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Gut Sphingolipid Composition as a 
Prelude to Necrotizing Enterocolitis
B. Rusconi1, X. Jiang2, R. Sidhu  2, D. S. Ory2, B. B. Warner1 & P. I. Tarr1,3

Necrotizing enterocolitis (NEC) remains a major challenge in neonatology. Little is known about 
NEC pathophysiology apart from the presence of pre-event gut dysbiosis. Here, we applied broad 
range metabolomics to stools obtained 1–5 days before NEC developed from 9 cases (9 samples) and 
19 (32 samples) controls matched for gestational age at birth and birth weight. The 764 identified 
metabolites identified six pathways that differ between cases and controls. We pursued sphingolipid 
metabolism because cases had decreased ceramides and increased sphingomyelins compared to 
controls, and because of the relevance of sphingolipids to human inflammatory disorders. Targeted 
analysis of samples from 23 cases and 46 controls confirmed the initial broad range observations. 
While metabolites provided only 73% accuracy of classification by machine learning, hierarchical 
clustering defined a sphingolipid associated grouping that contained 60% of the cases but only 13% of 
the controls, possibly identifying a pathophysiologically distinct subset of NEC. The clustering did not 
associate with any of the analyzed clinical and sample variables. We conclude that there are significant 
changes in sphingolipid metabolism components in pre-NEC stools compared to controls, but our data 
urge circumspection before using sphingolipids as broadly applicable predictive biomarkers.

Necrotizing enterocolitis (NEC) is a devastating necroinflammatory injury of the intestines that affects very low 
birthweight (VLBW) infants. Its 2–7% incidence in high-income countries, treatment (i.e., massive bowel resec-
tion for severe cases), and 22–38% case fatality rates have changed little in four decades1,2. Indeed, NEC is now the 
chief cause of death in VLBW infants who survive the first 14 days of life3. Furthermore, NEC survivors experi-
ence higher rates of functional impairment throughout childhood4. Gestational age at birth, antibiotic treatment 
in the first week of life, and lack of human milk feeding remain the only factors that are consistently associated 
with this event5–7. Prophylactic measures have focused on encouraging use of human milk, probiotics, truncating 
antibiotic use in the first week of life, and holding feeds during transfusions. However, the value of these strate-
gies remains strongly debated, recommendations are under continuous development, and there is considerable 
inter-center variability in implementation3,5,8–16.

Efforts to identify a pre-NEC bacterial signature converge on overabundance of Gram-negative bacilli and 
relative paucity of obligate anaerobic bacteria17–24. This microbial contribution to the development of NEC opens 
new avenues for early intervention, but in view of day-to-day variations in microbial content25, it is difficult to rely 
solely on this measurement in a single specimen as being determinative of risk. Furthermore, microbial content 
does not illuminate host physiology prior to NEC onset. In an effort to elucidate the pathophysiology of NEC and 
possibly identify metabolic markers of at-risk infants, we initiated a broad range metabolomics study, followed by 
targeted metabolomics to confirm the initially identified molecules of interest.

Results
Patient population and clinical variables. Overall, we analyzed samples from 24 infants with Bell’s Stage 
≥II NEC, 5 infants Bell’s Stage I NEC, and 67 controls who were matched for gestational age at birth, birth weight, 
and the day-of-life that samples were produced (see Supplementary Fig. S1). Demographic and clinical data for 
the targeted metabolomics specimen set (Table 1) reflect previous reports for this cohort22,25,26. A set of implicated 
risk factors for NEC, such as transfusions27, feeding5,28, inotrope29, and antibiotic11 use were included in our anal-
ysis to account for possible confounding factors.
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Broad Range Metabolomics of Pre-NEC Stool Samples and Controls. For the broad range analysis, 
we chose stool specimens closest to NEC onset (but not from the day of NEC), but no more than five days preced-
ing NEC onset, from nine cases, and 32 specimens from 19 controls that were matched for day of life of produc-
tion of these specimens (see Supplementary Fig. S1 and Supplementary Table S1). UPLC-MS/MS identified over 
700 metabolites (see Supplementary Table S2), consisting of lipids (n = 312), amino acids (n = 180), carbohy-
drates (n = 50), xenobiotics (n = 91) and other metabolic pathways in these 41 stools. However, only 419 metab-
olites were consistently (i.e., less than 20% missing values) present in all samples and advanced to subsequent 
analysis (see Supplementary Table S2, yellow). We then performed network analysis based on the corresponding 
KEGG biochemical pathway identifier and chemical similarity to visualize changes. A univariate analysis with 
false discovery rate correction of the data highlighted a limited set of pathways that differed significantly between 
the nine case stools and the 32 control stools (Fig. 1). Members of the pregnenolone, carnitine, and sphingolipid 
pathways were over-represented among significant hits (p < 0.05), suggesting nonrandom metabolic alterations 
rather than random noise. Members of the sphingolipid pathway were of particular interest, as they demonstrated 
a metabolic shift towards increased sphingomyelins and decreased ceramides. These changes could arise from 
either decreased degradation or increased production of sphingomyelins. A secondary analysis of the broad range 
metabolic data by a modified principal component analysis (PCA) mainly identified lipid pathways that were 
enriched in significant hits, even after a more stringent Bonferroni correction (see Supplementary Fig. S2). When 

