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Quantum coherence is one of the primary non-classical features of quantum systems. While protocols such
as the Leggett-Garg inequality (LGI) and quantum tomography can be used to test for the existence of
quantum coherence and dynamics in a given system, unambiguously detecting inherent ‘‘quantumness’’ still
faces serious obstacles in terms of experimental feasibility and efficiency, particularly in complex systems.
Here we introduce two ‘‘quantum witnesses’’ to efficiently verify quantum coherence and dynamics in the
time domain, without the expense and burden of non-invasive measurements or full tomographic processes.
Using several physical examples, including quantum transport in solid-state nanostructures and in
biological organisms, we show that these quantum witnesses are robust and have a much finer resolution in
their detection window than the LGI has. These robust quantum indicators may assist in reducing the
experimental overhead in unambiguously verifying quantum coherence in complex systems.

Q
uantum coherence, or superposition, between different states is one of the main features of quantum
systems. This distinctive property, coherence, ultimately leads to a variety of other phenomena, e.g.,
entanglement1,2. It is also thought to be the power behind several ‘‘quantum tools’’, including quantum

information processing3, metrology4, transport5, and recently, some functions in biological organisms6 (e.g.,
efficient energy transport).

Identifying quantum coherence and dynamics in an efficient way, given limited system access, is indispensable
for ensuring reliable quantum applications in a variety of contexts. Furthermore, the question of whether
quantum coherence can really exist in biological organisms in vivo, e.g., in a photosynthetic complex or in an
avian chemical compass, surrounded by a hot and wet environment, has triggered a surge of interest into the
relationship between quantum coherence and biological function7,8. In these cases, full-system access is often very
limited, and signatures of quantum coherence are often indirect.

The existing methods for identifying quantum coherent behavior can be generally classified into two types. The
first type are based on imposing what can be thought of as a classical constraint9, such as macroscopic realism and
non-invasive measurements in the Leggett-Garg inequality (LGI)10, or realism and locality in Bell’s Inequality.
Even though inequalities like the LGI were originally envisaged as a fundamental test of physical theories, a
violation of the LGI can also be considered as a tool for classifying the behavior observed in experiment as
quantum or classical. However, the Leggett-Garg inequality faces severe experimental difficulties when used as
such a tool as it requires noninvasive measurements, e.g., via quantum nondemolition (QND) measurement11,12,
weak measurement13, or quantum-gate-assisted ideal non-invasive measurements14. Because of this only a few
tests of the LGI have been reported14–18.

The second type of test is based on deduction; do the results of a given experiment sufficiently correspond to the
predictions of quantum theory (or classical theory, depending on the approach). Quantum witnesses can be
considered as one such test, as they use the knowledge of a quantum state or of some quantum dynamics to
determine whether an experimental system possesses quantum properties. Some examples that have been
employed elsewhere include witnesses of entanglement19,20, direct measurement of coherence terms of density
matrices, or the analysis of process tomography21 for non-classical state evolutions. The experimental realization
of this kind of verification usually needs tomographic techniques, and then the required experimental resources in
terms of measurement settings increases exponentially with the system complexity19,21,22. Moreover, quantum
state and process tomography are still difficult to implement in general systems and for general state evolutions,
e.g., particularly in systems like charge transport through nanostructures, the transfer of electronic excitations in a
photosynthetic complex, or systems where the state space is large.
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In this work, we introduce two quantum witnesses to verify
quantum coherence and dynamics in the time domain, both of which
have various advantages and disadvantages. Both are efficient in the
sense that there is no need to perform noninvasive measurements or
to use quantum tomography, dramatically reducing the overhead
and complexity of unambiguous experimental verification of
quantum phenomena.

We apply these quantum witnesses to five examples: (1) electron-
pair tunnelling in a Cooperpair box and coherent evolution of single-
transmon qubit, (2) charge transport through double quantum dots,
(3) non-equilibrium energy transfer in a photosynthetic pigment-
protein complex, (4) vacuum Rabi oscillation in lossy cavities, and
(5) coherent rotations of photonic qubits. Furthermore, as we will
illustrate in these examples, our quantum witnesses possess a finer
detection resolution than the LGI.

Both witnesses, which we will introduce shortly, involve the fol-
lowing steps: (Figure 1a) first, we prepare the system in a known
product state with its environment (or reservoir, here we use both
terms interchangeably) rSR(0). We then let rSR(0) evolve for a period

of time t0, to reach the state rSR(t0) (during which time one hopes
the state has acquired significant coherence due to its internal
dynamics). The second step is to implement a quantum witness using
a ‘‘correlation check’’ between the state rSR(t0) and its state at another
later time t $ t0, rSR(t) (see Figure 1b). The goal of this correlation
check is to investigate non-classical properties in these two-time
state-state correlations (see Figure 1c). If the state rSR(t0) can be
detected then by our quantum witness as having quantum properties,
this implies that either the system state rS(t0) 5 TrR[rSR(t0)] pos-
sesses significant quantum coherence or that the state rSR(t0) is an
entangled system-bath state.

