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A B S T R A C T

Drug component interactions are most likely to trigger unexpected pharmacological effects with unknown causal
mechanisms, hence, demanding the discovery of patterns to establish suitable and effective regimens. This paper
proposes a novel framework that embeds machine learning (ML) and multidimensional scaling (MDS) techniques,
for efficient prediction of patient response to antiretroviral therapy (ART). To achieve this, experiment databases
were created from two independent sources: a publicly available HIV domain datasets of patients with failed
treatment – hosted by the Stanford University, hereinafter referred to as the Stanford HIV database, and locally
sourced datasets gathered from 13 prominent healthcare facilities treating HIV patients in Akwa Ibom State of
Nigeria, hereinafter referred to as the Akwa-Ibom HIV database: with 5,780 and 3,168 individual treatment
change episodes (TCEs) of HIV treatment indicators (baseline CD4 count (BCD4), followup CD4 count (FCD4),
baseline viral load (BRNA), followup viral load (FRNA), and drug type combination (DType)), observed from
1,521 and 1,301 unique patient records, respectively. A hybridised (two-stage) classification system consuming
the Interval Type-2 Fuzzy Logic (IT2FL) and Deep Neural Network (DNN) was employed to model and optimise
patients’ response to ART with appreciable error pruning achieved through MDS. Visualisation of the experiment
databases showed remarkable immunological changes in the Akwa-Ibom HIV database, as the FCD4 of TCEs
clustered far above the BCD4, compared to the Stanford HIV database, where over 40% of FCD4 clustered below
the BCD4. Similar changes were noticed for the RNA, as more FRNA copies clustered below the BRNA for the
Akwa-Ibom datasets, compared to the Stamford datasets. DNN classification results for both databases showed
best performance metrics for the Levenberg-Marquardt algorithm when compared with the resilient back-
propagation algorithm, with improved drug pattern predictions for experiment with MDS. This paper is most
likely to evolve an avenue that triggers interesting combination(s) for optimum patient response, while ensuring
minimal side effects, as further findings revealed the superiority of the proposed approach over existing
approaches.
1. Introduction

Acquired Immunodeficiency Syndrome (AIDS) is a chronic, poten-
tially life-threatening condition caused by the Human Immunodeficiency
Virus (HIV)–a persistent pathogen acknowledged as the lentivirus [1, 2].
HIV has no known cure, but the infected patient is treated with highly
active antiretroviral therapy (HAART) [3], mainly for the purpose of
suppressing the viral load (the amount of HIV in the blood stream) and
prolonging the life expectancy of the patient. The viral load and CD4
(cluster for differentiation of Antigen IV) count are regarded as important
determinants for measuring one's HIV status (whether positive or
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negative) and health [4]. By identifying interactive and distinctive drug
characteristics, a predictive system can open promising avenues to
improved strategies and treatment of HIV/AIDS, since the drug compo-
nents produce clinical effect as a result of its interface with the virus,
ultimately influencing the patients' response. But, the emergence of drug
resistance mutation questions the effectiveness of drug therapies such
that the selection of most effective drug combinations though a classifi-
cation sequence of resistant/non-resistant exemplars has become crucial.
Selecting the right regimen is a product of several factors that constitutes
knowledge of past treatment history including CD4 and viral load (RNA)
baselines, combinedwith expert interpretation and advice [5]. As a result
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of this activity, interest in modelling drug resistance has increased due to
additional pre-exposure prophylaxis to the HIV prevention toolkit [6, 7].
Nevertheless, state-of-the-art models have failed to capture heterogene-
ities in the risk of drug resistance among individuals, mainly due to
model detail diversity, as transmission models of antiretroviral therapy
and pre-exposure prophylaxis use simple assumptions to represent
short-term risk and long-term effects of drug resistance [8, 9]. Many
machine learning (ML) methods have evolved to provide solutions to the
model diversity problem. These methods attempt to locate best config-
urations that yield high performance through the minimisation of an
error function defined by the system behaviour produced by trained
exemplars.

This paper therefore proposes a hybrid methodology that combines
intelligent mechanisms into an effectual and usable application system.
The proposed methodology embeds deep learning into a rule-based
technique powered by the fuzzy inference system. The novelty in this
paper rests on the fusion of two classifiers: the type-2 fuzzy sets (T2FS)
and a deep neural network (DNN), where linguistic inputs are translated
into representations that generate feature labels for the DNN system. The
DNN then drives the fuzzy inference block through adjustable fuzzy rules
incorporated by (domain) expert knowledge acquired from the input
data–required to explain the behaviour of the fuzzy system. To deal with
the highly error-prone nature of real-world datasets, we also incorporate
a multidimensional scaling technique for the purpose of enhancing the
datasets for precise modelling and prediction of HIV patient response to
(varying) treatment change episodes (TCEs).

In the absence of extensive access to personalised laboratory mon-
itoring–an integral part of HIV/AIDS patient management (typical of
resource-rich settings), a roll-out of HAART in resource-limited settings
(such as those in Sub-Saharan Africa) has adopted a public health
approach based on standard HAART protocols and clinical/immunolog-
ical definitions of therapy failure. Hence, the benefits of this research
shall certainly impact the African region, as it represents the
commencement of a clinical database gathering to engender further HIV/
AIDS research in Sub-Saharan Africa. The research will provide useful
spinoffs for deeper interdisciplinary cooperation on personalised thera-
pies and is most likely to produce a robust prediction system that will
serve the growing populace in search of quality treatment. Furthermore,
it shall aid Physicians on more proactive detection of acute interaction as
well as early referrals of patients with failed treatments, for immediate
change in treatment episode. The specific objectives of this paper
therefore include, to:

� implement a hybrid framework that combines the strengths of ma-
chine learning (ML) and MDS techniques in a supervised learning –

for precise patient response prediction and efficient error-pruned
datasets;

� train an optimal sequence of test prototypes – through unified
encoding of treatment change episodes (TCEs) of existing patient-
specific ART gathered from paediatric records;

� evaluate the proposed learning model using suitable performance
metrics.

The remainder of this paper is structured as follows: Section 2 pro-
vides a review of related literature on HIV/AIDS prediction and classi-
fication and the extent of research recorded on drug reaction/resistance.
Section 3 presents the materials and method employed in the research.
Section 4 presents the results obtained from the study. Section 5 discusses
the results with reference to existing literature. Section 6 concludes on
the paper and points to future research direction.

2. Background

The cost-effectiveness of HIV-1 viral loadmonitoring at the individual
level in such settings has been debated, and questions remain over the
long-term and population-level impact of managing HAART without it.
2

Computational models that accurately predict virological response to
HAART using baseline data including CD4 count, viral load and geno-
typic resistance profile, as developed by the Resistance Database Initia-
tive, have significant potential for treatment selection and optimization.
However, recently developed models have shown good predictive per-
formance without the need for genotypic data, with viral load emerging
as the most important variable. This finding provides further, indirect
support for the use of viral load monitoring and long-term optimization
of HAART in resource-limited settings.