Cases (23) Controls (46) Unit or Classifier

Infant variables

Cluster 14 (60.9%) 6 (13%) SLA-cluster

DOL 24 (18.5–47.5) 23 (17.25–32) days

BW 800 (720–955) 840 (662.5–927.5) grams

GA 25.9 (24.7–27.35) 25.5 (25–27.5) weeks

Gender 9 (39.1%) 15 (32.6%) female

Multiple birth 4 (17.4%) 8 (17.4%)

Delivery 4 (17.4%) 17 (37%) vaginal

NEC variables

Sampling Interval* 3 (13%)/4 (17.4%) 7 (15.2%)/6 (13%) 2,3 days

Stage 6 (26.1%)/17 (73.9%) II, III

Surgical 13 (56.5%)

Outcome 8 (34.8%) 1 (2.2%) death, discharge

Medication variables

Antibiotic exposure % 42.3 (35.6–50.1) 45 (22–64) % of days p.s.

Antibiotics 2 (8.7%) 12 (26.1%) a.s.

Interval Antibiotics % 0 (0-0) 0 (0–53) 7 days p.s.

Transfusion 2 (8.7%) 0 a.s.

Transfusion Volume 46 (18–59) 24 (0–39.8) mL

Transfusion Interval 11 (2.5–15.5) 7.5 (3–18) Days p.s.

Total transfusions 4 (1–6) 2 (0–3) Transfusion events

Iron 3 (13%) 13 (28.3%) a.s.

Iron % 0 (0-0) 0 (0–8.8) % of days p.s.

Iron Interval 0 (0-0) 0 (0-0) d.s.

Inotropes 3 (13%) 5 (10.9%) a.s.

Inotropes % 0 (0–24) 0 (0–7.4) % of days p.s.

Inotrope Interval 11 (1.5–16) 7 (0–14.8) d.s.

Feeding variables

Any HM 15 (65.2%) 31 (67.4%) a.s.

HM & Formula 4 (17.4%) 3 (6.5%) a.s.

HM % 100 (67–100) 100 (89–100) % of days p.s.

Fortifier 16 (69.6%) 30 (65.2%) a.s.

Fortifier % 32 (7.5–63) 67 (0–87) % of days p.s.

HM Interval 15 (65.2%) 29 (63%) 2 days p.s.

HM & Formula Interval 5 (21.7%) 7 (15.2%) 2 days p.s.

Fortifier Interval 8 (34.8%) 29 (63%) 2 days p.s.

Fortifier mix Interval 8 (34.8%) 2 (4.3%) 2 days p.s.

Table 1. Variables Included in HAllA Analysis. Data are median (IQR) or sample size (%). *Days between 
sampling and NEC. p.s.: prior to sampling, a.s.: at sampling, d.s.: days since last treatment prior to sampling, 
HM: Human milk is from any source.
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significant differences in metabolite presence were identified, the cases more commonly demonstrated decreased 
relative abundance of molecules of interest.

