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It is currently unclear if damping plays a functional role in legged locomotion,
and simple models often do not include damping terms. We present a new
model with a damping term that is isolated from other parameters: that is,
the damping term can be adjusted without retuning other model parameters
for nominal motion. We systematically compare how increased damping
affects stability in the face of unexpected ground-height perturbations.
Unlike most studies, we focus on task-level stability: instead of observing
whether trajectories converge towards a nominal limit-cycle, we quantify
the ability to avoid falls using a recently developed mathematical measure.
This measure allows trajectories to be compared quantitatively instead of
only being separated into a binary classification of ‘stable’ or ‘unstable’. Our
simulation study shows that increased damping contributes significantly to
task-level stability; however, this benefit quickly plateaus after only a small
amount of damping. These results suggest that the low intrinsic damping
values observed experimentally may have stability benefits and are not
simply minimized for energetic reasons. All Python code and data needed
to generate our results are available open source.
1. Introduction
Compliance is a defining characteristic of runningmotion [1], andmodels of run-
ning often include idealized springs. One of the most popular models is the
spring-loaded inverted pendulum (SLIP)model [2]. Despite its simplicity, its par-
ameters can be fit to closely emulate the ground reaction forces and centre-of-
mass (CoM) kinematics of steady running in humans [3] and other animals [4].
Daley & Biewener [5] used the SLIP model to explain how well birds could
run over an unexpected step-down perturbation. Guinea fowl were habituated
to run over a level runway, after which a pothole camouflaged with tissue paper
was introduced. Despite the unexpected perturbation, the birds did not stumble
and fall. Because the duration of the step in the pothole was so short, the research-
ers concluded that the birds remained in open-loop control: they did not react or
re-plan, but executed the step as if still running on level ground.

Even though damping effects are often observed in animal movement [6–8],
they are only seldomly included in models. Birn-Jeffery et al. [9] included damping
in a modified SLIP model and found that this leads to more accurate predictions of
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Figure 1. The DASLIP model extends the classical SLIP model with a
damper-actuator module.
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ground reaction forces in running birds. Similar observations
have also been made with other damped models [10].

Damping elements are sometimes added to SLIP-based
models to study energy-injecting controllers [11–13]. These
studies, however, focus on the stabilizing effects of the presented
controllers and their potential applications in robotics. Shen &
Seipel [14] studied the passive stability of a SLIP-like model
with a viscous damper placed in parallel to the spring and
driven by a constant hip-torque during stance to compensate
for energy dissipation. They found that increasing damping
and hip-torque tends to improve the stability of their model,
though not at very small values of damping. This is likely
owing to the unrealistic non-zero damping force at touch-down,
which they addressed in a subsequent model [10]. Their study
analyses the model’s open-loop stability, which may not capture
important aspects of animal motion, as we discuss below.

Classical definitions of stability are based on the analysis of
equilibrium points or limit-cycles and hinge on the notion of
convergence. An equilibrium point (limit-cycle) is stable if
nearby points (orbits) eventually converge towards it, and
unstable if they diverge. Locomotion is often thought of as a
limit-cycle, which allows a wealth of mathematical tools to be
used for analysis [15–19]. However, Birn-Jeffery et al. [9] suggest
that convergence may not be a task-level priority for running
birds. Moore et al. [20] suggest that animals may even choose
to prioritize unsteady motion to thwart would-be predators
and also observe that bipedal Jerboas often switch between
different gaits for the same speed. Humans are observed to
show significant step-to-step variability even when moving at
a fixed speed on a treadmill [21–23].

We define task-level stability as the ability to avoid falling.
This definition of stability is less restrictive than definitions
that require convergence and does not conflict with other
task-level priorities. We show the influence that damping
has on how robustly a model can maintain task-level stability.
To quantify this robustness, we use a measure of viability,
developed in Heim et al. [24] and presented below.
2. Materials and methods
(a) Measure of viability
Intuitively, the measure of viability quantifies how easy it is to
avoid ever failing, which in our context corresponds to the
body hitting the ground, i.e. falling.