Several data mining algorithms have been applied to investigate is-
sues relating to HIV/AIDS. In this section, we examine related works
carried out by different researchers, including studies on drug resistance
cases that have emerged within the last ten years [10, 11, 12, 13]. Most
recent studies reviewed in the PubMed database [14] concentrate on
problems such as HIV/AIDS prediction of protease cleavage sites and
inhibitors, correction usage for viral entry, patient response, resistance
and adverse effect of ART. The Agence Nationale de Recherchen sur le
SIDA (ANRS) has become a gold standard for interpreting HIV drug
resistance using genomes mutations, and in [15], an attempt to improve
the ANRS gold standard prediction was made for HIV drug resistance
cases using genome sequence and HIV drug resistance measures from the
Stanford HIV database (http://hivdb.stanford.edu/). Developing a
computational prediction system for drug resistance phenotype can
enhance the timely selection of best regimens. In Shen, Yu, Harrison and
Weber [16], they applied two machine learning algorithms, the random
forest and k-NN, to predict HIV drug resistance from genotype data. In
[17], a framework for supporting and managing HIV/AIDS using
k-means and random forest algorithms was proposed to mine hidden
information from a huge database and to help in decision making for the
treatment of HIV related diseases. In [18], the classification and regres-
sion tree, was used to predict the survival of AIDS patients receiving
antiretroviral therapy in Malaysia, and to discover potential treatment
methods and treatment progress of monitoring patients. But the sparse-
ness of data constrained the study and reference to drug resistance cases
was missing. Isaakidis, Raguenaud, Te, Tray, Akao, Kumar, Ngin, Ner-
rienet and Zachariah [19] investigated the high survival and treatment
success sustained after two and three years of first-line ART for children
in Combodia. The Kaplan-Meier analysis [20] was used to estimate sur-
vival, and Cox regression [21] was used to identify the risk associated
with treatment failures, where survival, immunological restoration and
viral suppression could be sustained after two to three years of ART
among children in resource constrained settings. The study was however
limited to the use of only CD4 count as predictor variable. In [22], the
application of ML to predict future CD4 count changes was investigated.
They formulated a mathematical model that can predict the range of
change of an individual HIV-1 positive patient's CD4 count, using support
vector machine (SVM) classification model that predicts variability level
of the CD4 count. Clinical features used as inputs were genome, current
viral load and number of weeks from baseline CD4 count. This approach
produced acceptable classification accuracy and showed that a change in
CD4 count can be accurately predicted using machine learning. The
study, however, did not consider drug resistance, which is vital in
treatment success appraisal, and had as limitations, low number of
datasets and high misclassifications. In [23], neural network was used for
a longitudinal assessment of antiretroviral therapy determination, based
on Jordan-Elman networks [24] – to longitudinally follow viral surrogate
markers and demographics, biochemical and laboratory data that
describe drug-virus host interactions in over 4,000 HIV adult patients.
They found that neural networks can be applied in real-time context of
prospective, longitudinal clinical trials of newer antiretroviral drugs.

Uncertainties abound in many real-world problems and may arise
from inputs, outputs, linguistic diversity, change in operational condi-
tion, and noisy data. In the case of HIV/AIDS, the disease may present
confusable patterns most likely to becloud early diagnoses and treatment.
Although the type-1 fuzzy logic [25, 26, 27] has succeeded in solving a
wide range of real-world problems, their performance is rendered
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inappropriate in many complex use cases with highly confusable vari-
ables. The type-2 fuzzy logic systems have evolved to complement type-1
fuzzy logic systems because they are more robust to uncertainties in
many applications with the block type reduction guided by the inference
mechanism playing central role in the systems. They represent input and
output results using fewer rules and embed large number of type-1 fuzzy
sets to describe variables with detailed description of extra levels of
smooth control surface and response. More, outputs that are not feasible
in type-1 are possible due to extra dimension provided to the foot print of
uncertainty (FOU) [28]. Although the Karnik-Mendel (KM) iterative al-
gorithms are standard algorithms to performing the type-reduction, the
high computational cost of type-reduction process may hinder their use
in real world applications [29]. Advancements on research in type-2
fuzzy sets and system, have encouraged enhanced type-reduction tech-
niques [30], and the application of learning methods to the type-2 fuzzy
logic systems, resulting in hybridised forms that fuses fuzzy type-2 sys-
tems with neural, and evolutionary methods or classification algorithms
[31, 32].

3. Materials and methods

3.1. Proposed system architecture

An architecture describing the workflow of our proposed Fuzzy-MDS-
DNN system is presented in Fig. 1. The proposed architecture is struc-
tured into two major phases namely: (i) data collection and processing,
and (ii) patient response modelling and optimisation. The modelling-
optimisation phase fusses a two-stage classification system with MDS
capability, into a hybridised controller capable of high error-tolerant
patient response modelling and optimisation. The controller accepts
through a fuzzy interface, linguistic inputs (parameters) from a processed
database of unique experimental (Stanford and locally sourced) datasets.
Supervised learning is then achieved through the automatic adjustment
of the fuzzy model parameters which forms initial inputs to the DNN and
initiated by the learning algorithm. An optimised set of non-fuzzy inputs
are then fed into the IT2FL section to output precise patient response,
which errors are later pruned using an MDS algorithm. The pruned
Fig. 1. Proposed sys
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datasets are finally learned to produce optimised predictions of the pa-
tient response. Details of each section of the architecture are discussed in
the following subsections.

3.1.1. Data collection and processing
The Stanford HIV database – a publicly available domain dataset

hosted by the University of Stanford was used as a reference dataset in
this experiment. This database is archived using the Extensible Markup
Language (XML) format (cf. https://hivdb.stanford.edu) and captures
details of patients who have failed treatment due to drug resistance. The
Stanford database was created in 1999 and hosts a freely available online
genotypic resistance interpretation system called HIVdb–to support
health workers in understanding HIV-1 genotypic resistance tests [33].
Several studies have followed to confirm the TCEs database as an effec-
tive database in the study and monitoring of resistance to HIV drugs
therapy. A total of 24 drugs in varying combinations were identified in 1,
521 unique patient records with 5,780 individual TCEs – spread across
several weeks of treatment. To ensure consistency and attribute unique
instances to each patient, a MATLAB script was written to average each
patient data (XML sheet) over the various TCEs and extract unique in-
stances for all the patients. Locally sourced data were also collected from
case files of paediatric patients receiving treatment at various health
centres in Akwa Ibom State of Nigeria, plus, a Community Anti-Retroviral
Therapy Programme–periodically carried out to reach rural dwellers. A
total of 13 data points (health facilities) were assessed. The Akwa-Ibom
database covered patients who registered for treatment at the various
facilities from 2015-2018, and contains both resistant and non-resistant
exemplars. The investigated facilities accommodate about 10,000 pa-
tients in the southeast region currently receiving treatment. However,
due to the limited resources in the Nigerian environment, only five drug
combinations in three treatment regimens are possible. These regimens
are administered to patients (at the various centres) free of charge–-
through a Family Health International (FHI) HIV/AIDS intervention
programme. The Akwa-Ibom HIV database consists of a total of 1,301
unique patients with 3,168 individual TCEs. Features investigated in the
study were: baseline CD4 count (BCD4), followup CD4 count (FCD4),
baseline viral load (BRNA), followup viral load (FRNA), and Drug Type
tem framework.

https://hivdb.stanford.edu
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combination (DType). Ethical issues came to play in this research as the
research involved gathering data from human subjects. Although the
research did not involve direct contact with patients, access to patients'
medical histories and treatment was granted by the responsible author-
ities after satisfying the ethical consent procedure – for the purpose of
sieving the relevant experimental data. Hence, we discuss the ethical
issues under two areas: Informed consent: Informed consent through
written permission was obtained from the responsible health authority
before embarking on the research. Data Protection: Data protection was
ensured, as details that could expose the patients’ personal details (e.g.,
name, address, occupation, etc.), were not extracted.

3.1.2. Patient response inference modelling
Patient's response to treatment depends on several imprecise and

confusable factors that direct the outcome of treatment course (including
drug side effect and resistance). When these side effects are noticed,
contacting one's health provider or pharmacist is needful. Drug resistance
on the other hand can be the cause of treatment failure, because as the
HIV multiplies in the body, the virus mutates (changes form) and pro-
duces fake copies to confuse treatment course, leading to drug-resistant
strains of the HIV. In order to eliminate uncertainties in data due to
the influence of these confusing factors, an IT2FL (see Fig. 1) was used to
provide a knowledge representation of the patient response. The IT2FL
modelling section consists of six major components namely, the fuzzifier,
fuzzy sets, rule base, inference engine, type-reducer, and defuzzifier.
First, the obtained input parameters are fuzzified and then passed to the
inference engine–to evaluate the fuzzy set against the rule base. This
process produces another type-2 fuzzy set. The fuzzy set is then reduced
to a type-1 fuzzy set by the type reduction section. The reduced set is
finally defuzzified to give a crisp (non-fuzzy) output.