NEC has been linked to microbial dysbiosis and intestinal inflammation22,24,30–33, and sphingolipids modulate 
membrane barrier function34 and immune cell trafficking35–39. However, how the altered microbial community 
is established and how the variant community interacts with the immune system remain unclear. Although bac-
terial sphingolipids have been implicated in other gastrointestinal pathologies, they appear to have distinctly 
different profiles and functions from sphingolipids of human origin40. Therefore our broad range data prompted 
us to apply a targeted approach to sphingolipids, based on the initial findings from the broad range analysis, and 
the likelihood that the pathways identified were of host origin.

Targeted Sphingolipids Metabolomics for Classification. We used targeted metabolomics to detect 
14 different ceramides (Cer) and seven different sphingomyelins (SM) in pre-event stools (1–3 days) in our 
expanded analysis of 23 cases and 46 matched controls. Because the broad range analysis was limited by repeat 
sampling in the controls, we included only single time points for each control in the targeted assay and expanded 
the control population. As observed in the broad range metabolic approach, ceramides were significantly lower 
and sphingomyelins significantly higher, in case specimens (Fig. 2). However, the expanded numbers of controls 
(N = 46) did indeed result in a wider range of values. We next considered the possibility that in the enlarged con-
trol specimen set, we inadvertently included infants intolerant of feeds or who even had Stage I NEC, even though 
they were not designated as such. In the event that Stage I NEC cases were unintentionally included, specimens 
from such subjects might have contributed to the lesser effect, if Stage I NEC is on a pathophysiologic continuum 
that progresses to overt NEC. Note that Stage I NEC cases were intentionally excluded from our initial analyses 
and prior publications, as there is no consensus case definition for this entity41. However, targeted metabolomics 
analysis on samples from five infants who soon thereafter developed Stage I NEC and corresponding controls, 
as designated in their medical records, offered no evidence that the control set might have been influenced by 
these minimally clinically affected Stage I NEC cases (see Supplementary Fig. S3). In other words, the stools from 
infants soon-to-be assigned to the category of Stage I NEC had values that fell within the range observed in stools 
from the controls, but not the cases (see Supplementary Fig. S3). This suggests that only Stages II and III NEC are 
associated with changes in sphingomyelins and ceramides, consistent with emerging thinking that feeding intol-
erance and Stage I NEC fundamentally differ from what is currently defined as Stage II and III NEC41,42.

We next asked if the altered sphingolipid profiles could assist machine-learning classification of NEC risk. The 
algorithms were trained on a dataset with known classification (NEC ≥ Stage 2 vs. control). If good specificity and 
sensitivity are achieved, then the model can be validated with a second cohort. We applied seven machine learn-
ing algorithms encompassing diverse approaches. Over the 10 repeated training sessions the k-nearest neighbor 
(KNN) model had the greatest accuracy (73%) based on the 21 sphingolipids (Table 2). However, the resulting 
greater standard deviation and false positive rates (see Supplementary Table S3) generated in cross-validation lead 
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Figure 1. Network analysis of fecal lipid metabolites from NEC cases and controls. Broad range assay 
metabolites detected and clustered based on biochemical (KEGG) and chemical similarity (PubChem) 
connections (blue lines) denote a high density of significant changes (p < 0.05) in members of the sphingolipid 
and pregnenolone pathways Lipids that significantly changed between cases (1–5 days prior to NEC onset) and 
controls are in yellow (p < 0.05) and grey (p < 0.1). Statistical significance was determined by two-sided Welch’s 
test with Benjamini Hochberg (BH) correction for multiple comparison. Grey triangles represent lipids with 
>20% missing values, squares represent lipids decreased in cases, and circles represent lipids that are increased. 
Lipids with limited or no network connection are depicted as individual points in the right lower quadrant of 
the figure.
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us to conclude that the model based on sphingolipids does not currently offer sufficient discriminatory power to 
identify all cases of NEC, an attribute that would be needed for further development of biomarkers.

Because the mechanisms underlying NEC development remain poorly understood, and given the wide range 
detected for some of the sphingolipids, we decided to pursue the possibility that sphingolipids might play a role 
in only a subset of the cases. To test this hypothesis, we used hierarchical clustering with average linkage of all 
the sphingolipids based on Manhattan distance and identified a large cluster of 14 cases with six controls (Figs 3 
and 4). The sphingolipid associated (SLA) cluster was retained when including the additional controls and NEC 
Stage I cases (see Supplementary Fig. S4). Only one case (SL26) and its corresponding controls were lost from 
the SLA-cluster after adding the ten additional samples. As noted above, the NEC Stage I samples had profiles 
resembling those of samples from controls (see Supplementary Fig. S4).

