

High rates of initiation disrupt the TF landscape

Although there is a correlation between chromatin disruption and changes in gene 
expression (Fig. 5), it is not clear why changes in chromatin should affect the expres-
sion of certain genes. Newly synthesized DNA must reassemble nucleosomes and 
transcription factors (TFs), which compete for binding to nascent DNA [40]. We 
therefore wondered whether chromatin disruption caused by global early replica-
tion, might also perturb the TF landscape. Analysis of nucleosome positioning at the 
NDT80 locus (Fig. 6A), which is a cluster 1 gene that is highly expressed in S-phase 
in the SSDDCS strain (Fig. 4), shows not only that the +1 nucleosome moves into the 
gene body during S-phase, as expected (Fig. 5A), but that the nucleosome positions 
around the binding sites for the key NDT80 regulatory TF Ume6 also change during 
S-phase, specifically in the SSDDCS strain (Fig. 6A). To address whether nucleosome 
positioning was altered at other Ume6 binding sites (URS1 sites), these sites were 
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extracted from the JASPAR database [41] and the locations of all URS1 sequences in 
the budding yeast genome were identified using Find Individual Motif Occurrences 
(FIMO) [42]. Of the 2875 URS1 sequences identified, 89 were located 1kb upstream 
of the TSS of genes from cluster 1. Analysis of the average nucleosome profile cen-
tered around these 89 locations showed that nucleosome positioning and occupancy 
was identical between the strains in G1 phase (Fig. 6B, top). In S-phase however, the 
SSDDCS strain exhibited reduced occupancy of nucleosomes at the Ume6 binding 
sites and movement of the nucleosomes away from these sites (Fig. 6B, bottom). This 
suggests that when chromatin is perturbed by global early replication the interplay 
between TF binding and nucleosome positioning also changes.

To analyze TF binding dynamics in an unbiased way, we used an optimized version 
of MNase-seq that allows the analysis of DNA binding proteins such as TFs that are 
below the size of single nucleosomes [39]. Using this approach and analyzing only 
fragments smaller than 100bp, we identified 7493 sub-nucleosomal peaks. To pin-
point differential TF binding events that could explain the observed differences in 
gene expression, only peaks that were located 1kb upstream of a TSS and that had a 
2-fold difference in the SSDDCS strain in at least 1 timepoint outside G1 phase were 
selected (2950 peaks). These 2950 sites represent 61% of all the peaks that we identi-
fied in gene promoters suggesting that early replication affects a majority of TF bind-
ing events during S-phase.

In order to verify that the sub-nucleosomal peaks we identified correspond to genu-
ine TF binding events, peaks were mapped to annotated TF binding sites [43]. Only 
peaks within 200bp of an annotated site were considered for downstream analyses 
(1538 peaks). As the SSDDCS strain contains extra copies of the GAL1-10 promoter 
(which are used to over-express the six factors), we analyzed TF binding at this pro-
moter to confirm that the sub-nucleosomal MNase-seq isolated genuine TF binding 
locations. As expected, the read coverage at the GAL1-10 promoter was significantly 
higher in the SSDDCS strain compared to the sml1Δ strain (Fig. 6C), suggesting that 