Results
In order to find a signature of quantum dynamics we start by seeking
characteristic features of classical dynamics or states23. All separable
mixtures of system-reservoir states, with no coherent components,
which we call classical states, obey the following relation for their
two-time correlations:

Figure 1 | Detecting quantum coherence and dynamics. Generic procedure for detecting quantum coherence: We need (a) state preparation and (b) a

correlation check. With the freedom to manipulate the system state, the initial state of the total system can be reasonably prepared as a product state rSR(0)

5 rS(0) fl rR(0), where rR(0) is the reservoir state. (b) and (c) show the correlation check, or measurements, we base our quantum witnesses on.

Assuming the system state at time t0 is rS(t0) 5 Qn(t0), the probability of being in a state Qm at later time t is determined by the n R m propagator Vmn(t,

t0). The general quantum correlator is defined by ÆQm(t)Qn (t0)æQ (upper green path) and the classical one is defined by pn(t0)Vmn(t, t0) (lower brown

track). In this expression, Vmn(t, t0) is the probability of measuring the system in state m at time t given that it was in the state n at time t0. Both definitions

describe the connections between Qn(t0) and Qm(t) for arbitrary states rS(t0) with a distribution of state populations {pn(t0)}. As shown in the Methods, all

classical dynamics should satisfy the relation, ÆQm(t)Qn(t0)æQ 5 pn(t0)Vmn(t, t0). While our quantum witnesses are derived from this ‘‘correlation check’’,

the experimental requirements for each witness differ.

www.nature.com/scientificreports
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Qm tð ÞQn t0ð Þh iQ~pn t0ð ÞVmn t,t0ð Þ: ð1Þ

See Methods for the proof. Succinctly put, equation (1) implies it is
possible to define all future behavior based on only the system’s
instantaneous expectation values pn(t0). However, most quantum
correlation functions also obey this relation under certain measure-
ment conditions. For example, a correlation function constructed
from two-time projective measurements has this form as the mea-
surement at t0 destroys the coherence in the state at that time. Here Qi

is an observable which measures if the system is in the state i. This
state is assumed to have a classical meaning (e.g., localized charge
state, etc) and the observable is normalized so that its expectation
value is directly equal to the probability of observing the system in
that state ÆQiæ 5 pi. The propagator Vmn(t, t0) is the probability of
measuring the system in state m at time t given that it was in the state
n at time t0 (and which in principle depends on the state of the
reservoir, so can include classical non-Markovian correlations, see
Methods). Several other recent tests of quantumness18,24–27 rely on
imposing Markovianity on Vnm(t, t0). In our first witness we avoid
taking that approach so that we can still distinguish quantum from
classical non-Markovian dynamics. However we will use it in our
second witness.

In principle, one could use Eq. (1) to construct a quantum witness
of the form:

WQQ : ~ Qm tð ÞQn t0ð Þh iQ{pn t0ð ÞVmn t,t0ð Þ
��� ���: ð2Þ

Where a non-zero result WQQw0, implies the state at t0 can be
considered as quantum in that it contains quantum coherence which
affects its future evolution. However, as mentioned above, most
quantum correlation functions also obey equation (1), which will
giveWQQ~0. Is it ever possible to observe a non-zeroWQQ? In some
cases coherence, or ‘‘amplitude’’, sensitive correlation functions are
encountered in quantum optics28, and in linear-response theory29.
However, these are typically extracted from spectral functions in the
steady state, or put in a symmetrized form, in which case any effect on
the correlation function from the initial state coherence may be lost.
In all the examples we consider in this work this witnessWQQ cannot
be directly measured, as the initial coherence is of course destroyed
by the first (projective) measurement. Fortunately,WQQ, via Eq. (1),
gives us a way to develop a more generally applicable and valid
witness.