The SLA-cluster did not include all NEC cases, so we wanted to confirm that the clustering was not associ-
ated with other clinical or sample variables. To address that concern, we performed a hierarchical all-against-all 
association (HAllA) of clinical and sample variables (Table 1) with the SLA-cluster status43. The SLA-cluster did 
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Figure 2. Targeted sphingolipid detection in pre-event stool. (a–c) scaled peak area ratios of ceramides to 
internal standard ceramide (Cer17:0). (d,e) scaled peak area ratios of sphingomyelins to deuterated internal 
standard sphingomyelins (SM18:1-d9). Scatterplot of scaled values with median and interquartile range were 
compared by two-sided Welch’s t-test with BH multiple test correction (p < 0.05). Black circles represent 
controls and grey circles represent cases.
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not associate significantly with any other variables (Fig. 5a). However, significant associations were found between 
NEC related variables (Stage, Surgery required), while all other clusters had similarity scores below 0.5 (Fig. 5a, see 
Supplementary Table S4). As the SLA-cluster consists mainly of cases, we sought to control for possible variable 
associations that might only be seen within the pre-disease state. When HAllA was run with only the NEC cases, 
we observed no associations with the hierarchical clustering pattern, but there were significant associations with a 
similarity score above 0.5 for the temporally stratified variables (Fig. 5b, see Supplementary Table S5). We would 
like to note that 10 of the 13 cases who underwent surgery had histological confirmation of NEC (in three infants 
the laparotomy did not yield tissue as the surgeon believed that the extent of the injury was incompatible with sur-
vival), but there was no significant enrichment of surgical cases in the SLA-cluster. Because HAllA attempts to group 
variables that are related to each other, it can identify combinations of variables that associate with the cluster. We 
therefore consider that the sphingolipid-driven clustering of most of the cases points towards a role of sphingolipids 
in the development of NEC that cannot be attributed to changes in clinical or sample variables available to us. The 
hierarchical clustering profile (SLA-cluster, vs remaining samples) was used for classification by machine learning, 
as previously performed with NEC phenotype. The accuracy of all models was much greater (90–96%) and with 
smaller standard deviation than for NEC classification except SVMradial (76%) (Table 3). In addition, the false 
negative and false positive rates were <10% for most models (see Supplementary Table S6).

Discussion
Multiple studies have attempted to identify biomarkers for NEC (reviewed in44), but no target has advanced to 
clinical practice. However, timing of the production of the samples analyzed has been problematic. Some bio-
marker studies used samples collected at NEC diagnosis in attempts to differentiate the clinical deterioration of 
NEC from that caused by septicemia45–47, while other data are derived from specimens obtained up to several 
weeks before the event48. NEC generally occurs within a two-month interval of life, and >90% of very preterm 
infants do not develop NEC. Hence, considerable infrastructure is required to accrue large numbers of stool 
samples in anticipation of NEC, but the reality is that only a small subset of infants will experience this outcome, 
and that this outcome could occur over many weeks. Also, few studies incorporated host variables other than 
gestational age at birth and age of sample collection.

Our study’s size, and the ability to compare stools from children who soon thereafter developed NEC to stools 
from well-matched controls, enabled us to examine multiple confounding factors that could influence biomarker 
association with NEC. We were also able to choose specimens from a highly instructive interval obtained only 
several days prior to the event. These attributes partially overcame the limitations of prior studies and increased 
confidence that the perturbed gut sphingolipid metabolism in the interval preceding NEC, compared to matched 
controls, is relevant to NEC pathogenesis.