3.1.2.1. The fuzzy model
3.1.2.1.1. Model description. An Interval Type-2 Fuzzy Set (IT2FS)

characterized by ~A has a FOU bounded by a lower and upper membership
functions, μ~A

ðx; μÞ and μ~Aðx;μÞ8x 2 X, respectively, is expressed as:

~A ¼ fððx; μÞ; μ~A
ðx; μÞ; μ~Aðx; μÞÞj8x2X;8μ2 Jx � ½0; 1�g; (1)

where μ~A
ðx; μÞ and μ~Aðx; μÞ ¼ 1;x 2 X and μ 2 Jx [0, 1], are defined on a

continuous universe of discourse (UoD); x denotes the primary variable
in domain X, μ denotes the secondary variable in domain Jxat eachx 2 X;
Jx is called the primary membership of x as defined in (1), which sym-
bolize the interval set; the secondary grades of ~A is unity, and hence,
reduces the IT2FS to,

~A ¼
Z
x2X

Z
μ2Jx

1=ðx; μÞ: (2)

Now, the FOU of ~A is the union of all primary membership grades and
is given by,

FOUð~AÞ ¼ [
x2X

Jx; (3)

The UMF: upper membership function (μ~AðxÞ), and LMF: lower
membership function, μ~A

ðxÞ, are type-1 membership functions (MFs)
marking the FOU boundary of an interval type-2 MF. The UMF represents
the subset that has the maximum membership grade of the FOU; and the
LMF is a subset that has the minimummembership grade of the FOU8x 2
X[34, 35], thus,

μ~AðxÞ�FOUð~AÞ;8x 2 X; (4)

μ~A
ðxÞ�FOUð~AÞ ; 8x 2 X; (5)
4

Jx ¼ ½μ�AðxÞ; μ~A
ðxÞ�: (6)

The Triangular Membership Function (TMF) was adopted to evaluate
each input and output MFs for the IT2FL system. The description of the
TMF using a line or curve is based on three parameters a1, p, and a2, and
specifies the mapping of each input or output parameters, to obtain
membership values for n membership grades (MGn; n : 1;…;n), thus:

μðxÞ ¼

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

0; if x < a1ðMG1ÞfNIRg
x� a1ðMG1Þ

a2ðMG1Þ � a1ðMG1Þ
; if a1ðMG1Þ � x < a2ðMG1Þ

a2ðMG2Þ � x
a2ðMG2Þ � a1ðMG2Þ

; if a1ðMG2Þ � x < a2ðMG2Þ

……

a2ðMGnÞ � x
a2ðMGnÞ � a1ðMGnÞ

; if a1ðMGnÞ � x < a2ðMGnÞ

0; if x � a2fNIRg

: (7)

where, a1 and a2 are the triangular end points defined by the FOU –

region consisting of all the points of primary membership of elements,
and NIR signifies values that are not in range. Fig. 2 illustrates a trian-
gular shape IT2FLS with its principal T1FS, showing the end point, and P,
the triangular peak location.

Now, labelling the internal cross section of Fig. 2, the triangular shape
of IT2FLS with its principal T1FS bounded by a UMF and a LMF is given
in Fig. 3.

where l is the left end point bounded by both UMF (l1) and LMF (l2),
and, r is the right end point, also bounded by both UMF (r2) and LMF (r1).
The triangular peak location or mean, P, of each end point is also
bounded by P1 and P2, representing the triangular peak locations of end
points l1 and r1, and l1 and r2, respectively.

3.1.2.1.2. Membership function construction. The UoD or universal set
denotes the complete range of values assigned to the linguistic variables.
We define this measure following (7) for our input and output linguistic
variables. The UoD membership ranges were created to align with
established ranges from literature and practicing expert physicians in the
healthcare facilities studied. Table 1 shows the input and output fuzzy
sets derived from these sources.

Following (7), the UMF and LMF for the CD4, RNA and PR linguistic
variables are as realised in (8)–(13), respectively,
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Table 1
Input and output fuzzy sets from domain knowledge.

S/
N

Membership grade
(MG)

BCD4/FCD4 (Input)

l1 P1 r1 l2 P2 r2

1 Low {L} 0 225 450 50 275 500
2 Medium {M} 300 575 850 350 625 900
3 High {H} 700 1075 1450 750 1125 1500

BRNA/FRNA (Input)

1 Undetected {U} 0 0.60 1.20 0.30 0.90 1.50
2 Supressed {S} 1.00 2.15 3.30 1.20 2.35 3.50
3 Not Supressed {NS} 2.50 4.00 5.50 3.00 4.50 6.00

PR (Output)

1 No Interaction {NI} 0 27.50 55 5 32.50 60
2 Very Low Interaction

{VLI}
30 47.50 65 35 52.50 70

3 Low Interaction {LI} 62 68.50 75 67 73.50 80
4 High Interaction {HI} 72 78.50 85 77 83.50 90
5 Very High Interaction

{VHI}
82 88.50 95 87 93.50 100
μ
CD4

ðxÞ ¼

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

0; if x < 0fNIRg
x

450
; if 0 � x < 450fLg

850� x
550

; if 450 � x < 850fMg
1450� x

750
; if 850 < x � 1450fHg

0; if x � 1450fNIRg

; (8)

μCD4ðxÞ ¼

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

0; if x < 50fNIRg
x� 50
450

; if 50 � x < 500fLg
900� x
550

; if 500 � x < 900fMg
1500� x

750
; if 900 � x < 1500fHg

0; if x � 1500fNIRg

: (9)
5

>>>>> 0; if x < 0fNIRg
μ
RNA

ðxÞ ¼

8
>>>>>>>>>>><>>>>>>>>>>>>>>>>:

x
1:2

; if 0 � x < 1:2fUg
3:3� x
2:3

; if 1:2 � x < 3:3fSg
5:5� x

3
; if 3:3 � x < 5:5fNSg

0; if x � 5:5fNIRg

; (10)

μRNAðxÞ ¼

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

0; if x < 0:3fNIRg
x� 0:3
1:2

; if 0:3 � x < 1:5fUg
3:5� x
2:3

; if 1:5 � x < 3:5fSg
6� x
3

; if 3:5 � x < 6fNSg
0; if x � 6fNIRg

; (11)

μ
PR
ðxÞ ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

0; if x < 0fNIRg
x
55
; if 0 � x < 55fNIg

65� x
35

; if 55 � x < 65fVLIg
75� x
13

; if 65 � x < 75fLIg
85� x
13

; if 75 � x < 85fHIg
95� x
13

; if 85 � x < 95fVLIg
0; if x � 95fNIRg

; (12)

μPR ¼

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

0; if x < 5fNIRg
x� 5
55

; if 5 � x < 60fNIg
70� x
35

; if 60 � x < 70fVLIg
80� x
13

; if 70 � x < 80fLIg
90� x
13

; if 80 � x < 90fHIg
100� x

13
; if 90 � x < 100fVLIg

0; if x � 100fNIRg

: (13)

From Fig. 3, the IT2FL LMF and UMF are expressed in (14) and (15),
respectively,

μðxÞ ¼

8>>>>>>>>>>>><>>>>>>>>>>>>:

0; if x < l1

x� l1
p1 � l1

; if l1 � x <
r1ðp1�l1Þ þ l1ðr1�p1Þ
ðp1�l1Þ þ ðr1�p1Þ

r1 � x
r1 � p1

; if
r1ðp1�l1Þ þ l1ðr1�p1Þ
ðp1�l1Þ þ ðr1�p1Þ � x < r1

0; if x � r1

; (14)
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8>>>>> 0; if x < l2
μðxÞ ¼

>>>>>>>>><>>>>>>>>>>>>>>:

x� l2
p2 � l2

; if l2 � x < p1

1; if p1 � x < p2
r2 � x
r2 � p2

; if p2 � x < r2

0; if x � r2

: (15)