Witness 1. Our first practical witness (which is the main result of this
work) can be derived from Eq. (1) by including normalization.
Noting that all classical system-reservoir states obey,

Qm tð Þh i~
Xd

n~1

pn t0ð ÞVmn t,t0ð Þ, ð3Þ

where d is the number of states n in, or dimensionality of, the system
state space, we define our first quantum witness as

WQ : ~ Qm tð Þh i{
X

n

pn t0ð ÞVmn t,t0ð Þ
�����

�����: ð4Þ

IfWQw0, we can define the state at t0 as quantum. Compared with
the witnessWQQ and the tests of the LGI,WQ can always be directly
measured, and ideal non-invasive measurements are not necessary.
In experimental realizations, measuring the population-related
quantities, or expectation values, ÆQm(t)æ and {pn(t0)}, is generally
more feasible than constructing full correlation functions,
particularly in systems which rely on destructive (e.g.,
fluorescence) measurements. Where correlation functions can be
measured with projective measurements, the second term can of
course be replaced with Sn pn(t0)Vmn(t, t0) ; SnÆQm(t)Qn(t0)æ.

However, determining all the propagators Vmn(t, t0) with which to
construct the witness requires, in principle, that we can prepare the
system in each one of it states n exactly (or, alternatively if correla-
tion functions constructed from projective measurements are avail-
able, it requires that we measure every possible cross-correlation
SnÆQm(t)Qn(t0)æ). In the former case (where we use state prepara-
tion) we trade-off the need to do non-invasive state measurement
with the need to perform ideal state preparation. In complex systems
it may be difficult to prepare the system in each one of its states to
construct these propagators, and in some cases we may not even
have knowledge of the full state-space of the system.

Importantly, this problem can be easily overcome by noticing that
the individual terms in the sum in Eq. (4) are always positive. Thus
when constructing the sum we can stop as soon as the witness is
violated by this partial summation (i.e., when the terms in the sum-
mation together are larger than ÆQm(t)æ), reducing the experimental
overhead substantially (see Figure 4 for a practical example, where we
show it is sufficient to include just one term in the sum of Eq. (4)).

Note that with this witness we do not distinguish between just
system-coherence or quantum correlations (entanglement) between

Figure 2 | Detecting quantum oscillations. (a) shows a schematic circuit of a single-Cooper-pair box36,37. Its Hamiltonian is described by HCB 5 EC(1–

2ng)/2( | 2æÆ2 | 2 | 1æÆ1 | )2EJ/2( | 1æÆ2 | 1 | 2æÆ1 | ), where EJ and EC are the Josephson energy and the single-Cooper-pair charging energy of the box,

respectively. The relative energy of the state with no excess Cooper pairs in the box | 1æ and the state with one excess Cooper pair | 2æ, is controlled through

the gate voltage, which is parametrized by ng. The resonance of the states | 1æ and | 2æ can be brought from the initial state | 1æ by the applied voltage pulse

for ng 5 0.5. (b), Detecting quantum dynamics in the resonance of the two charge states (ng 5 0.5) with the quantum witnessWV21. We use the realistic

parameter EJ 5 51.8 meV. The positive regions are identified as the quantum areas.
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system and bath/reservoir (see Methods). In addition, if there are
classical correlations between system and reservoir, i.e., classical
non-Markovian effects30, then some additional experimental over-
head is needed to eliminate this from giving a ‘‘false positive’’. If this
overhead is ignored this represents a ‘‘loop-hole’’ in this witness, and
in some situations may be an obstacle for its unambiguous applica-
tion. We will discuss this explicitly later with an example of a pho-
tosynthetic light-harvesting complex where the system and reservoir
are strongly correlated both classically and quantum mechanically.

Witness 2. For our second witness we impose the extra condition
that Vmn t,t0ð Þ~Vmn t0,t00

� �
for t{t0~t0{t00~t, for any time

interval t. This assumption restricts us to a widely-studied subset
of quantum processes where the system-bath/reservoir interaction
is Markovian. We will show that, under the assumption that our
system lies within this subset, quantum properties can be
identified without needing to explicitly measure propagators (i.e.,
neither exact state initialization or non-invasive measurements are
required). The trade-off in this case is that the witness cannot
distinguish certain types of classical dynamics (e.g., classical non-
Markovian), from quantum properties of the system. Still, this
witness exceeds the tests proposed in earlier works under the same
constraints which still required either non-invasive measurements or
state preparation18,25.