Sphingolipids are important components of the cell membrane. They regulate intestinal tight junction integ-
rity and could mediate injurious host response to this dysbiosis34. Disrupting the mucosal barrier could increase 
bacterial translocation and subsequent tissue injury. Altered sphingolipid metabolism increases intestinal perme-
ability and exacerbates experimental colitis34,49. In addition, sphingosine-1-phosphate is an important mediator 
of lymphocyte trafficking and regulates tissue injury in inflammatory bowel diseases50–56. Mouse models with 
different mutations of key enzymes of the sphingolipid pathway demonstrate their harmful49,53,57,58 and protec-
tive59 effects in colitis and colon tumor development. Moreover, compared to other gut metabolites, the source 
of sphingolipids can be mainly attributed to the host, as only few bacterial taxa produce sphingolipids60. Multiple 
modulators and bioactive sphingolipids are currently in clinical trials for gastrointestinal diseases61,62 and might 
hold value for preventing NEC. The presence of higher levels of sphingolipids might also be related to their 
reported bactericidal activity against multiple Gram-negative and Gram-positive bacteria63 and indirectly by 
affecting NOD2 recruitment and subsequent innate immunity response64.

Rank

Iteration 1 2 3 4 5 6 7

1 JRip KNN PLS J48 NB RF SVMradial

2 KNN JRip NB PLS RF J48 SVMradial

3 KNN PLS JRip J48 NB RF SVMradial

4 KNN PLS JRip NB J48 RF SVMradial

5 KNN PLS J48 JRip NB RF SVMradial

6 KNN J48 JRip PLS RF NB SVMradial

7 KNN PLS NB JRip J48 RF SVMradial

8 KNN PLS JRip NB J48 RF SVMradial

9 KNN JRip PLS NB J48 RF SVMradial

10 KNN PLS JRip J48 NB RF SVMradial

Total KNN PLS JRip NB J48 RF SVMradial

Average Accuracy 75 ± 15 72 ± 16 71 ± 17 70 ± 17 69 ± 17 68 ± 17 57 ± 19

Average ROC 77 ± 21 77 ± 23 70 ± 18 75 ± 22 71 ± 20 78 ± 18 65 ± 25

Table 2. Ranking of Machine Learning Models for NEC Classification. KNN: k-nearest neighbor, PLS: partial 
least squares, RF: random forest, NB: naïve Bayes, SVMradial: support vector machine radial, J48: C4.5-like 
decision algorithm, JRip: repeated incremental pruning algorithm, ROC: receiver operating characteristic.
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However, despite this large sample size and strategically focused interval of analysis, i.e., 1–3 days before 
NEC developed for the targeted assays, we encountered considerable data dispersion around the median val-
ues in the control samples. This hindered our ability to generate a machine learning classification model with 
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Figure 3. Hierarchical clustering of pre-NEC and control samples. Detected sphingolipids were used for 
Manhattan distance calculation and hierarchically clustered according to average linkage. More than half the 
cases cluster separately from 86% of the controls. None of the tested clinical and sample metadata associated 
with the sphingolipid associated NEC cluster (SLA). NEC Stage II is in orange and Stage III in yellow. When 
samples were not available 1 day before onset closest sample was selected (2d green, 3d light green). Delivery 
corresponds to vaginal delivery and gender to female. Infants with mixed feeding (human milk and formula) are 
represented in light purple. Matched Gestational age (GA) at birth (+/−1 week), day of life (DOL, = /−1), and 
birthweight (BW) are represented as heatmaps.
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sufficient accuracy to apply to at-risk infants. We cannot attribute the wide range of sphingolipid concentrations 
(see Supplementary Fig. S2) to a subset of the controls having unrecognized NEC I disease, because specimens 
from infants that were designated as having NEC I had sphingolipid and ceramide profiles that resembled the 
profiles from the control specimens. This finding, however, suggests that NEC Stage I is probably not on the same 
continuum with NEC Stages II and III41,42.
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Interestingly, more than half of the cases clustered into a subgroup that we could not attribute to any 
other clinical variable. This cluster contained only a limited number of controls and performed very well in 
machine learning. Sphingolipids could still be valuable for monitoring of at least a subset of NEC cases, as the 
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Figure 5. Heatmap of similarity for metadata generated by HAllA. (a) No variables had similarities scores 
>0.5 with the SLA-cluster. Other variables that are associated (case status, Stage of NEC and Surgery) are as 
expected, as each relates to the disease status; Birthweight, gestational age (GA) at birth, and day of life (DOL) 
sample was obtained created a cluster as they were fixed for during control selection. All other associations 
are from temporally stratified feeding and medication information. (b) Within cases alone no given variable 
tested associated with the SLA-cluster. Similarity scores for metadata are visualized in a heatmap generated with 
corrplots in R. Size and color of circles represent similarity score values.
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sphingolipid-based clustering is highly enriched in pre-event samples. Nevertheless, our data suggest that a com-
bination of sphingolipids with other clinical or possibly metabolic variables should be pursued to better capture 
the at-risk population at large.