Fig. 6  High rates of initiation disrupt the transcription factor landscape. A Nucleosome positioning 
heatmaps of the NDT80 locus, which has two Ume6 binding sites in the promoter region (vertical solid red 
lines). The vertical dashed red line marks the TSS and each row represents one timepoint, from G1 to 60 from 
top to bottom. Yellow corresponds to a high density of MNase-seq reads corresponding to nucleosome 
peaks, while blue corresponds to nucleosome depleted regions. B Average nucleosome profiles for the 89 
URS1 locations identified in promoters of cluster 1 genes in G1 and at 25 min. The profiles are centered on the 
URS1 sequence (the Ume6 binding site - dotted line). C Sub-nucleosomal MNase-seq read coverage around 
the GAL1-10 promoter in G1. D Sub-nucleosomal MNase-seq reads of the NDT80 locus 5 min after release 
from G1 phase. Y-axis shows the sub-nucleosomal read coverage in this genomic region. Top track shows 
the location of genes. Peak annotated to the Ume6 binding site is highlighted. E Each sub-nucleosomal 
MNase-seq peak was assigned to a known TF binding site from [43]. For each TF, the ratio of peaks that 
change in the SSDDCS strain over total number of peaks for that TF (x-axis “TF binding changes”) was plotted 
against the ratio of the differential TF peaks that are in the promoters of genes that are DE or non-DE in 
the SSDDCS strain (y-axis “TF effect on gene expression”). The size of the points is proportional to the total 
number of sub-nucleosomal peaks identified for each TF. The dashed lines mark the ratios when considering 
all sub-nucleosomal peaks. F In wild type cells, nascent DNA is loaded with old and new nucleosomes 
(yellow) in competition with TFs (blue) as the replication fork progresses. Post-replicative chromatin matures 
via a variety of mechanisms. In the SSDDCS strain, which drives global early replication, lots of concurrent 
replication forks increase the rate of nascent DNA production, altering the balance of competition between 
nucleosomes and TFs, leading to aberrant chromatin organization and TF positioning. This increased S-phase 
rate provides a window of opportunity to change the pattern of gene expression in a single cell cycle

(See figure on next page.)
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TF binding events can be identified using this method. In line with the nucleosome 
mapping data (Fig. 6A,B), we also observed changes in sub-nucleosomal peak abun-
dance in the SSDDCS strain in the promoter region of NDT80, which overlap with the 
Ume6 binding sites (Fig. 6D). As Ume6 represses NDT80 expression in mitotic cycles 
[44], this reduced Ume6 footprint (Fig. 6D) is consistent with the increased NDT80 
expression in the SSDDCS strain (Fig. 4). To analyze all sub-nucleosomal peaks and 
their relationship to changes in gene expression in the SSDDCS strain, we plotted the 

Fig. 6  (See legend on previous page.)
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fraction of differential peaks for a particular TF (as a ratio of that TF’s total number of 
genomic sites, x-axis, Fig. 6E) versus the number of those differential peaks that occur 
in the promoters of DE genes (y-axis, Fig. 6E). These two ratios allow the simultane-
ous comparison of the effect of advancing replication timing on TF binding (x-axis) 
and gene expression for each particular TF (y-axis). From this analysis, we observe 
that the binding of many TFs to gene promoters is affected in the SSDDCS strain that 
advances replication timing (Fig. 6E). Despite this, altered TF binding is not sufficient 
for gene expression changes, as differential TF binding also occurs in the promot-
ers of genes that are not differentially expressed after advanced replication timing 
(Fig. 6E, below dotted line).

Discussion
Here we have used a conditional system to over-express six limiting initiation factors in 
budding yeast and advance replication timing genome-wide in a single cell cycle. This 
global advance in replication timing was accompanied by a change in the transcription 
of approximately 27% of all genes (Fig. 2), as well as by dramatic changes in chromatin 
organization (Fig. 5) and transcription factor binding (Fig. 6) during S-phase. A potential 
explanation for these data is that the high rate of replication initiation induced in the 
SSDDCS strain causes a defect in nucleosome positioning/occupancy because the his-
tone supply and/or the chromatin assembly machinery cannot keep pace with the rapid 
accumulation of nascent DNA (Fig. 6F). Importantly, mutation of the chromatin assem-
bly factor CAF-1 (cac1∆) not only mimics the gene expression changes caused by global 
early replication (Fig. 5C–E), but also mimics the reduced occupancy and altered posi-
tioning of nucleosomes on nascent chromatin (Fig. 5A,B and [45]). From this, it is likely 
that a significant fraction of the transcriptional changes that we observe are therefore a 
consequence of the chromatin perturbations that arise from defects in nucleosome dep-
osition on nascent DNA [45]. This does not exclude that some genes may have altered 
expression directly due to replication timing changes via other mechanisms, but such 
genes may be masked by the global defects in chromatin assembly.