This subset of quantum processes can be described as having weak
coupling between system and reservoir so that system-reservoir state
is always a product state, and the bath/reservoir state does not evolve
in time, i.e., rR(t) 5 rR(0). A large number of systems exist in this
regime30, with well-developed models such as the master equation
under the Born approximation operating within this class (see, e.g.30–32).
For such cases, we can extend the first witness so that we replace
the need to prepare the system state with that of needing to repeat-
edly measure expectation values (not correlation functions) a number of
times that scales linearly with system size. To show this, we consider an
extension of Eq. (3) involving a system of d linear equations represented
in matrix multiplication form as follows:

PjVmj~Qmj ð5Þ

where the d 3 d matrix Pj has elements [Pj]kn 5 pn(t0[j,k]), and Vmj and
Qmj are d 3 1 column vectors with elements [Vmj]n1 5 Vmn[j](t) and
[Q mj]k1 5 ÆQm(t[j,k])æ, respectively. Here, t0[j,k] and t[j,k] constitute the jth
nontrivial time-domain set Tj:{t0[j,k], t[j,k]jt[j,k] – t0[j,k] 5 t; k 5 1, 2, …,
d}. For a given time difference t and a time pair (t0[j,k], t[j,k]) g Tj, one
can use the most experimentally-feasible method of measurement, i.e.,
invasive measurement, to obtain the information about the state popu-
lations, pn(t0[j,k]) and the expectation values ÆQm(t[j,k])æ.

Given a set of measurement results to sufficiently describe the state
populations, the vector Vmj can be determined by simple algebraic
methods. For nonzero determinant det(Pj), we have Vmn j½ � tð Þ~
det P nð Þ

mj

� �.
det Pj
� �

, where P nð Þ
mj is the matrix formed by replacing

the nth column of Pj by Qmj. For an arbitrary pair of time-domain
sets, say Tj and Tj 0 , we impose an additional condition (not used in
the earlier witnesses) that their propagators should be identical for all
classical systems (within the subset described above): Vmj~Vmj0 . If
the system and its environment are classically-correlated, i.e., they
are not in a product state, this assumption does not hold. Any com-
parison between Vmj and Vmj0 can be considered as a quantum
witness for this subset, such as the vector-element comparison:

WVmn : ~ det P nð Þ
mj

� �
det Pj0
� �

{det P nð Þ
mj0

� �
det Pj
� ���� ���: ð6Þ

If WVmnw0, and under the assumptions described earlier, we can
again assume that some of the (set) of initial states are quantum.
Since measuringWVmn requires the information about state popula-
tions only and can be performed with invasive observations, imple-
mentingWVmn can be more practical than implementingWQQ (2)
andWQ (4).

Examples. To illustrate the effectiveness of our witnesses we now
present five example systems where they could be applied. For each
example we choose which ever witness is more appropriate, given the
properties of that system.

Rabi oscillations in superconducting qubits. The oscillations of
state populations are commonly thought of as a signature of
quantum dynamics. The measurement of these kind of oscillations

Figure 3 | Detecting quantum transport through a double quantum dot.
(a) Schematic of a single-electron double quantum dot (DQD). Here we

assume that the DQD is weakly coupled to leads under a large bias. Its

Hamiltonian is HDQD 5 D( | LæÆR | 1 | RæÆL | ) with the electron state basis

{ | Læ, | Ræ, | 0æ} where D is the tunnelling amplitude between the left-dot and

right-dot electron states | Læ, | Ræ. The transport between dots and leads is

described by the self-energy, S r½ �~{1=2
X

a~L,RCa sas{ar{2s{arsa

�
zrsas{a�, where sL 5 | 0æÆL | , sR 5 | RæÆ0 | , and CL and CR are the left and

right tunnelling rates, respectively. We assume charge detectors (CDs) are

used for the measurements, but invasive current measurements are also

sufficient (not shown here). (b,c) Verifying quantum transport through

DQD withWQ [Eq. (4) for t 2 t0 5 t] andWV32 [Eq. (6)], respectively.

Here we define | 0æ, | Læ, and | Ræ by | 1æ, | 2æ, and | 3æ, respectively. For the

setting CL 5 4, CR 5 0.1, and D 5 1, the non-vanishedWQ and cWV32

indicate the quantum-transport regions, where c 5 (p1p2p3)21 for the

stationary state.

www.nature.com/scientificreports
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is widely employed for many experiments. The observation of
such oscillations alone, however, is not definitive evidence for
the existence of quantum coherent dynamics and can even be
mimicked by the solutions of classical autonomous rate equations,
e.g., Ref. 33,34.

As a first example of the application of our witnesses we apply
WVmn (6) to a two-level system composed of the two lowest-energy
states in a single-Cooper-pair box35–37, Figure 2a. We can take n 5 1,
m 5 2, for example together with the designation Tj: {t0[j,k] 5 (k 1 j –
1)t0, t[1,k] 5 (k 1 j – 1)t0 1 tjk 5 1, 2} for j 5 1, 2, Figure 2b illustrates
that the quantum witnessWV21 detects the presence of quantumness
in the Cooper-pair tunneling. Since only information about state
populations is required, this witness is easy to apply in practice with
simple invasive measurements and can be readily applied to the
existing experiments in the time domain36,37 without any additional
experimental overhead.