From (14) and (15), the lower and upper membership sets for the CD4
count membership grades are realised in (16)–(21),

μ
CD4½L�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 0

x� 50
225

; if 0 � x < 225

450� x
225

; if 225 � x < 450

0; if x � 450

; (16)

μCD4½L�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 50

x� 50
225

; if 50 � x < 225

1; if 225 � x < 275

500� x
225

; if 275 � x < 500

0; if x � 500

; (17)

μ
CD4½M�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 300

x� 300
275

; if 300 � x < 575

850� x
275

; if 575 � x < 850

0; if x � 850

; (18)

μCD4½M�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 350

x� 350
275

; if 350 � x < 575

1; if 575 � x < 625

900� x
900� p2

; if 625 � x < 900

0; if x � 900

; (19)

μ
CD4½H�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 700

x� 700
375

; if 700 � x < 1075

1450� x
375

; if 1075 � x < 1450

0; if x � 1450

: (20)
6

8>>>>> 0; if x < 750
μCD4½H�ðxÞ ¼

>>>>>>>>><>>>>>>>>>>>>>>:

x� 750
375

; if 750 � x < 1075

1if1075 � x < 1125

1500� x
375

; if 1125 � x < 1500

0; if x � 1500

; (21)

Following similar convention, the lower and upper membership sets
for the RNA membership grades can be obtained from (14) and (15), as
realised in (22)–(27),

μ
RNA½U�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 0
x
0:6

; if 0 � x < 0:6

1:2� x
0:6

; if 0:6 � x < 1:2

0; if x � 1:2

; (22)

μRNA½U�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 0:3

x� 0:3
0:6

; if 0:3 � x < 0:6

1; if 0:6 � x < 0:9

1:5� x
0:6

; if 0:9 � x < 1:5

0; if x � 1:5

; (23)

μ
RNA½S�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 1

x� 1
1:15

; if 1 � x < 2:15

3:3� x
1:15

; if 2:15 � x < 3:3

0; if x � 3:3

; (24)

μRNA½S�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 1:2

x� 1:2
1:15

; if 1:2 � x < 2:15

1; if 2:15 � x < 2:35

3:5� x
1:15

; if 2:35 � x < 3:5

0; if x � 3:5

; (25)

μ
RNA½NS�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 2:5

x� 2:5
1:5

; if 2:5 � x < 4

5; 5� x
1:5

; if 4 � x < 5:5

0; if x � 5:5

: (26)
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8>>>>> 0; if x < 3
μRNA½NS�ðxÞ ¼

>>>>>>>>><>>>>>>>>>>>>>>:

x� 3
1:5

; if 3 � x < 4

1; if 4 � x < 4:5

6� x
1:5

; if 4:5 � x < 6

0; if x � 6

; (27)

The lower and upper membership sets for the PR membership grades
can also be derived from (14) and (15), and are as realised in (28)–(37),

μ
PR½NI�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 0
x

27:5
; if 0 � x < 27:5

55� x
27:5

; if 27:5 � x < 55

0; if x � 55

; (28)

μPR½NI�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 5

x� 5
27:5

; if 5 � x < 27:5

1; if 27:5 � x < 47:5

60� x
27:5

; if 47:5 � x < 60

0; if x � 60

; (29)

μ
PR½VLI�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 30

x� 30
17:5

; if 30 � x < 47:5

65� x
17:5

; if 47:5 � x < 65

0; if x � 65

; (30)

μPR½VLI�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 35

x� 35
17:5

; if 35 � x < 47:5

1; if 47:5 � x < 52:5

70� x
17:5

; if 52:5 � x < 70

0; if x � 70

; (31)

μ
PR½LI�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 62

x� 62
6:5

; if 62 � x < 68:5

75� x
6:5

; if 68:5 � x < 75

0; if x � 75

; (32)
7

μPR½LI�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 67

x� 67
6:5

; if 67 � x < 68:5

1; if 68:5 � x < 73:5

80� x
6:5

; if 73:5 � x < 80

0; if x � 80

; (33)

μ
PR½HI�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 72

x� 72
6:5

; if 72 � x < 78:5

85� x
6:5

; if 78:5 � x < 85

0; if x � 85

; (34)

μPR½HI�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 77

x� 77
6:5

; if 77 � x < 78:5

1; if 78:5 � x < 83:5

90� x
6:5

; if 83:5 � x < 90

0; if x � 90

; (35)

μ
PR½VHI�ðxÞ ¼

8>>>>>>>>>>><>>>>>>>>>>>:

0; if x < 82

x� 82
6:5

; if 82 � x < 88:5

95� x
6:5

; if 88:5 � x < 95

0; if x � 95

: (36)

μPR½VHI�ðxÞ ¼

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

0; if x < 87

x� 87
6:5

; if 87 � x < 88:5

1; if 88:5 � x < 93:5

100� x
6:5

; if 93:5 � x < 100

0; if x � 100

; (37)

3.1.2.1.3. Rule base design. The dynamic behaviour of our fuzzy logic

controller is characterised by its rule base constructed from expert
domain knowledge of the consequence heuristics. These rules are
necessary to simulate the perceived human reasoning toward a concep-
tual logic and artificial (fuzzy) reasoning, as well as the implication be-
tween the input MF and fuzzy rule inference required to compute the
patient response. For designers of expert systems, these aspects of
development are the most crucial, as branching constitutes a funda-
mental property of logic rules, and traversing complex real-world prob-
lems may certainly cause unnecessary explosion of traversed routes.
Hence, an efficient mechanism is required to ensure that only optimal
routes are traversed. In this paper, we introduce experience-based heu-
ristics in addition to the fuzzy rules. The difficulty initiating heuristics
and fuzzy rules does not lie in their formulation or in the likelihood of the
rule not holding, but in most cases the degree of established confidence
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limits are not precisely known. The rule base model of our inference
system comprises of a set of if-then rules that establishes relationships
between the controller input and output linguistic variables. Suppose a
Fuzzy Logic System (FLS) permit p inputs, xi 2 X1;…:; xp 2 Xp, and one
output y 2 Y, characterized by rules, then, the lth rule is of the form,

Rl : if xi is Fl
i and…and xp is Fl

p;then y is Gl; l ¼ 1;…;M: (38)

whereRlis lth fuzzy rule, Fl
i, F

l
pand Gl are the respective linguistic terms, M

is the number of rules, xi;fi¼1;…pg is the antecedent, and y is consequent of

the lth rule, l ¼ 1;…; p of the FLS. Then, the ~F
l
i’s are the MFs μ

~F
l
i
ðxiÞ of the

antecedent part assigned to the ith input xi; the El
’s are the MFs μ

~F
l
i
ðxiÞ of

the consequent part assigned to the output y.
To generate the rules, we introduce a Moses-Map (M-Map) rule base

matrix that combines the various linguistic terms, Fl
i; of the input pa-

rameters, xi, to yield a membership grade, Gl, a linguistic term of the
output linguistic variable, y. Our M-Map simplifies the rule base gener-
ation process, and ensures that all the possible rule combinations are
successfully traversed. The algorithm guiding the construction cascades
the input linguistic variables along the row and column tabs (above the
cells), similar to a typical speadsheet. Suppose the linguistic variables
Liði : 1;…; nÞ occupy the column tabs, and the linguistic terms
tjðj : 1;…;mÞ are aligned to the row tabs, then, the length of the column
and row tabs is the combined product of the linguistic terms, which
anticedent or rule set logic order can be achieved using knowledge of
known combinatorics. Hence, the linguistic variables investigated in this
paper consist of three linguistic terms each, and the column and row
cascades can permit a length of 9. Each rule set is combined such that no
rule combination repeats. A total of 81 rules were derived, and is pre-
sented in Table 2.