Transcription factors and nucleosomes compete for binding to nascent DNA [40]. 
Since we show that global early replication causes dramatic changes in chromatin organ-
ization, it is not surprising that we also identify significant changes in TF dynamics 
(Fig. 6). From our experiments, we cannot determine whether TF dynamics are affected 
by chromatin perturbation or vice versa. It is clear however that maintaining the balance 
between replication rate and re-assembly of the chromatin and TF landscape on nas-
cent DNA is likely to be an important aspect of why origin firing is distributed through-
out S-phase in wild type cells (Fig. 6F) and may be an explanation for why the SSDDCS 
strain loses viability in galactose [18].

A striking feature of our experiments is that the massive perturbations of chromatin 
and gene expression that we induce with global early replication return to normal after 
S-phase (Figs. 2 and 5). Although deposition of new histones is replication fork-depend-
ent, the maturation of chromatin and the re-establishment of nucleosome/TF position-
ing is dependent on post-replicative factors such as chromatin remodelling [46]. As 
we performed our experiments in a single cell cycle, it seems that despite the dramatic 
replication-dependent perturbations in chromatin and TF binding that we induce in the 
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SSDDCS strain, the post-replicative maturation pathways can restore the normal regula-
tory landscape before mitosis. Significantly, post-replicative chromatin maturation path-
ways also restore the normal nucleosomal landscape in cac1∆ mutants, which mimic the 
chromatin and gene expression changes we observe in the SSDDCS strain (Fig. 5) [45]. 
Although the rate of chromatin maturation differs between loci [39], we did not detect 
any correlation between the genes that are differentially expressed during early replica-
tion and sites of rapid or slow maturation kinetics (data not shown). In addition, delaying 
replication at individual loci in the SSDDCS strain by deleting local origins (Fig. 4) was 
sufficient to prevent abnormal expression of these loci. This suggests that the transient 
perturbation of chromatin positioning/TF binding caused during replication (Fig. 5) is 
necessary to create the permissive window for changes in gene expression. This fits well 
with previous work showing that the complete absence of replication causes very little 
change in gene expression during S-phase [47], as we would predict that the lack of rep-
lication also removes the window of opportunity for chromatin/TF binding changes on 
nascent DNA (Fig. 6F).

The potential for increased rates of replication to create a window of opportunity for 
changes in gene expression described in this study has implications for understanding 
the phenotypic changes in cells in which the rate of replication is regulated or mis-reg-
ulated. For example, during erythroid differentiation the shortening of S-phase favors 
changes in cell fate [48]. In addition, during senescence extra origins become activated 
[49] and senescent cells experience large-scale changes in chromatin organization and 
gene expression [50, 51]. As oncogene-activation can also drive senescence, increased 
origin firing rates, and chromatin/gene expression changes [24, 52], this study may pro-
vide a new mechanistic link between changes in the rate of replication and the chroma-
tin/gene expression perturbations in cancers.

The embryonic divisions of many organisms, such as fish, flies, and frogs, are asso-
ciated with very high rates of replication initiation, but these early cell divisions lack 
zygotic transcription and the chromatin landscape remains immature during this period 
[53]. Maintaining high rates of replication delays the normal timing of genome activa-
tion [19], but the direct role of replication in the establishment of the chromatin land-
scape and the transcriptionally competent state of the zygote is poorly understood [54]. 
This study provides new links between replication control and gene expression changes, 
which may be relevant to understand how key factors such as Rif1 coordinate the events 
of early embryonic development, through regulating both chromatin organization and 
replication timing [22, 55].

Conclusions
Our findings provide new explanations for why all origins do not fire simultaneously at 
the beginning of S-phase in most cell types. A high rate of replication initiation causes 
dramatic changes in gene expression, chromatin organization, and transcription factor 
binding, which is likely to be due to an inability for chromatin assembly to keep pace 
with the rapid production of nascent DNA. These results have consequences for under-
standing how cells respond to changes in the rate of origin firing, during development, 
differentiation, and disease.
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Methods
Yeast strains

All strains are W303a ade2-1 ura3-1 his3-11, 15 trp1-1 leu2-3, and 112 can1-100 
rad5-535. 