One can also consider an application of our witnesses to single-
and multiple-transmon qubits coupled to transmission lines in cir-
cuit quantum electrodynamics38,39, where qubit-state measurements
are performed by monitoring the transmission through the micro-
wave cavity39. For the simplest case of one-qubit rotation, the coher-
ent evolution is driven by the Hamiltonian38

H~�hV 1j i 1h jze tð Þ 0j i 1h jz 1j i 0h jð Þ, ð7Þ

where e(t) is the microwave pulse to induce transitions between qubit
states j0æ and j1æ with an energy difference �hv. Through properly
choosing the pulse e(t), a reliable single-qubit gate, e.g., the
Hadamard transformation (H), can be created. Here, we use the
quantum-process-tomography-based optimal control theory40 to

design the microwave pulse for such a gate (EH) with a process
fidelity of about 94%. We use the first witnessWQ in the form:

WQ : ~ 0 E2Hð Þh i{
X1

n~0

pn EHð ÞV0n EHð Þ
�����

�����, ð8Þ

to show that the process EH creates coherent rotations. When setting
the input state as j0æ, the value of our witness is about WQ<0:45,
which certifies the quantumness of EH.

Quantum transport in quantum dots. Experimentally disting-
uishing quantum from classical transport through nanostructure
remains a critical challenge in studying transport phenomena and
designing quantum electronic devices. As mentioned in the intro-
duction, using time-domain methods to verify quantum coherence,
such as by testing the Leggett-Garg inequality, can be very demand-
ing. We illustrate here how our witnesses are valid in a non-
equilibrium transport situation by modelling single-electron tran-
sport through double quantum dots (Figure 3a). Compared with
the time periods identified by the Leggett-Garg-type approach25,
the quantum witnesses WQ (Figure 3b) and WVmn (Figure 3c) can
detect a much larger quantum coherence window. For WVmn, we
employ the settings Tj: {t0[j,k] 5 [k 1 c9(j – 1)]t0, t[1,k] 5 [k 1 c9(j –
1)]t0 1 tjk 5 1, 2 , 3} for j 5 1, 2. Here c9 is large such that the whole
system is stationary in T2.

Energy transfer in a light-harvesting complex. As an example of the
effect of strong interactions with a bath we use a model from bio-
physics; energy transport in the Fenna–Matthews–Olson (FMO)

Figure 4 | Detecting quantum properties of the FMO complex. Magnitude of the first witnessWQ [Eq. (4) for t 2 t0 5 t] for the FMO complex assuming

the final measurement is done on site m 5 1 of the seven site FMO complex, for both (a) T 5 77 K and (b) T 5 300 K. A detection via our first witness is

clearly visible for an initial evolution greater than t0 5 0.3 ps at 77 K. In comparison, for same parameters we employ for the witness, the LG inequality

only reveals a violation for upto 0.035 ps44. (c) and (d) show the first witness with only limited access, i.e. with only state preparation and measurement on

site 1. Quantum coherence is only detected when p1(t0)V11(t, t0) . ÆQ1(t)æ. In all figures the bath parameters used were c21 5 50 fs and l 5 35 cm21, and

the Hamiltonian is the same as that used in Ref. 8. For the Hierarchy calculation, we used the ‘‘Ishizaki-Tanimura’’ truncation scheme and truncation as

taken at K 5 0 and Nc 5 8 (see Methods, or Ref. 8, for the meaning of these parameters).

www.nature.com/scientificreports
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pigment-protein complex, where there is thought to be significant
system-bath entanglement and coherence8. As mentioned earlier,
this example enables to discuss the issue of whether classical-
correlations between system and bath can cause a violation of our
first witnessWQ (the second witness is not valid in this regime).

In the methods section we impose a classical condition based on an
assumption of a class of classical states. States which violate this
assumption possess coherences (either in the internal system degrees
of freedom, or in the system-bath degrees of freedom, i.e., entangle-
ment). However, to prevent classical correlations between system
and bath from causing a false positive, the propagators Vmn(t, t0)
in our witness (4), which we construct by preparing the system in one
(or more) of its states, must also capture the classical correlations
between system and reservoir present at time t0. In the other exam-
ples we discuss in this work, this is trivial since the system and bath
are always in a product state. However, in systems like the FMO
complex we discuss here, this is not the case. Thus to account for
these correlations when constructing Vmn(t, t0) in a general case we
must do the following: prepare the system-bath product state at t 5 0,
evolve to time t0, and perform a measurement on the system to
project it, without preserving coherence, onto one of it states n.
We then evolve again, retaining the post-measurement system-bath
state, and deduce the propagator by measuring the occupation of the
state m at final time t. If we can do ideal projective (non-coherence
preserving) measurements this accounts for the classical system-bath
correlation loophole (as long as we can consistently prepare the t 5 0
separable system-bath state). If we are doing destructive or invasive
measurements then we must be able to re-prepare the destroyed
system state, at time t0, on a time scale faster than the bath/envir-
onment dynamics. Since there is no need for measurements on
superpositions of basis states, this procedure can be performed with-
out quantum tomography.