A system is said to be in an unviable state if it is impossible to
avoid falling within finite time, regardless of the control inputs
chosen [25]. If the state is viable, on the other hand, there must
exist at least one control input that takes the system to another
viable state, and falling can be avoided forever by continuing
to apply a viability-maintaining control input.

Because of this recursive property, viability can be evaluated
on a single step, and heuristics such as steps-to-falling can
be avoided [12,16]. Since viability only requires the ability
to avoid falling, it does not impose strong requirements such
as limit-cycle convergence [3,10,17,26].

The measure of viability is the n-dimensional volume of con-
trol inputs that keep the model viable. In our model, shown in
figure 1, the leg angle-of-attack during flight is the only active
control input; the measure is, therefore, the range of angles that
keep the state viable. If the measure is zero, the state is unviable
and the system will inevitably fall within a finite number of
steps, no matter which angle is chosen. The greater the measure,
the more robust the model is to imprecise control, regardless of
whether this imprecision is owing to noisy motor-control, pertur-
bations, or other causes [27–30]. Indeed, if the measure is too
small, the model may not be able to robustly avoid falling,
even if it is theoretically possible.

For a given system,we can pre-compute thismeasure for every
state with an iterative algorithm. For nonlinear systems, the com-
putational cost of this algorithm currently scales exponentially
with the number of states and control inputs, and studies
are therefore limited to low-dimensional models. The results pre-
sented here require roughly a full day of computation on a 24-core
desktop. For mathematical and algorithmic details, see [24,31].
The Python code for computing this measure and all results in
this paper is available in the electronic supplementary material
[32] and online at github.com/sheim/vibly.

(b) Experiment
Inspired by the guinea fowl experiments of Daley and Biewener [5],
we test for the ability to avoid falling after an unexpected ground-
height perturbation. We start by finding a nominal limit-cycle to
represent running over level ground. Then, we repeatedly simulate
a single step from one flight apex to the next, keeping the damping
coefficient and initial states fixed while sweeping through a range
of ground-height perturbations. Since the ground-height pertur-
bation is assumed to be unexpected, all control inputs are applied
as if running on level ground. We then evaluate the pre-computed
measure of viability at the apex state after the perturbed step and
use this measure to compare different trajectories.

This battery of simulations is repeated for a range of damp-
ing values. Finally, we compare the viability measure after the
perturbation, but with different amounts of damping.

(c) Model
We refer to our model, shown in figure 1, as the DASLIP model
since it extends the SLIP model with a damper-actuator module.

As in the standard SLIP model, a point mass with coordinates
(x, y) and mass m represents the body, and a massless leg with
length ‘ represents the leg.During flight, the leg is held at a constant
angle-of-attack α, and the motion of the point mass is only affected
by gravity. During stance, it is additionally affected by the leg force
Fleg. The equations of motion of the CoM are given by:

x ¼ � Fleg
m

sina

and y ¼ Fleg
m

cosa�mg:



Table 1. Parameters.

name symbol value
normalized
value

parameters

mass m 1.37 kg

spring resting

length

‘k 19.4 cm 0.9 ‘0

spring stiffness k 840.4 N m−1 13.6 mg/‘0
landing angle of

attack

α 34.1°

states

height at apex y0 19.6 cm 0.9 ‘0
velocity at apex _x0 2.7 m s−1 12.3 ‘0/s

damper-actuator

module length

‘A 2.2 cm 0.1 ‘0
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In the SLIP model, the massless leg is composed of a
spring with resting length ‘k and stiffness k, such that the
leg force is determined solely by the spring compression:
Fleg;SLIP ¼ k(‘� ‘k). In our model, the system state is extended
with the length ‘A of the damper-actuator module. This module
is placed in series with the spring, such that:

Fleg ¼ k(‘� ‘A � ‘k):