We considered that the differences in sphingolipids could be related to dietary differences between cases and 
controls, but we found no association between NEC and feeding variables, such as presence of human milk or 
fortifier. Hence, this strengthens the case for an endogenous over a dietary source of the altered gut sphingolip-
ids. We also recognize that dietary sphingolipids might be relevant to NEC development as they can alter gut 
microbiome composition65,66. Additionally, gangliosides (glycosphingolipids) in colostrum protect against intes-
tinal injury in animal models67,68. Colostrum was systematically used for initial feedings, although not separately 
recorded from human milk. However, only three cases and corresponding controls were collected before the first 
two week of life, a time when most available maternal colostrum is depleted. None of the early time point (<2 
weeks) controls and only two of the cases fell within the SLA-cluster (Fig. 3). Therefore, colostrum is unlikely to 
have contributed to findings, but we cannot unequivocally exclude this possibility, either.

We wish to acknowledge some limitations to our data. First, an analysis of the St. Louis cohort22 identified 
a dysbiotic state consisting of over-represented Gammaproteobacteria and under-represented Negativicutes 
prior to NEC onset. The analysis did not identify bacteria capable of producing sphingolipids. However, a direct 
comparison of the microbial community in samples obtained just before onset was not performed and there-
fore we cannot completely exclude contributions by the microbiota to the fecal sphingolipid pool. We plan to 
address this possibility by performing extended 16 S and metagenomic analysis to confirm that there is minimal 
or no potential to synthesize sphingolipids in the microbial population. Bacterial sphingolipids are highly rele-
vant to the developing gut as they modulate invariant natural killer T cell activation and presence in the gut37,69. 
Simultaneously, we will attempt to determine if altered sphingolipid levels have effects on the microbial com-
munity. Imbalances in sphingolipid metabolism could drive the dysbiotic state observed prior to onset, either 
by directly affecting the bacteria or through their signaling function in the immune response. Another potential 
limitation is that we focused on stool. While it seems logical to seek biomarkers in specimens that have just passed 
through the organ of interest, i.e., the infant gut, the possibility exists that blood or urine are more appropriate 
substances for such analyses. However, the difficulties of acquiring blood or urine from preterm infants compared 
to stool limits their applicability to biomarker studies in a prospective context. Finally, we made a strategic deci-
sion to study materials obtained several days before the event, postulating that this proximal pre-NEC interval 
would have the greatest yield in a search for biomarkers. Though it seems unlikely, we cannot exclude the pos-
sibility that informative but ephemeral biomarkers are present well before then, i.e., hit-and-run indicators of 
subsequent development of NEC.

Most current analyses of complex biologics such as stools rely on nucleic acid sequencing, and the readouts 
of such analyses have limitations. Specifically, microbial DNA sequences can only infer the metabolic capacity 
of a polymicrobial substance, and microbial and host mRNA sequences reflect transcriptional physiology but 
do not account for subsequent gene product modification or activation. Our work exemplifies the opportuni-
ties of applying broad range metabolomics technology to such analytes. Most notably, by identifying molecules 
associated with sphingolipid pathways, one gains confidence that the process actually plays a role in the pheno-
type of interest. However, metabolomics analyses pose challenges, as broad range screens are not quantitative, 
per-specimen cost is high, and the resulting data require considerable computational interrogation to detect asso-
ciations. Moreover, validation of presence of the pathway suggested by broad range metabolomics and scale-up 
to larger specimen sets depend on assays that are specific to the molecules of interest, and which are often more 
complex than PCR quantification of mRNA abundance.