Strain Relevant genotype

PZ356 sml1∆::URA3

PZ523 leu2::Sld7-PGAL1-10-Cdc45::LEU2 his3::SLD3-
A- PGAL1-10- Dbf4-A::HIS3 trp1::Sld2- PGAL1-10-
Dpb11::TRP1 sml1∆::HphMX

PZ1407 As strain PZ523, but ARS1008∆ ARS1009∆

PZ1435 As strain PZ356, but ARS1008∆ ARS1009∆

PZ3004 As strain PZ356, but ARS816∆ ARS818∆::KanMX

PZ3005 As strain PZ523, but ARS816∆ ARS818∆::KanMX

PZ4505 sml1∆::HphMX thi12∆::GFP-PEST-NLS ADE2+

PZ4504 leu2::Sld7-PGAL1-10-Cdc45::LEU2 his3::SLD3-
A- PGAL1-10- Dbf4-A::HIS3 trp1::Sld2- PGAL1-10-
Dpb11::TRP1 sml1∆::HphMX thi12∆::GFP-PEST-
NLS ADE2+

Block and release time course

The sml1∆ and sml1∆ SSDDCS Saccharomyces cerevisiae strains were grown over-
night in YP-raffinose at room temperature. After ensuring that cultures were growing 
exponentially, 100 ml was transferred to 30°C shaking water bath for one cell cycle. 
At 1×107 cells/ml, 90μl of stock solution of alpha factor was added to 100ml of cul-
ture (1:900 dilution), and after 90 min, 45μl of stock solution of alpha factor (5mg/
ml) was added. To confirm the G1 arrest, cells were analyzed under microscope using 
a hemocytometer and the arrest was considered successful if more than 95% of cells 
had the G1 characteristic shape (“shmoo”) or were unbudded. Upon arrest, 10ml of 
20% galactose was added to the cultures to induce the over-expression of the six fac-
tors. Thirty minutes post galactose addition, G1 samples were collected. Then cul-
tures were washed twice with fresh YP-galactose to release cells from G1 arrest and 
resuspended in 100ml of YP-galactose. Cultures were maintained at the 30°C shaking 
water bath for 60 min, and 8ml was taken every 5 min for MNase-seq, 10ml for DNA 
or RNA profiling, and 500μl for flow cytometry.

Flow cytometry of yeast with sodium citrate buffer

In total, 500μl of yeast culture was spun down, then fixed in 500μl of cold 70% ethanol 
for 2 h at room temperature (~20°C) or overnight at 4°C. After fixation, cells were 
centrifuged at 13,300 rpm for 2 min and the pellet was washed with 1ml of 50 mM 
sodium citrate. Cells were then centrifuged and resuspended in 1ml of 50 mM sodium 
citrate with 10 μg/ml of RNase and incubated at 37°C for 4 h. After the RNase treat-
ment, cells were centrifuged and resuspended in 50 mM HCl with 5 mg/ml of pepsin 
and incubated at 37°C for 30 min. Cells were then washed with 1ml of 50 mM sodium 
citrate. After centrifugation, cells were resuspended in 1ml of 50 mM Tris pH 7.4 with 
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0.5 μg/ml of propidium iodide (PI). Finally, tubes were vortexed and 100μl was added 
to FACS tubes with 1ml of 50 mM Tris pH 7.4 with 0.5 μg/ml of PI. Before processing 
in the cytometer, cells were sonicated for 8 s at 40% amplitude.

Collection of samples for whole genome sequencing (replication profiles)

Yeast genomic DNA was extracted using the smash and grab method (https://​fangm​
an-​brewer.​genet​ics.​washi​ngton.​edu/​smash-n-​grab.​html). DNA was sonicated using the 
Bioruptor Pico sonicator (Diagenode), and the libraries were prepared according to the 
TruSeq Nano sample preparation guide from Illumina.

Collection of samples for whole transcriptome sequencing (RNA‑seq)

Total RNA was extracted using the RiboPure RNA Purification Kit (Thermo Fisher). 
Quality and integrity of the RNA was evaluated using an Agilent Tapestation. Libraries 
were prepared from RNA samples exceeding a RIN quality score of 9.0, according to the 
TruSeq RNA Library Prep Kit v2 sample preparation guide from Illumina.