This module is composed of a time-dependent force source
f (t) in parallel to a viscous damper with coefficient β, such that
the total force of the module, FDA, is given by:

FDA ¼ f(t)� b _‘
A
:

The dynamics of ‘A are found by resolving the force balance
between the module and the spring, FDA ¼ Fleg:

_‘
A ¼ f(t)� Fleg

b
:

We set the time-dependent force source f (t) such that the
DASLIP model exactly follows the nominal limit-cycle of a
SLIP model with the same initial states and parameters. This is
achieved by matching f (t) to the force profile of the SLIP
model. In the absence of perturbations, f (t) holds the module
length ‘A fixed, and the damper has no effect. When encounter-
ing a perturbation in ground-height h, the spring force will no
longer be matched by f (t), the module length ‘A will change,
and the damper will counteract this displacement.

The damping coefficient β must be greater than zero, but it
can be set arbitrarily small. With infinitesimal damping, the
total leg force will approach that of the open-loop actuator. By
setting an infinitely high damping coefficient, the damper will
resist all movement of the damper-actuator module, locking it
in place. In this limit, the model behaves exactly like the SLIP
model, also when perturbed.

While the SLIP model subsumes the entire leg behaviour into
a massless spring, the DASLIP abstracts the muscles and tendons
separately as the damper-actuator module and the spring,
respectively. The damper-actuator module has two important
properties of muscle: it develops little force unless activated
and it has intrinsic damping [6]. We have modelled tendon as
an idealized spring [33] in series with the damper-actuator
module to mimic the topology of biological muscle and tendon.

For the simulations described above, we assume open-loop
running during the perturbed step, and therefore no active control
inputs. To pre-compute the viability measure, however, we need
to define the control inputs that the model may choose in sub-
sequent recovery steps. We define as control input the angle of
attack α, which can be instantaneously reset during the flight
phase. Both experimental observations [5] and model simulations
[26,34] indicate α has an important influence on the CoM motion,
making it a natural choice.

For the sake of computational tractability, we do not include
additional control inputs to modulate f(t), though this would argu-
ably also be a realistic control input available to the bird. Instead,
we automatically shift the profile of f(t) so it always coincides
with touch-down, which is determined by the control input α. In
other words, we use a single control input to determine both the
leg angle and muscle activation. The validity of this modelling
choice is sensitive to the nominal limit-cycle, since this determines
the shape and duration of f(t). In our experiments, this shift results
in a reasonable force profile for the controlled recovery steps.

(d) Choice of parameters
For the nominal limit-cycle, we use recorded data of a guinea
fowl running over level ground, which was kindly provided by
Monica Daley from a previous study [35]. We use averages of
all steps of a single trial over level ground. We define the virtual
leg length ‘0 as the distance between the bird’s CoM and foot at
touch-down. This length is used to determine the spring resting
length ‘k and initial muscle length ‘A at a 9 : 1 ratio, and to nor-
malize results. We also use these averages to determine the
remaining initial and all remaining parameters except for
spring stiffness. We then numerically fit a spring stiffness k
that produces limit-cycle motion for an equivalent SLIP model.

For the results shown, we use the parameters in table 1.
3. Results
In figure 2,wevisualize the simulated trajectories for two specific
values of damping: in (i) b ¼ 0:498k

ffiffiffiffiffiffiffiffiffi
‘0=g

p ¼ 58:8 Ns m�1 and
in (ii) b ¼ 0:007k

ffiffiffiffiffiffiffiffiffi
‘0=g

p ¼ 0:8 Ns m�1. In figure 2c, we visual-
ize the viability measure for all simulations: each line
corresponds to a battery of ground-height perturbations for a
specific damping value β.