We illustrate this with the FMO complex, a seven-site struc-
ture used by certain types of bacteria to transfer excitations from a
light-harvesting antenna to a reaction center. It has been the focus of
a great deal of attention due to experimental observation of apparent
‘‘quantum coherent oscillations’’ at both 77 K and room temper-
ature. To fully capture the non-Markovian and non-perturbative
system-bath interactions of this complex system we employ the

Hierarchical equations of motion7,8, an exact model (given a bath
with a Drude spectral density) valid for both strong system-bath
coupling and long-bath memory time. We use the parameters used
by Ishizaki and Fleming in Refs. 7,8, and in Figure 4 we show how this
model is detected as quantum by our witness WQ, even at room
temperature. We also show, in Figure 4c and 4d, how only partial
information about the terms in propagator is needed to find a detec-
tion at small times, thus reducing the experimental overhead. In
constructing the propagator terms for the sum in Eq. (4) in this case
we discard all coherence terms in the physical density matrix but
retain the state of the bath, as in43. In this way we account for the state
of the bath at time t0, as discussed above. However, accounting for the
classical correlations with the reservoir seems beyond the capability
of current experiments. We also point out that the full witness detects
coherence on timescales greater than t0 5 0.3 ps at 77 K, which is a
much larger detection window than the Leggett-Garg inequality
(0.035 ps) for the same parameters44.

Vacuum Rabi oscillation in a lossy cavity. We now consider a
Rydberg atom placed in a single-mode cavity which is in resonance
with an atomic transition frequency, v0, for an adjacent pair of
circular Rydberg states45 jeæ and jgæ. Let us consider the case when
the cavity field are initially prepared in the excited state jeæ and the
vacuum state j0æp, respectively (denoted by j1æ 5 jeæ j0æp). In this case,
the atom-field state becomes j2æ 5 jgæ j1æp due to spontaneous
emission and then periodically oscillates between the states jeæ j0æp

and jgæ j1æp at the vacuum Rabi frequency vR. If the field irreversibly
decays due to photon loss out of the cavity, the atomfield
stochastically evolves to j3æ 5 jgæ j0æp from j2æ. Summarizing the
above, the time evolution of the atom-field state r can be described
by the following master equation46

d
dt

r~{
i

�h
HJC,r½ �{ k

2
â{ârzrâ{â
� �

zkârâ{ ð9Þ

where HJC~�hVR
2

âszzâ{s{

� �
is the interaction Hamiltonian of

the system. Here k 5 v0/Q, and Q is the quality factor of the cavity.
We now use our second witness to detect the vacuum-Rabi oscil-

lation between the atom and cavity field states. Here we choose the
time-domain set as Tj: {t0[j,k] 5 (k 1 j – 1)t0, t[1,k] 5 (k 1 j – 1)t0 1 tjk
5 1, 2, 3} for j 5 1, 2. Figure 5 shows the value of the witness for
vacuum-Rabi oscillations in a high-Q cavity. Using the experimental
parameters from47, where 2VR?V0=Q, the damped coherent oscil-
lations of the atom-cavity state are detected as quantum by our
second witness. In comparison, for a low-Q cavity, where 2vR ,

Figure 5 | Detecting vacuum Rabi oscillations in a lossy cavity. Here we

use the experimental data reported in Ref. 47 to illustrate coherence-

verification using our second witness Eq. (6). The circular Rydberg states

with principle quantum numbers 51 and 50 for transition v0 5 51.1 GHz

are considered as the states | eæ and | gæ, respectively. The atom-field

coupling is vR/2p 5 47 KHz. For a high-Q cavity with Q 5 7 3 107, the

vacuum Rabi oscillation is detected by use ofWVmn where m 5 n 5 1. As a

comparison we also checked the case when the Q-factor is so low that 2vR

, v0/Q. For such a low-Q cavity (e.g., Q 5 7 3 105), the state evolution is

in the regime of irreversible transitions and obeys the classical constraint

(3). Hence the value of the witness is zero.