GFP experiments

The sml1∆ and sml1∆ SSDDCS thi12∆::GFP S. cerevisiae strains were grown as previ-
ously described in the block and release experiment, with the modification that cultures 
were maintained in the 30°C shaking water bath for 150 min. Samples were then plated 
onto 35-mm glass bottom plates (MatTek) precoated with Concanavalin A (Sigma). 
After 5 min, the medium was changed to SC medium and cells were imaged on a Delta-
vision widefield fluorescent microscope (GE Healthcare), based on an inverted fluores-
cence microscope (IX70; Olympus) with an oil immersion Plan-Apochromat ×60 NA 
1.4 lens (Olympus) for imaging of live cells. Images were acquired, deconvoluted, and 
projected using SoftWoRx (GE Healthcare). Cells with GFP signal were measured using 
FIJI.

Digestion of chromatin with MNase for mono‑nucleosome analysis (adapted from [36])

Day 1

Eight milliliters of yeast culture collected in each timepoint was centrifuged for 2 min at 
4000 rpm and resuspended in 40ml of 1× PBS, 1% formaldehyde. Samples were mixed 
and left shaking gently for 10 min at room temperature on gyro-rocker to crosslink 
DNA and proteins. Crosslinking was quenched by adding 5ml of 2.5M glycine and left 
shaking for 10 mins on orbital shaker at room temperature. Samples were left on ice 
until all samples have been collected. Then, samples were spun for 5 min at 3200 rpm 
in 50-ml tubes and washed with 50 ml of sterile ddH2O. Pellets were resuspended and 
transferred to 1.7ml Axygen tubes, and spun down at top speed in table top centrifuge. 
Liquid was carefully aspirated and pellets vortexed. Pellets were resuspended in 950μL 
of zymolyase digestion buffer (ZDB: 50 mM Tris Cl at pH 7.5, 1 M sorbitol, 10 mM 
β-mercaptoethanol) to remove the cell wall. Then, 100 μL of freshly prepared zymol-
yase solution (10mg/ml dissolved in ZDB) was added to each sample, and digestion was 
performed for 60 min at 30°C shaking gently in water bath. Efficiency of digestion was 
assessed by checking cell morphology under the microscope: cells with digested cell 
walls will appear spherical. A second test is to take 1μl and dilute to 20μl with ddH2O. 

https://fangman-brewer.genetics.washington.edu/smash-n-grab.html
https://fangman-brewer.genetics.washington.edu/smash-n-grab.html
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As cells no longer have a cell wall, the osmotic shock will burst them. So absence of cells 
means zymolyase treatment was successful (spheroplasting). Spheroplasts were pel-
leted in a microfuge, at 5000 rpm for 5 min at 4°C and washed with 1 ml of ZDB. Pellets 
were then resuspended in 1 ml of spheroplast digestion buffer (SDB: 1 M sorbitol, 50 
mM NaCl, 10 mM Tris at pH 8, 5 mM MgCl2, 1 mM CaCl2, 1 mM β-mercaptoethanol, 
0.15% NP40). Samples were spun down in the microcentrifuge and gently resuspended 
in 0.5 ml of SDB. Then 90U of MNase (9μl of 10U/μl MNase solution) was added, and 
tubes were well mixed and left with gentle agitation for 3 min at 37°C. The amount of 
MNase needs to be experimentally determined by titration with every batch of MNase. 
MNase digestion was stopped with the addition of 50 μl of 0.5 M EGTA. Tubes were 
vortexed after adding EGTA. Samples were treated with RNAse by adding 2 μl of RNase 
I (100units/μL) for at least 1 h at 37°C. Ten microliters of freshly made up stock of 10mg/
ml Proteinase K was added, and samples were left at 42°C for at least 3 h. The formalde-
hyde crosslinks were reversed by incubating samples for > 6 h at 65°C.

Day 2

Samples were transferred to 2-ml rubber-sealed screw-cap tubes. One volume of Phe-
nol-Chloroform pH 8 (~570μl) was added to samples and vortexed and spun for 5 min. 
Aqueous phases were collected to a new 2-ml lo-bind Eppendorf tube, 5 μl of glycogen 
and 190 μL of 3M sodium acetate were added, and samples were ethanol-precipitated 
with 1250 μL of cold absolute ethanol (2.5×) and vortexed. Samples were incubated at 
−20°C overnight and centrifuged at 13,000 rpm for 30 min at 4°C.