At the right edge of figure 2c, the apparent cliff in viability
measure is owing to the model stumbling on the raised
ground. On the left side, the maximum step-down pertur-
bation from which recovery is possible is smaller for lower
damping values. More importantly, the overall viability
measure is low, even for the nominal limit-cycle. As the damp-
ing value is increased from 0.007 to 0:498k

ffiffiffiffiffiffiffiffiffi
‘0=g

p
, the range of

recoverable step-down perturbations roughly doubles from
9% ‘0 = 2.0 cm to 21% ‘0 = 4.5 cm. More importantly, the via-
bility measure also increases substantially, for the nominal
limit-cycle trajectory, from 9.4° to 19.5°.

Further increasingdamping continues to increase the largest
step-down perturbation. However, the increase in viability
measure slows down rapidly. Indeed, when increasing the
damping value up to 1:35 k

ffiffiffiffiffiffiffiffiffi
‘0=g

p ¼ 159:7 Ns m�1, the maxi-
mum viability measure saturates at 18°, and the range of
perturbations that reach thismaximum, the ‘plateau’ in figure2c,
only increases marginally.
4. Discussion
The DASLIP model extends the classical SLIP model with a
damper-actuator module in the leg, as an abstract
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cycle trajectories over level ground are coloured in black. Trajectories for step-up and step-down perturbations are coloured blue and red, respectively. The ground-
height for perturbations is also coloured starting from the point-mass position at touch-down until take-off. For clarity, unviable trajectories are not visualized. At the
end of the step, we also visualize the viability-maintaining control inputs for the nominal limit-cycle, colourized according to the viability measure. In (c) we
visualize the viability measure (vertical axis) at the apex reached after each ground-height perturbation (horizontal axis), where each line corresponds to a specific
damping value β.
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representation of muscle activation and damping. The damp-
ing coefficient allows us to smoothly blend between two
different leg models: a feed-forward force source when
damping tends to zero and an idealized spring when damp-
ing tends to infinity. For limit-cycle running on level ground,
these two models (and all combinations) behave in the same
way owing to the choice of the time-dependent force source f(t).

Faced with unexpected ground-height perturbations, our
model showed poor robustness when minimally damped.
Increasing the damping coefficient increases both the viabi-
lity measure and the range of perturbations that can be
negotiated. However, the maximum viability measure
quickly reaches a plateau, and further increasing damping
only widens this plateau marginally. In other words, the
benefit in robustness owing to increasing damping is limited.

Robustness is important because motor-control is inher-
ently noisy and imprecise [27–30]. In studies of running
guinea fowl and pheasants [35,36], the birds exhibited
notable variability in their control of the landing angle-of-
attack, with the standard deviation typically ranging between
3° and 8° depending on the presence and size of (visible)
obstacles. In the context of our results, this would suggest
that only the upper half of figure 2c represents perturbations
that can be negotiated robustly: wherever the measure is
small compared to the control input variability, recovery is
possible, but not robust.

We believe a quantitative study to identify the minimum
threshold for the viability measure (how ‘far down the moun-
tain’ are animals willing to go?) would be of great interest,
albeit challenging. In particular, it is not trivial to assess if
motor-control variability is owing to a limit in capability, or
simply because greater precision is not needed for a given
task. Such a study would provide a further tool with which
to compare task-level priorities [35] and, in particular, to
study behaviour involving risk [37,38].

Damping is not free of cost, since it will also reduce
muscle efficiency. In our model, the plateau in improved
robustness can be reached with only a small cost in energy
efficiency, which would likely be negligible for most animals.
It would be interesting to study if this trade-off becomes rel-
evant in specialized animals. In particular, if task-level
stability is not a concern, but there is a strong evolutionary
pressure to optimize efficiency, it may still be beneficial to
further minimize damping. This may be the case in desert
habitats, where the environment is relatively flat and does
not require agility [39], and where falls do not determine
predator–prey interactions [20,40].

These results may also be informative for robot design.
There are few examples of legged robots that incorporate phys-
ical dampers in their design [41–43]. These efforts have,
however, not focused on task-level stability, and the potential
benefit of damping in this context remains to be explored.
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