The result of the input and antecedent operations is an interval type-1
set, and is called the firing set [36], thus,

Fiðx0 Þ ¼ �f i ðx0 Þ; f iðx0 Þ� � �f i ; f i�; (39)

f i ðx0 Þ ¼ μ
f i1
ðx0 1Þ; *:::*μ f im

ðx0 1Þ; (40)

f iðx0 Þ ¼ μf i1 ðx
0
1Þ*:::*μf im ðx

0
1Þ: (41)

where, FiðxÞis the antecedent of rule i, and μf i ðxÞ, is the degree of
membership of xin F.μf i ðxÞ and μ

f i
ðxÞ, are upper and lower MFs of μf i .

The Ri fired output consequent set μ�βðyÞ is the interval type-2 fuzzy set
represented as,
Table 2
The Mos-Map rule base matrix.

Baseline CD4 L L L
Followup CD4 L M H

NS NS NIr9 VLIr18 VLIr27
NS S VLIr8 VLIr17 LIr26
NS U VLIr7 LIr16 LIr25
S NS VLIr6 VLIr15 LIr24
S S VLIr5 LIr14 LIr23
S U LIr4 LIr13 HIr22
U NS VLIr3 LIr12 LIr21
U S LIr2 LIr11 HIr20
U U LIr1 HIr10 HIr19
Baseline RNA Followup RNA

From Table 2, rules r1, r2 and r3 can be built as follows:
r1.If BCD4 is L-Low and FCD4 is L-Low and BRNA is U-Ubdetected and FRNA is U-
r2. If BCD4 is L-Low and FCD4 is L-Low and BRNA is U-Ubdetected and FRNA is S
r3. If BCD4 is L-Low and FCD4 is L-Low and BRNA is U-Undetected and FRNA is N

8

μ
β
^lðyÞ ¼

bl2 f 1*μ lðyÞ;f iμ lðyÞ

1
bl
; y 2 Y : (42)
Z
½

~G
G �

where μ~G
ðyÞ; andf iμGðyÞ are the lower and upper membership grades

μ~GðyÞ. And μ~βðyÞ is obtained as a combination of the fired output

consequent set, considering the union of the rule R1 fired output conse-
quent set. The type reduction module maps the reduced set into an in-
terval of uncertainty, producing the output of the IT2FLS. The type
reduction can now be expressed as follows using Karnik-Mendel model
[37, 38]:

yr ¼
PN

i¼1f
l

ry
l
rPN

i¼1f
i
f

; (43)

and,

yl ¼
PN

i¼1f
i

ly
i
lPN

i¼1f
i
f

; (44)

The defuzzification module is then used to defuzzify the interval set
using the average of yr and yl, yielding the output of the IT2FLS as,

yðxÞ ¼ yl þ yr
2

: (45)

An open-source toolkit: the Juzzyonline Fuzzy toolbox [36] (http://j
uzzy.wagnerweb.net/), created for the development and sharing of
Type-1 and Type-2 fuzzy logic systems, was used to implement the pro-
posed controller, where the input and output variables were shared ac-
cording to their lower and upper values and used in controlling the
models. UMF and LMFwere also defined for CD4 count, RNA, and patient
response parameters.

3.1.2.2. The MDS model
3.1.2.2.1. Model description. MDS is a data analysis technique that

computes relative positions of adjacent objects from high dimension
space to low dimension space with high error-tolerance [39]. It is con-
cerned with configuration recovery from distance (dissimilarity)
matrices and makes for more understandable data through visualisation.
Projecting data into a lower dimensional space can serve two purposes.
First, it eliminates irrelevant features, hence, reducing noise that may
affect the analysis. Second, an easy visualisation of data using 2- or 3-di-
mensions – for better interpretation of “hidden” structures can be ach-
ieved [40, 41]. We apply MDS in this paper to ensure that the distance
between the learning exemplars are best predictors and efficient for
classification. Although there are classical, metric, non-metric, and
generalised MDS, the non-metric MDS was preferred in this paper. This
class of MDS locates a configuration of points in some lower space whose
M M M H H H
L M H L M H

VLIr36 VLIr45 LIr54 VLIr63 LIr72 LIr81
VLIr35 LIr44 LIr53 LIr62 LIr71 HIr80
LIr34 LIr43 HIr52 LIr61 HIr70 HIr79
VLIr33 LIr42 LIr51 LIr60 LIr69 HIr78
LIr32 LIr41 HIr50 LIr59 HIr68 HIr77
LIr31 HIr40 HIr49 HIr58 HIr67 VHIr76
LIr30 LIr39 HIr48 LIr57 HIr66 HIr75
LIr29 HIr38 HIr47 HIr56 HIr65 VHIr74
HIr28 HIr37 VHIr46 HIr55 VHIr64 VHIr73

Undetected then Interaction is LI-Low Interaction.
-Suppressed then Interaction is LI-Low Interaction.
S-Not Suppressed then Interaction is VLI-Very Low Interaction.

http://juzzy.wagnerweb.net/
http://juzzy.wagnerweb.net/
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pair-wise Euclidean distances contain approximately the same rank order
as the corresponding dissimilarities in higher space [42]. Applying the
non-metric MDS within the context of our problem, we reformulate the
problem as follows: Let X be an m	 n matrix representing patients
unique TCEs in the higher space, Rn; Y be an m	 p matrix representing
the perturbed data in the lower space, Rp; and Δ ¼ ½δij� be the dissimi-
larity matrix of X for i; j ¼ f1;…;mg: The Euclidean distance (dij ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k¼1
ðxik � xjkÞ2

s
) is a common measure that is mostly used to describe

the dissimilarity Δ ¼ ðδijÞ between the TCE points, xi and xj. Then, δij ¼
f ðdijÞ, where f is a monotonic function such that dij < duv → δij<δuv.
Non-metric MDS orders the off-diagonal δij such that δi1; j1 �;…;� δimjm ;

where m ¼ nðn�1Þ
2 , and seeks a fitted configuration bX ¼ ðbxi;kÞ in

pdimensions, such that the fitted distances bD ¼ ðbdijÞ (obtained by
substituting bxik and bxjk for xik and xjk, in a matrix of squared proximities,

i.e., P ¼ xi � xj2). This contributes to preserving the ordering, bdi1; j1 �;…;

� bdimjm . The squared stress is used to measure how the ordering of the

elements between Δ and bD differs. Thus,

S2pðbXÞ ¼
P

i<j

�
d*
i;j � bdi;j

�2
P

i<j
bd2

i;j

; (46)

where p denotes the number of dimensions bX , and the denominator of

(46) makes S2pðbXÞ invariant to uniform scaling. The square root is then
taken to give the stress of fit statistic, as,

SpðbXÞ ¼
0B@Pi<j

�
d*i;j � bdi;j

�2
P

i<j
bd2

i;j

1CA
1
2

: (47)

The number of dimensions (bX) is iteratively adjusted and the stress

SpðbXÞ recalculated, starting with an initial configuration, bX ð0Þ
, in p

dimensional space, using the method of steepest descent to minimize

SpðbXÞ. When the SpðbXÞ ¼ 0%, the fitted configuration (bX) is identical to
the original configuration. On reaching an acceptable stress of fit statistic,
the obtained response set is fed to the DNN for learning and optimisation
purposes.

3.1.3. Patient response optimisation

3.1.3.1. DNN model description. In this section, DNN is used to model the
current problem by revealing the interactions between the input data
samples for optimal patient response prediction. DNN is a hierarchical
model where each layer implements a linear transformation followed by
a non-linearity to the preceding layer. Let X 2 RNxD represent the neural
inputs obtained from the fuzzy interface (initiated by the learning algo-
rithm), with each row of Xbeing a D-dimensional data point. For the sake
of simplicity, we assume that the datasets lie in R; and N is the number of
training exemplars. Also, let WK 2 Rdk�1 :dk be a linearly transformed
matrix applied to the output layer k � 1; XK�1 2 RN:dk�1 , to produce a
dk-dimensional term XK�1WK 2 RN:dkat layer k. Suppose, ∅K : R → R is a
non-linear activation function, e.g., a sigmoid: ∅KðxÞ ¼ ð1þ e�xÞ�1 or
hyperbolic tangent: ∅K ¼ tanhðxÞ, or a rectified linear unit: ∅KðxÞ ¼
maxf0;xg, then, the activation function can be applied to each instance of
YK�1WK to generate the kth layer of a neural network, as: XK ¼
∅KðXK�1WKÞ, and the output XK of the network becomes:

γ
�
X;W1;W2;…;WK

� ¼ ∅K

�
∅K�1

�
…∅2

�
∅1

�
XW1

�
W2
�
…WK�1

�
WK
�
: (48)

Notice that: γ is a N 	 C matrix, and C ¼ dk is the output network
dimension, which equates to the number of classes of a classification
9

problem. As such, we can view γ as a function map that defines the input
data Xwith fixed weights, W . In this paper our optimisation system uses
the sigmoid activation function.