Day 3

Pellets were gently washed by adding 1ml of freshly made 70% ethanol. Then pellets were 
pulsed down quickly and most volume was carefully aspirated, the wash was repeated 
with 1ml of 70% ethanol, and then tubes were spun down for 15 min at 4°C. Ethanol was 
carefully aspirated and pellets were air dried for 15 min at room temperature, 100μl of 
Illumina Resuspension Buffer was added, and samples were incubated for 1 h at 37°C 
to redissolve DNA. Size range and relative molarity were determined on a Tapestation 
using D1000 and Genomic screen tape, and total yield was quantified using Qubit broad 
range dsDNA kit.

Digestion of chromatin with MNase for transcription factor binding analysis

This is the same protocol as the one used for mono-nucleosome analysis described 
above, with the following modifications in the MNase digestion step: after spheroplast-
ing and resuspension in SDB, 5U of MNase (5μl of 1U/μl MNase solution) was added 
and tubes were incubated on the bench (room temperature) for 20 min.

Library preparation—MNase‑seq mono‑nucleosome analysis

A total of 250ng of MNase-digested DNA from each sample was end-repaired using the 
Illumina TruSeq DNA nano kit. AMPure XP beads were added (1.8× volume of DNA, 
DNA >100bp on beads, <100bp in supernatant) to each reaction to purify the mono-
nucleosomal fragments. A-tailing and adapter ligation was performed using the Illumina 
TruSeq DNA nano kit. Two subsequent steps of beads purification (1.4× volume of 
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DNA) were performed in order to remove adapter dimers. Based on tests using hyper-
ladder V (25bp bands) the beads can selectively retain DNA of ~270bp (mono-nucleoso-
mal + adapters) from free adapters (60–120bp) if used at a 1.4× ratio to the volume of 
DNA sample. PCR cycle quantitation was performed for each sample using KAPA Syber 
Fast reagents, and libraries were PCR amplified using the Illumina TruSeq DNA nano 
kit, followed by another step of bead purification (1.4× volume of DNA). Library qual-
ity and quantity were validated on a Tapestation using D1000 screen tape, Qubit broad 
range dsDNA kit, and NEBNext library quantitation kit for Illumina. Libraries were 
pooled to final 100nM molarity, and one step of bead purification (1× volume of DNA) 
was performed to completely remove adapter dimers. Finally, 20μl of the pooled libraries 
at a final 20nM molarity was sequenced in an Illumina HiSeq 1500 platform by the Gur-
don Institute Core NGS sequencing facility using 50 bp paired-end reads.

Library preparation—subMNase‑seq transcription factor reads

This is the same as the previous with the following modifications: after end-repair and 
before A-tailing, samples were cleaned by performing a phenol-chloroform precipita-
tion, in order to reduce the volume of the samples without using AMPure XP beads. 
For adapter ligation, 20% of the amount recommended by Illumina was used (adapters 
were diluted 1:10 in RSB), in order to minimize adapter dimer formation. This was done 
because adapter dimers cannot be removed using AMPure XP beads as their size is very 
similar to TF binding fragments, and smaller fragments are preferentially amplified dur-
ing library preparation, which means we would be wasting sequencing depth with adapt-
ers. After ligation, samples were cleaned using 1.8× AMPure XP beads (DNA >100bp 
on beads), so TF binding events corresponding to 10–80bp footprint + two adapters 
(120bp) will bind to the beads.

Quality control and mapping

Sample quality was assessed using FastQC High Throughput Sequence QC Report ver-
sion 0.11.4. All samples were mapped using bowtie2 (version 2.2.6) to the budding yeast 
reference genome (strain S288C, version R64-2-1), which was indexed using bowtie2-
build. SAM files were then converted to BAM and sorted and indexed using samtools 
(version 0.1.19). The quality control of the alignments was assessed using Qualimap (ver-
sion 2.2.1).