Rank

Iteration 1 2 3 4 5 6 7

1 PLS RF KNN JRip J48 NB SVMradial

2 PLS KNN RF JRip NB J48 SVMradial

3 PLS RF KNN JRip J48 NB SVMradial

4 PLS KNN RF JRip J48 NB SVMradial

5 PLS RF KNN JRip J48 NB SVMradial

6 PLS RF KNN JRip NB J48 SVMradial

7 PLS KNN RF JRip NB J48 SVMradial

8 PLS RF KNN NB JRip J48 SVMradial

9 PLS RF JRip KNN J48 NB SVMradial

10 PLS KNN RF JRip J48 NB SVMradial

Total PLS RF KNN JRip J48 NB SVMradial

Average Accuracy 96 ± 8 93 ± 9 93 ± 9 92 ± 10 90 ± 11 90 ± 11 76 ± 16

Average ROC 99 ± 4 99 ± 3 98 ± 6 93 ± 10 92 ± 10 97 ± 7 98 ± 5

Table 3. Ranking of Machine Learning Models for SLA-Cluster Classification. KNN: k-nearest neighbor, PLS: 
partial least squares, RF: random forest, NB: naïve Bayes, SVMradial: support vector machine radial, J48: C4.5-
like decision algorithm, JRip: repeated incremental pruning algorithm, ROC: receiver operating characteristic.
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In summary, our data suggest that sphingolipid metabolism is worthy of pursuit in animal models of early life 
gut injury that resemble NEC. However, in view of the many challenges of obtaining and analyzing specimens 
with predictive value for subsequent development of NEC, biomarker discovery is likely to remain an elusive goal.

Methods
Participants. The specimens used in this study were acquired from a prospective cohort study at St. Louis 
Children’s Hospital (SLCH). Before specimen acquisition and enrollment, a written informed consent was 
obtained from parents. The study was approved by the Washington University Human Research Protection Office. 
Specimen management and case definition have been described previously22,25,70. Briefly, only preterm infants 
with birthweights ≤1500 g hospitalized at the SLCH neonatal intensive-care unit were enrolled after obtaining 
written informed consent from their parents. Stool was collected until discharge. Cases were defined as infants 
with Bell’s Stage II or III NEC, who had no congenital heart defects or spontaneous intestinal perforation, unless 
there was subsequent radiographic confirmation of necrotizing enterocolitis. In this study, we used study par-
ticipants from Warner et al.22 (see Supplementary Fig. S1, Supplementary Table S1). Controls were matched by 
gestational age at birth (+/−1 week), birthweight (+/−100 g) and day of life (+/−1 day). Controls with bacterial 
bloodstream infections, congenital heart defects or spontaneous intestinal perforation were excluded.

During study design for some of the participants repeated samples were selected to determine temporal 
changes in metabolites. From this cohort we included in the broad range metabolomics analysis the specimen 
from each case that was closest to the onset of NEC (one sample per case), limited to the one to five-day win-
dow before NEC developed (see Supplementary Table S1). We did not analyze stools obtained on the day NEC 
occurred, because we wanted to avoid specimens from infants in which NEC was already evolving. From the 
matched controls, we analyzed stools produced on, or, if necessary, within five days before, the day of life on which 
NEC occurred in the corresponding case (see Supplementary Table S1). For the follow-up targeted metabolomics, 
we expanded the set to a total of 23 pre-event stools matched to 46 additional control stools (see Supplementary 
Fig. S1, Supplementary Table S1). Pre-NEC stools were selected according to availability, but within a window 
of one to three days prior to the event. Controls were matched as for the broad range metabolomics analysis at 
the same day of life as the case (one sample per case and control study participant), except for one sample due to 
limited stool availability. In all situations, we did not use samples where the remaining stool was <2.5 g. Also, in 
no case did we sample on the day NEC was diagnosed.

Broad Range Metabolomics. Metabolon (Durham, NC) performed broad range metabolomics as 
published71. A detailed description of the extraction and processing is provided in supplementary mate-
rial. Briefly, fractions from pre-event stools samples were subjected to four different ultra-performance liquid 
chromatography-tandem mass spectrometry (UPLC-MS/MS) conditions to detect acidic, basic, and hydropho-
bic compounds in both positive and negative modes. The detected compounds were compared to the proprie-
tary metabolite database containing more than 30,000 curated entries. Identified metabolites were reported as 
area-under-the-curve and used for statistical analyses.