3.1.3.1.1. Global optimality. Consider the problem of learning the

parameters W ¼ fWKgKk¼1of a DNN from N training exemplars ðX;YÞ. In
the configuration setting, suppose a classification problem has C target
classes, where each row of X 2 RNxD denotes a data point in RD and each
row of Y 2 f0;1gN	C denotes membership of each data point to one out
of the C classes; then, Yjc ¼ 1; iff the jthrow of X belongs to class c 2 f1;2;
…;Cg; otherwise, Yjc ¼ 0. The learning problem can be formalised as an
optimisation problem, thus:

min
fWKgK

k¼1

ℓ
�
Y ; γ
�
X;W1;W2;…;Wk

��þ λβ
�
W1;W2;…;WK

�
: (49)

where ℓðY ; βÞ is the loss function that measures the consensus between
the true output, Y , and the predicted output γðX;WÞ; β, is the regular-
isation or normalisation function which is used to prevent overfitting.

3.1.3.1.2. Universal approximation. Theorem 1. [41]: Let PðÞ be a
bounded, non-continuous function, and let Imdenote a m-dimensional
hyperbole, and CðImÞ denote the space of continuous functions on Im.
Given any f 2 CðImÞand ε > 0, there exists N > 0 and vi;wi;bi; i ¼ 1…N,
such that FðxÞ ¼ P

i�N
viP
�
wT
i x þ bi) satisfies sup

x2Im
jf ðxÞ� FðxÞj < ε

		:
Theorem 1 guarantees that even a single hidden layer network can

represent any classification problem where the boundary is locally linear
(or smooth) but does not give clue to good or bad architectures or how
they relate to the optimisation problem.

Theorem 2. The mean integrated square error between the essential

network bF and the target function f is bounded by, O

 
C2
f
N

!
þ

O



Nm
K logK

�
,where K denotes the number of training points, N is the

number of neurons, and m measures the global smoothness of f .
3.1.3.1.3. Generalisation error. Consider a classification problem

with data point, X 2 Xp 2 RD, corresponding to class label Y 2 Yc. The

training set of N samples drawn from a distribution Q is given as φN ¼
fXi;YigNi¼1 and the loss function is denoted as ℓðY ; γðX;WÞÞ – ameasure of
the discrepancy between the true and estimated labels of Y – provided by
the classifier. The empirical loss of the network γð:;WÞ associated with
the training set φN is defined as [43]:

ℓempðγÞ ¼ 1
N

X
Xi2φN

ℓðYi;γðXi;WÞÞ; (50)

and its expected loss is given as,

ℓempðγÞ ¼ EðX;YÞ
Q½ℓðY ; γðX;WÞÞ�; (51)

From the above definition, the generalization error becomes,

GEðγÞ¼ 		ℓexpðγÞ � ℓempðγÞ
		: (52)

And the loss function for deep learning our supervised classification
problem is the empirical cross entropy, given as:

ℓðWÞ ¼ EqðX;YÞð � logγðX;WÞÞ: (53)

Eq. (53) is however prone to over-fitting, as the network may trivially
the training data instead of learning the underlying distribution measure.
This problem can be fixed using normalisation, which may be explicit or
implicit in a stochastic gradient descent.
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4. Results

4.1. Experiment HIV database analysis

4.1.1. CD4 and RNA visualisation
The CD4 count and RNA give healthcare providers important clues

about the following: immune system health, HIV progression, body
response to HIV therapy, and virus response to the therapy. In this sec-
tion, we analyse the empirical datasets of both Stanford HIV and Akwa-
Ibom HIV databases, for possible cluster variations and outlier effects. In
Fig. 4, a visualisation of the effect of TCE on CD4 count is presented. CD4
count indicates the immune system robustness. Hence, there are
enhanced immunological changes defined by higher cluster heights (an
indication of low opportunistic infection) in the Akwa-Ibom HIV data-
base, compared to the Stanford database, which changes occurred at a
slower rate. Furthermore, more data points in the Akwa-Ibom HIV
database clustered far above the baseline CD4, as opposed to the Stanford
HIV database, which had about 40% of the data points clustering below
the baseline CD4. The Stanford effect may not be unconnected with the
fact that the database is made up of patients with resistant exemplars or
who had failed treatment due to high level of drug resistance and are
being monitored using new drug regimens.

The RNA is an inverse function of the CD4 count. A low RNA indicates
relatively few copies of HIV in the blood stream and a pointer to a
working HIV therapy. If treatment fails and the RNA levels stage a
rebound, then CD4 count will start dropping gradually (within few
weeks) in response to the rebound. A visualisation of the consequence of
RNA variations is presented in Fig. 5. We observe escalating tendencies of
baseline RNA curve in Akwa-Ibom HIV database, compared to the
Stanford database, which RNA curve appears to be increasingly steady.
The escalating trend of BRNA curve implies that the Akwa-Ibom HIV
patients showed more cases of advanced (undiagnosed) HIV, or those
who may have ignored early warning signs of the disease. Although
FRNA values for both databases showed cases of reduced side effects or
adverse reactions in some patients than others with outlier effects, the
recovery or improvement rate appears to be more rapid on Akwa-Ibom
HIV patients, as over 60% of RNA copies of below 2 ð102Þ were noticed.
Fig. 4. Effect of treatment change episode on CD4 coun

10
4.1.2. Patient response inference analysis
A statistic of the fuzzy-MDS patient response inference based on the

output membership grades is presented in Table 3. We observe that the
Akwa-Ibom database has the least patients with relatively high interac-
tion cases (HI and VHI) of 90 (6.9178%) patients. This confirms the
healthcare managers’ claim that only few acute cases of failed treatment
were recorded, but further statistical evidence is required to confirm the
significance of their claim with respect to the HIV population under
study. In contrast, the Stanford (our reference) database has 618 patients
(40.6312%) with relatively high interaction and further confirms the
purpose of the database (cases of patients with failed treatment). As
regards the level of positive response to treatment, the Akwa-Ibom HIV
database showed the highest response rate with 841 (64.6426%) patients
and 370 (28.4397%) patients having relatively low interaction cases (LI
and VLI) and no interaction, respectively. The Stanford database showed
relatively low and no response cases of 664 (43.6555%) and 239
(15.7133%), respectively, indicating the accuracy of our fuzzy-MDS-DNN
controller at modelling the databases.
4.2. DNN optimisation

It is proven that multilayer perceptrons (MLPs) with only one hidden
layer are universal function approximators [44]. They are neural net-
works with multiple parallel node-layer topologies that utilises a super-
vised learning technique known as backpropagation. Hence, identifying a
topology that best drives the problem is important. In this paper, MAT-
LAB 2017a was used to model the classification system as a pattern
recognition problem driven by the MLP architecture. A pattern recogni-
tion network model called patternnet applying two training algorithms,
the Levenberg-Marquardt (trainlm) and Resilient Backpropagation
(trainrp) algorithms was adopted for this purpose. The performance of
various algorithms can be affected by the accuracy required of the
approximation, but applications of the training algorithms in various
literatures have shown that the trainlm algorithm is the fastest, although
not without the limitation of a larger storage requirement. The experi-
ment databases were distributed in the ratio of 80: 10: 10, for training,
validation, and testing, respectively, using a randomised distribution
approach that divides up every sample data. Relevant features that
t for Akwa-Ibom HIV and Stanford HIV databases.