Replication profiles

Before generating the replication profiles, sequencing depth was normalized for each 
timepoint using a bulk value derived from the fraction of the genome that has been rep-
licated at that timepoint (a value between 1 and 2). These values were derived using fit-
Sigmoid (https://​dzmit​ry.​shiny​apps.​io/​flowf​it/).

To generate replication timing profiles, the ratio of uniquely mapped reads in the rep-
licating samples to the non-replicating samples was calculated following [28]. Then, this 
ratio was plotted for each timepoint, and a sigmoid line was fitted. Trep was determined 
as the time of half-maximal replication (ratio = 1.5). Replication profiles were generated 

https://dzmitry.shinyapps.io/flowfit/
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by plotting Trep values for each chromosome location using ggplot2 and smoothed using 
a moving average in R. All downstream analysis was performed in R.

RNA‑seq analysis

Read counts for each gene were extracted using genomic ranges, and differential expres-
sion analysis was performed using DESeq2 [31]. Pair-wise analysis of each timepoint 
was performed using the Wald test. For the time course analysis, the likelihood ratio test 
(LRT) was used. Genes were considered differentially expressed if the p-value adjusted 
value from these tests was < 0.01. PCA analysis was performed using the variance sta-
bilization transformation (vst command from DESeq2) and plotted using ggplot2. For 
the k-means clustering, the gene expression data was normalized by row using the scale 
command and 6 clusters were generated using the k-means command with a maximum 
of 50 iterations. Heatmaps were generated in R using heatmap.2. Distance to origins, 
centromeres, and telomeres was calculated using HOMER (v4.10.1) [56]. Statistical anal-
yses were performed using R.

Mono‑nucleosome MNase‑seq analysis

Nucleosome calls were identified by processing the BAM files using DANPOS (version 
2.2.2) [57]: danpos dpos was used to generate wig files. danpos profile was used to gener-
ate the files required for the nucleosome profiles, which were plotted in R. The files with 
the genomic coordinates of the locations where the heatmaps should be centered were 
generated using USCS Genome Browser (http://​genome.​ucsc.​edu/​cgi-​bin/​hgTab​les). 
Peaks in these profiles represent nucleosome dyads and valleys linker DNA or nucleo-
some depleted regions.

The +1 nucleosome was identified by calculating the distance of nucleosomes to pro-
moters using HOMER. Nucleosomes within −20 to 80bp of the TSS were classified as 
+1. The +1 relative position to the TSS was calculated by subtracting the genomic posi-
tion of the nucleosome to the TSS of the corresponding gene. ACF analysis was per-
formed following [39]. The autocorrelation function was used to determine the pattern 
of organization of the first four nucleosomes (+1, +2, +3, and +4) within each gene, 
using the nucleosome sized reads between 140 and 180bp overlapping each gene.

Identification of TF binding motifs genome‑wide

To identify TF binding regions genome-wide, the sequence motif was extracted in meme 
format from the JASPAR database [41], which was used as an input to FIMO [42] to 
identify all genomic locations where this motif is present. These regions were annotated 
to genes using HOMER.

Sub‑nucleosomal MNase‑seq analysis

BAM files were converted into bigWig files for visualization of the results using IGV. For 
this purpose, bamCoverage (version 3.0.2) was used with the following argument: --bin-
Size 1 --minFragmentLenght 0 –maxFragmentLength 100.

Identification of high confidence sub-nucleosomal peaks and calculation of fold-
change differences between the strains was performed following [39]: DNA fragments 
with less than 100bp (sub-nucleosomal events) were selected and the same number of 

http://genome.ucsc.edu/cgi-bin/hgTables
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reads was sampled for each fragment size using the timepoint with the minimum num-
ber of reads for that fragment size. Then, all samples were merged to call all possible 
peaks in the data. A peak was considered high confidence if the sum of reads mapping 
to that peak (log2 normalized) across all samples was higher than 75. The log2 ratio of 
normalized reads occupying each peak between the two strains was calculated for each 
timepoint. Sub-nucleosomal peaks were annotated to TSS and TF binding sites using 
HOMER as described previously.
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