Analysis of Broad Range Metabolomics. Statistical interrogations were performed in R72. Metabolites 
with >20% missing values were excluded from analysis. Peak area ratios were subjected to probabilistic quantile 
normalization (PQN) according to Di Guida et al. for univariate analysis73. Normalized data were compared by 
a two-sided Welch’s test with false discovery rate correction and fold changes. A metabolic network was built in 
MetaMapR based on KEGG and PubChemID information74. Edges were imported in Cytoscape and visualized 
with p-values and fold change75. To identify pathways that were enriched in changes between cases and controls 
we adapted the GSEA-PCA method used by Morgan et al. to metabolites76. The GSEA matrix was replaced with a 
metabolite matrix based on KEGG modules relationships. After removing metabolites with >20% missing values 
and PQN normalization, remaining missing values were imputed with random forest. Metabolites with variances 
in the two lowest quantiles were removed. We performed a PCA of the metabolites that included underlying 
pathway information. Components with at least one metabolite in the pathway passing the Benjamini Hochberg 
(BH) corrected p-value were visualized in a heat-map.

Targeted Metabolomics. A 10 mg stool aliquot was suspended in 2% CHAPS (Sigma-Aldrich). Ceramide 
C17 (Avanti Lipids) (20 μg/sample) and sphingomyelin 18:1-d9 (Avanti Lipids) (0.2 μg/sample) in methanol were 
added as internal standards. We precipitated proteins by vigorously shaking the suspension (3 min) followed 
by centrifugation (10 min, 9,000 g). The supernatant was phase extracted by the Bligh-Dyer technique77 using 
methanol:chloroform:0.5 M NaCl (1:1:1) and vigorous shaking (3 min), followed by centrifugation (10 min, 620 g 
at 4 °C). The chloroform phase was aspirated, desiccated with N2 and resuspended in methanol:chloroform (9:1). 
A fraction of each sample was pooled for quality control (QC). The QC pool was injected six times in the begin-
ning of a run to stabilize the instrument, and again once between every ten study samples. Sphingolipids with a 
CV < 15% in the QC sample were reported. Sphingolipids were measured with a Shimadzu 10 A HPLC system 
and a Shimadzu SIL-20AC HT auto-sampler coupled to a Thermo Scientific TSQ Quantum Ultra triple quad-
rupole mass spectrometer operated in SRM mode under ESI(+). Data processing was conducted with Xcalibur 
(Thermo Fisher). The relative quantity of each detected sphingolipid was reported as a peak area ratio.

Statistical Analysis and Machine Learning of Sphingolipids. Peak area ratios for each sphingolipid 
were scaled in R for improved visualization72. Statistical significance by two-sided Welch’s t-test corrected for mul-
tiple comparison with BH method was determined in R. Data were visualized with GraphPad Prism 7 (GraphPad 
Software). Unscaled data were used for hierarchical clustering based on Manhattan distance with average link-
age in the specmine package78. Hierarchical clustering was visualized with metadata in Evolview79,80 and as 
heatmap with the gplots package v. 3.0.181. Resulting clusters were used for classification in machine learning and 
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compared to NEC status-based classification. Required normalization was performed by autoscaling the sphin-
golipid levels. The following machine learning algorithms were tested: PLS, J48, JRip, SVMradial, RF, NB, KNN. 
We modified the training functions in the specmine package in R to account for downsampling and used 10 fold 
cross-validation78. The analysis was repeated 10 times with set seeds to determine reproducibility. We used accu-
racy and confusion matrices to rank the tested algorithms, and Hierarchical All-against-All association testing 
(HAllA)43 to determine associations among clinical variables for cases only or the complete dataset. Similarity 
values were visualized with a modified corrplot in R82. Table 1 provides an overview of the clinical and sample 
variables applied in HAllA. Dimensions were reduced by medoid decomposition (see Supplementary Table S7) 
and analyzed by normalized mutual information. Targeted metabolomics data are available from the correspond-
ing author on reasonable request.

Disclosures. P.I.T. MediBeacon (consultant, Scientific Advisory Board, equity), co-inventor of patent relevant 
to transcutaneous monitoring of fluorophores to measure gut permeability and potential recipient of royalty pay-
ments from this technology. All other authors have no disclosures.
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