Fig. 5. Effect of treatment change episode on RNA copies for Akwa-Ibom HIV and Stanford HIV databases.

Table 3
Analysis of patient response inference.

Membership
grade

Stanford database Akwa-Ibom database

TCE Unique
Patient ID

% TCE Unique
Patient ID

%

VHI 940 248 16.3051 75 25 1.9216
HI 1454 370 24.3261 195 65 4.9962
LI 1546 402 26.4300 883 294 22.5980
VLI 962 262 17.2255 1640 547 42.0446
NI 878 239 15.7133 1110 370 28.4397
Total: 5780 1521 100 3903 1301 100

Table 4
Input linguistic variables and target classes for Stanford database.

Input linguistic variable

PID BCD4 FCD4 BRNA FRNA DType

1 330 347 3.7 3.3 3TC þ ABC þ ATC þ A
2 38 53 5.7 5.3 D4T þ DDI þ NVP
3 949 987 3.7 4.4 D4T þ DDI þ EFV
4 281 334 3.6 3.9 D4T þ DDI þ EFV
5 288 426 3.9 3.6 ABC þ D4T þ EFV
6 470 459 4.1 3.2 3TC þ D4T þ DDI þ LP
7 694 717 3.7 4.8 D4T þ EFV þ NFV
8 37 50 5.3 4.9 ABC þ EFV þ RTV þ SQ
9 242 358 4.9 3.8 3TC þ DDI þ RTV þ SQ
10 213 274 3.7 2 3TC þ ABC þ AZT þ TD
11 88 149 5.3 4.2 ABC þ D4T þ EFV þ N
12 316 403 4 4 D4T þ DDI þ RTV þ SQ
13 50 105 5.1 4.7 APV þ D4T þ EFV þ RT
14 102 159 4.9 3.9 3TC þ APV þ D4T þ D
15 103 231 3.7 3.5 3TC þ D4T þ DDI þ FP
16 72 159 5.1 3.4 AZT þ DDI þ LPV
17 109 258 4.9 1.9 DRV þ FTC þ RTV þ T
18 169 213 4.1 4.1 3TC þ D4T þ RTV þ SQ
19 212 381 4.5 1.9 3TC þ D4T þ EFV þ NF
20 315 352 4.7 3.1 D4T þ DDI þ IDV þ RT
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served as inputs to the DNN were, baseline CD4 (BCD4), followup CD4
(FCD4), baseline viral load (BRNA), followup viral load (FRNA), drug
type combination (DType), and the error-pruned patient response infer-
ence set. Five target classes (C1–C5) were created following the output
membership grades of the fuzzy-logic system (C1 ¼ VHI, C2 ¼ HI, C3 ¼
LI, C4 ¼ VLI, and C5 ¼ NI) to predict the clustering patterns. Table 4 and
Table 5 are sample input and target class data of 20 patients, for the
Stanford HIV and Akwa-Ibom HIV databases, respectively.

To accelerate training, the network was evaluated using a 5-layer
(structure) configuration, each layer representing a target class with the
number of neurons (in our case, the maximum number of input variables)
distributed in a dropout fashion, resulting in the configuration ([6 5 4 3
2]). The evaluation metrics selected as indicated in Tables 6, 7, 8, 9,
Target class

PR C1 C2 C3 C4 C5

ZT þ RTV þ TDF 32.67 0 0 1 0 0
30.00 1 0 0 0 0
71.00 0 0 0 1 0
30.82 0 0 1 0 0
39.27 0 0 0 1 0

V 48.75 0 0 0 1 0
50.34 0 0 0 1 0

V 30.00 1 0 0 0 0
V 31.65 0 0 1 0 0
F 50.00 0 0 1 0 0

FV 30.00 1 0 0 0 0
V 35.28 0 0 0 1 0
V 30.00 1 0 0 0 0

DI þ RTV 30.00 0 1 0 0 0
V þ RTV 30.00 0 0 1 0 0

31.20 0 1 0 0 0
20 þ TDF 50.00 0 1 0 0 0
V 30.00 1 0 0 0 0
V 50.00 0 0 1 0 0
V 38.61 0 0 1 0 0



Table 5
Input linguistic variables and target classes for Akwa-Ibom database.

Input linguistic variable Target class

PID BCD4 FCD4 BRNA FRNA DType PR C1 C2 C3 C4 C5

1 440 388 4.1 3.7 TDFþ3TC þ EFV 41.92 0 0 0 1 0
2 429 765 4.1 2.4 TDFþ3TC þ EFV 57.80 0 0 0 1 0
3 307 354 4.4 1.3 TDFþ3TC þ EFV 52.74 0 0 1 0 0
4 17 675 4.4 1.3 AZTþ3TC þ NVP 55.00 0 0 1 0 0
5 291 625 4.4 1.3 TDFþ3TC þ EFV 53.68 0 0 1 0 0
6 180 380 3.4 1.3 TDFþ3TC þ EFV 53.56 0 0 0 1 0
7 240 400 3.1 1.3 TDFþ3TC þ EFV 55.16 0 0 0 1 0
8 315 601 4.1 1.3 TDFþ3TC þ EFV 53.68 0 0 1 0 0
9 163 875 4.1 1.9 TDFþ3TC þ EFV 65.57 0 0 1 0 0
10 238 642 4.1 3.7 TDFþ3TC þ EFV 50.00 0 0 1 0 0
11 362 689 4.2 2.1 AZTþ3TC þ NVP 51.94 0 0 0 1 0
12 156 512 5.4 2.8 TDFþ3TC þ EFV 50.00 0 0 1 0 0
13 28 52 6.3 1.6 TDFþ3TC þ EFV 50.00 0 1 0 0 0
14 217 502 6.1 5 TDFþ3TC þ EFV 50.00 0 1 0 0 0
15 230 763 5.1 1.8 TDFþ3TC þ EFV 51.78 0 0 1 0 0
16 415 371 3.4 1.3 AZTþ3TC þ NVP 56.17 0 0 0 0 1
17 286 842 3.4 1.7 TDFþ3TC þ EFV 60.10 0 0 0 1 0
18 494 657 3.3 2.1 TDFþ3TC þ EFV 68.44 0 0 0 0 1
19 266 319 3.2 2 TDFþ3TC þ EFV 50.82 0 0 1 0 0
20 158 266 4.3 3.1 AZTþ3TC þ NVP 37.97 0 1 0 0 0

Table 6
Classification results for Stanford database with multidimensional scaling.

No. of layers Neuron Config. Train Alg. R- value Overall MSE Val MSE Test MSE Gradient TPR FPR Class Acc.

5 [6 5 4 3 2] Trainlm 0.9545 0.0133 0.0146 0.0108 0.0253 0.9625 0.0108 0.9700
Trainrp 0.8667 0.0395 0.0461 0.0368 0.0277 0.8635 0.0362 0.8630

Bold signifies performance metric values that meets the defined threshold of this study.

Table 7
Classification results of Stanford database without multidimensional scaling.

No. of layers Neuron Config. Train Alg. R- value Overall MSE Val MSE Test MSE Gradient TPR FPR Class Acc.

5 [6 5 4 3 2] Trainlm 0.9177 0.0257 0.0249 0.0222 0.0308 0.9366 0.0188 0.9323
Trainrp 0.8120 0.0552 0.0545 0.0508 0.0210 0.8431 0.0419 0.8440

Bold signifies performance metric values that meets the defined threshold of this study.

Table 8
Classification results of Akwa-Ibom database with multidimensional scaling.

No. of layers Neuron Config. Train Alg. R- value Overall MSE Val MSE Test MSE Gradient TPR FPR Class Acc.