Figure 6 | Detecting coherent rotations of photonic qubits. The first

witnessWQ, Eq. (4), adapted from the time-domain to the domain of the

angles of several applied transformations, detects quantum coherence in

almost the whole range of the prepared states r0 (see text) as a function of

different angle settings of wave plates (w, h): 0 # w # p/4 and 0 # h # p/2.
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v0/Q, irreversible spontaneous emission out of the cavity will dom-
inate the state evolution. The value of the witnessWVmn is zero for
this case. The measurements on atom states we require to construct
the witness are experimentally available by using field-ionization
detectors45 for selecting atom states jeæ and jgæ.

Coherent rotations of photonic quantum bits. Photon polarization
states jHæ (horizontal) and jVæ (vertical) have been widely used to
achieve linear optical quantum information processing, quantum
communication, and quantum metrology3,48,49. As a qubit, polari-
zation states can be coherently manipulated by half-wave plates
(HWP) and quarter-wave plates (QWP). Arbitrary qubit rotations
can be performed by using these linear optics elements. Here we will
use our first quantum witnessWQ to detect the quantum coherence
of polarization states created by these rotations. The transformations
of HWP and QWP can be represented by the following50:

Hwp wð Þ~ cos 2wð Þ Hj i Hh j{ Vj i Vh jð Þ

{ sin 2wð Þ Hj i Vh jz Vj i Hh jð Þ,
ð10Þ

Qwp hð Þ~ 1ffiffiffi
2
p i{ cos 2hð Þð Þ Hj i Hh jz iz cos 2hð Þð Þ Vj i Vh j½

z sin 2hð Þ Hj i Vh jz Vj i Hh jð Þ�:
ð11Þ

As a concrete example, one can set a HWP at w 5 p/8 to create a
photonic Hadamard gate Hwp(p/8).

To detect the coherent rotations created by R(w, h) 5

Qwp(h)Hwp(w), we use the first quantum witness to probe the coher-
ence between states jHæ and jVæ. While the witness is originally con-
structed in the time domain, it can be rephrased in terms of the
settings (w, h). Assuming that both the wave plates are perfect and
there is no photon loss in the birefringent crystals of the wave plates,
we have the following correspondences:

Qm w,hð Þh i~tr mj i mh jR w,hð Þr0R{ w,hð Þ
� 	

, ð12Þ

and

Vmn w,hð Þ~ mh jR w,hð Þ nj ij j2, ð13Þ

where r0 is some initial state created by R. Here m 5 H and n 5 V
denote the different measurement basis for the horizontal and ver-
tical polarizations. In this example, we set the initial state as r0 5

R{(w, h) jmæÆmj R(w, h) and then the witness becomes

WQ~j1{
1

16
10z2 cos 4hð Þz2 cos 4h{8wð Þz½ :

cos 8h{8wð Þz cos 8wð Þ�j:
ð14Þ

Figure 6 shows this quantum witness for different prepared states r0,
as a function of the angles h and w.

The usual approach to strictly probe the coherent superposition of
states jHæ and jVæ is via quantum state tomography50. Compared to
such tomographic measurements on single qubit states, which
require three local measurement settings, only one setting of a local
measurement is now sufficient to implement our first witness.

Discussion
In summary, we have formulated a set of quantum witnesses that
allow the efficient detection of quantum coherence, without the re-
striction of non-invasive measurements. Compared to some of the
existing methods, such as the Leggett-Garg inequality or employing
general quantum tomography, our approach can drastically reduces
the overhead and complexity of unambiguous experimental detec-
tion of quantum phenomena, and has a larger detection window. As
illustrated by the five physical examples, these witnesses are robust
and can be readily used to explore the presence of quantum coher-
ence in a wide-range of complex systems, e.g., transport in nano-

structures, biological systems, and perhaps even large-arrays of
qubits used in adiabatic quantum computing51. After this paper went
to press, we became aware of this preprint52, which has related results.

Methods
Proof of equation (1). The quantum two-time state-state correlation ÆQm(t)Qn(t0)æQ

is defined by31:

Qm tð ÞQn t0ð Þh iQ
~trSR rSR 0ð ÞQm tð ÞQn t0ð Þ½ �

~trS Qm 0ð ÞtrR U tð ÞrSR t0ð ÞQn 0ð ÞU{ tð Þ
� 	
 �

,

ð15Þ

where rSR(t0) is the system-reservoir state and U(t) is the system-reservoir evolution
operator for t 5 t – t0. If rSR(t0) is a classical state with no coherent components, then
we have

rSR t0ð ÞQn 0ð Þ~pn t0ð ÞQn 0ð ÞR t0ð Þ ð16Þ

where pn(t0) is the probability of measuring the system state n at time t0 for the
classical mixture rSR(t0), and R(t0) is the reservoir state at time t0 (which in principle
depends on the measurement result Qn if the system and reservoir are classically
correlated, i.e., are separable but in a mixture of product states). Then we have