5 [6 5 4 3 2] Trainlm 0.9871 0.0038 0.0040 0.0070 0.0364 0.9974 0.0026 0.9887
Trainrp 0.8323 0.0473 0.0527 0.0612 0.0224 0.9554 0.0446 0.8391

Bold signifies performance metric values that meets the defined threshold of this study.

Table 9
Classification results of Akwa-Ibom database without multidimensional scaling.

No. of layers Neuron Config. Train Alg. R- value Overall MSE Val MSE Test MSE Gradient TPR FPR Class Acc.

2 [6 5 4 3 2] Trainlm 0.9248 0.0236 0.0022 0.0207 0.0357 0.7872 0.0185 0.9244
Trainrp 0.8009 0.0569 0.0579 0.0604 0.0234 0.8159 0.0501 0.8252

Bold signifies performance metric values that meets the defined threshold of this study.
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include:
Regression value (R-value): A coefficient that measures the relationship

between the outputs of the network and the targets that provides an idea
of how close the output from the model is to the actual target values. A
perfect training will yield same network outputs and targets, but this
relationship cannot be perfect in practice.

Mean Squared Error (MSE): A loss function averaged over the entire
dataset, which measures the distance between the predicted and true
outputs. The least MSE has been known to yield the best performance.

Gradient: The direction and magnitude (slope) required in the
12
calculation of weights to be used in the network and is commonly used to
train deep neural networks.

True Positive Rate (TPR): Also called Sensitivity, measures in our case,
the proportion of patients identified as having failed treatment or adverse
drug reaction.

False Positive Rate (FPR): Measures in our case, the proportion of
patients identified as not having failed treatment or adverse drug reac-
tion. It is also represented as 1 – (Specificity or True Negative Rate: TNR).

Classification Accuracy (Class Acc.): Measures in our case, the pro-
portion of correctly classified patients’ response.
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A performance value of at least 0.9 (90%) was considered as
acceptable threshold for the R-value, TPR and classification accuracy
metrics; and at most 0.01 (1%) for the FPR and MSE metrics. Significant
performances are indicated in bold font type. Overall classification result
reveal that the trainlm algorithm gave better optimised predictions
compared to the trainrp algorithm, for the Stanford HIV and Akwa-Ibom
HIV databases with multidimensional scaling–demonstrating the effec-
tiveness of error pruning before learning. As can be seen in Tables 6 and
8, the introduction of multidimensional scaling produced least MSEs and
classification accuracies–indicating good validation and test predictors as
well as datasets. Classification performance however degraded when the
proposed controller was experimented without multidimensional scaling
(see Tables 7 and 9). The implication here is that inference from expert
knowledge is invaluable to improved system prediction, and our classi-
fication learner was at its best in modelling both HIV databases.

A study of the Receiver Operating Characteristics (ROC) curve (a plot
of the TPR vs. FPR for the different possible cut-point of diagnostic tests)
shows that the test data of the Akwa-Ibom HIV database for fuzzy-PRI
with MDS response inference yielded more accurate results than the
Stanford HIV database, as (TPR, FPR) values for both databases were
(0.9974, 0.0026) and (0.9626, 0.0108), respectively. However, ROC
curve results for the experiment databases for fuzzy-PRI without MDS
resulted in less accurate test results for the Akwa-Ibom HIV database,
with (TPR, FPR) values of (0.7872, 0.0185), compared to the Stanford
HIV database, with (TPR, FPR) values of (0.9366, 0.0188). Despite the
poor test result reported for the Akwa-Ibom HIV database, our classifi-
cation learner still maintained accurate classification accuracy of
92.44%. The results indicate that the Stanford HIV database appears to be
more robust to test errors even without MDS. Moreover, varying TCEs
exist for individual patients compared to the Akwa-Ibom database, which
had only a single regimen of only one drug combination and TCE and no
further therapeutic action was recorded even when patients showed
failed treatment. Hence, a call for a followup of treatment on patients
with low patient response inference (i.e., for high and very high inter-
action cases), as this parameter is a pointer to failed treatments and es-
tablishes drug patterns with multi-drug resistance. This also explains why
the Stanford database could perform well without expert response
inference, as the experiment data contains treatment failure cases. Our
classification learner did not over-fit, as the observed gradients neither
vanished nor exploded. Vanishing and exploding gradients are two major
obstacles in training DNNs and can result in unstable network structures
that at best cannot learn from the training data or at worst results in NaN
weights, abruptly terminating updates of the weight values. This diffi-
culty is noticeable when training artificial neural networks with gradient-
based learning methods and backpropagation. The current optimal re-
sults can be attributed to the error-pruning process achieved during the
patient response modelling.

5. Discussion

Recent models have shown robust prediction performance with the
viral load emerging as the most important variable [45]. This finding has
indirectly initiated support for the use of viral load monitoring for an
improved HAART in resource-limited settings such as Sub-Saharan Af-
rica. In [45], over 3000 TCEs data collected from clinics in North
America, Europe, Japan and Australia, were trained using a single
random forest (RF) system. Results obtained showed virological response
predictions of 82%, among 100 independent test cases using baseline
variables (including genotype). Further findings showed that newmodels
that excluded genotype information were able to predict virological re-
sponses for the same test set with a slightly decreasing accuracy of 78%.
Hence, the use of other clinically related data such as treatment history
and drug information also need to be tried, as they may partially
compensate for the absence of genotype data. Encouraged by this result,
[45] set out to develop models that were more relevant to clinical
practice in a resource-limited context. By selecting TCEs that involved
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drugs commonly administered in these countries and trained two RF
models with over 8000 TCEs without the use of genotype data. Both
models predicted virological response with an accuracy of about 82%.
The emergence of new antiretroviral drugs has caused a continual
modification of the HIV/AIDS treatment guidelines, hence demanding a
treatment-decision capable of self-learning [46]. In [46], a self-learning
HIV/AIDS regimen selection system for combined antiretroviral ther-
apy of first round HIV/AIDS treatment was developed considering 32
associated treatment objectives involving four major clinical variables
(potency, adherence, adverse effects and future drug options). The pre-
diction accuracy was found between 84.4% and 100% in reduced treat-
ment objectives, but, higher mean prediction accuracies of 94%–97%
were obtained when all the treatment objectives were learned. A com-
parison with our proposed framework shows that improved prediction
accuracies of 97% for the Stanford database, and 98.87% for the
Akwa-Ibom database were obtained, indicating that improved accuracy
can be achieved through efficient error-pruning mechanisms and robust
learning algorithms.

6. Conclusions

The performance of machine learning heavily rests on sound knowl-
edge acquisition techniques from available domain experts. This paper
employed a fuzzy-multidimensional deep learning framework that
combines the strengths of machine learning and multidimensional
scaling tools, to facilitate intuitive knowledge elicitation – by trans-
forming domain knowledge into a set of rules that drives the accurate
classification of HIV patient response to ART. The proposed controller
was able to deal with uncertainty caused by inconsistent input datasets
and incomplete domain knowledge, where fuzzy rules were continually
fine-tuned for two experiment databases (Stanford and Akwa-Ibom
datasets), with patient response re-scaled to reduce the high error-
prone datasets typical of real-world data. A deep learning optimisation
of trained exemplars using two learning algorithms was then performed
to efficiently optimise the datasets. Results obtained showed that infer-
ence from expert knowledge (labelled data) as well as the introduction of
multidimensional scaling are invaluable for the efficient classification of
HIV patient response to ART.

The limitation of this research is the high computational cost of the
type-reduction process, typical of the iterative Karnik-Mendel algorithm
and the application of a supervised approach to selecting the desired
features. Hence, a future direction of this research targets the realisation
of an efficient expert system, towards personalised therapy. Furthermore,
two major areas of application can be identified: (i) an effective tech-
nique for the accurate generation of features, as unsupervised deep
learningmodels (capable of creating features) will expand the horizons of
processing new data in limited environments; (ii) exploring enhanced
techniques to speed up the type-reduction process or eliminate the high
computational cost inherent in existing methods will enhance the sys-
tem's portability to affordable devices and real-time access to
information.
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