Qm tð ÞQn t0ð Þh iQ
~pn t0ð ÞtrS Qm 0ð ÞtrR U tð ÞQn 0ð ÞR t0ð ÞU{ tð Þ

� 	
 �
:

The term describing the system’s evolution trR[U(t)Qn(0)R(t0)U{(t)] can be
described by the operator-sum representation21,30:

trR U tð ÞQn 0ð ÞR tð ÞU{ tð Þ
� 	

~
X

j

Ej tð ÞQn 0ð ÞE{
j tð Þ,

where Ej tð Þ~
P

k
ffiffiffiffiffiffi
prk
p

rj
� ��U tð Þ rkj i. The the reservoir state is assumed to be R(t0) 5

Sk prk jrkæÆrkj. Hence the correlation ÆQm(t)Qn(t0)æQ for the system-reservoir classical
mixture at the time t0 is

Qm tð ÞQn t0ð Þh iQ

~pn t0ð ÞtrS Qm 0ð Þ
X

j

Ej tð ÞQn 0ð ÞE{
j tð Þ

( )

~pn t0ð Þ
X

j

V jð Þ
mn t,t0ð Þ

~pn t0ð ÞVmn t,t0ð Þ,

ð17Þ

where Vmn t,t0ð Þ : ~
P

j V
jð Þ

mn t,t0ð Þ is the propagator, i.e., the probability of finding
the state m at the time t when the state at an earlier time t0 is initialized at n.

The Hierarchy model for FMO. The Hierarchy model was originally developed by
Tanimura and Kubo41, and has been applied extensively to light-harvesting
complexes7,8. We will not give a full description here, but will just summarize the main
equation and parameters. It is always assumed that at t 5 0 the system and bath are
separable r 0ð Þ~rS 0ð Þ6rB 0ð Þ, and that the bath is in a thermal equilibrium state

rB 0ð Þ~e{bH Bð Þ
.

Tr e{bH Bð Þ
h i

, b~1=KBT . The bath is assumed to have a Drude
spectral density

Jj Vð Þ~
2ljcj

�h


 �
V

V2zc2
j

, ð18Þ

where cj is the ‘‘Drude decay constant’’ and each site j is assumed to have its own
independent bath. In addition, lj is the reorganisation energy, and is proportional to
the system-bath coupling strength. The correlation function for the bath is then given
by,

Cj~
X?
m~0

cj,m exp {mj,mt
� �

ð19Þ

where mj,0 5 cj, and mj,m 5 2pm/�hb when m $ 1. The coefficients are

cj,0~cjlj cot b�hcj

.
2

� �
{i

� �.
�h ð20Þ

and

cj,m§1~
4ljcj

b�h2

mj,m

m2
j,m{c2

j
: ð21Þ

Under these assumptions, the Hierarchy equations of motion are given by,
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_rn~{ iLz
XN

j~1

XK

m~0

nj,mmm

 !
rn{i

XN

j~1

XK

m~0

Qj,rnz
j,m

h i

{i
XN

j~1

XK

m~0

nj,m cmQjrn{
j,m

{c�mrn{
j,m

Qj

� �
:

ð22Þ

The operator Qj 5 jjæÆjj is the projector on the site j, and for FMO there are seven sites,
thus N 5 7. The Liouvillian L describes the Hamiltonian evolution of the FMO
complex. The label n is a set of non-negative integers uniquely specifying each
equation; n 5 {n1, n2, n3, …, nN} 5 {{n10, n11, .., n1K}, .., {nN0, nN1, .., nNK}}. The density
matrix labelled by n 5 0 5 {{0, 0, 0.…}} refers to the system density matrix, and all
others are non-physical density matrices, termed ‘‘auxiliary density matrices’’. The
density matrices in the equation labelled by n+

j,m indicate that that density matrix is the
one defined by increasing or decreasing the integer in the label n, at the position
defined by j and m, by 1.

The hierarchy equations must be truncated, which is typically done by truncating
the largest total number of terms in a label Nc~

P
j,m nj,m . This value is termed the

tier of the hierarchy. The choice of Nc should be determined by checking the con-
vergence of the system dynamics. Here we also use the ‘‘Ishizaki-Tanimura boundary
condition’’42;

LIT�BC~{
XN

j~1

X?
m~Kz1

cj,m

mj,m
Qj, Qj,rn

� 	� 	
: ð23Þ

This can be summed analytically, which for K 5 0 gives,

X?
m~1

cj,m

mj,m
~

4lj

�h2cjb
1{cj�h cot cj�hb=2

� �h i
b=2

n o
: ð24Þ
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