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Genetic regulation of mouse liver metabolite levels
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Abstract

We profiled and analyzed 283 metabolites representing eight
major classes of molecules including Lipids, Carbohydrates,
Amino Acids, Peptides, Xenobiotics, Vitamins and Cofactors,
Energy Metabolism, and Nucleotides in mouse liver of 104
inbred and recombinant inbred strains. We find that metabo-
lites exhibit a wide range of variation, as has been previously
observed with metabolites in blood serum. Using genome-wide
association analysis, we mapped 40% of the quantified metab-
olites to at least one locus in the genome and for 75% of the
loci mapped we identified at least one candidate gene by local
expression QTL analysis of the transcripts. Moreover, we vali-
dated 2 of 3 of the significant loci examined by adenoviral
overexpression of the genes in mice. In our GWAS results, we
find that at significant loci the peak markers explained on
average between 20 and 40% of variation in the metabolites.
Moreover, 39% of loci found to be regulating liver metabolites
in mice were also found in human GWAS results for serum
metabolites, providing support for similarity in genetic regula-
tion of metabolites between mice and human. We also inte-
grated the metabolomic data with transcriptomic and clinical
phenotypic data to evaluate the extent of co-variation across
various biological scales.
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Introduction

Metabolites are produced in the cell as a result of various enzy-

matic reactions and in part reflect the metabolic state of the cell

(Sabatine et al, 2005; Sreekumar et al, 2009). Recent advances in

high throughput technologies such as mass spectrometry and

nuclear magnetic resonance have allowed investigators and clini-

cians to comprehensively measure and quantify such molecules

with reasonable precision in tissues (Ellis et al, 2007; Wang

et al, 2010). Investigators have begun to utilize these technolo-

gies to explore the relationships between metabolite levels and

disease-related traits for the identification of biomarkers and

elucidation of mechanisms underlying disease (Newgard et al,

2009). These initial reports, primarily involving metabolites

measured in the human blood serum, have shown that some

metabolite levels are associated with complex disease phenotypes

and may be used to assess risk factors for complex diseases

such as diabetes (Wang et al, 2011), and frequently exhibit large

heritability (Shah et al, 2009; Nicholson et al, 2011) and genetic

variation due to only a handful of loci in the genome (Gieger

et al, 2008; Illig et al, 2010; Suhre et al, 2011; Wang et al,

2011). In addition, efforts have begun to integrate metabolomic

data with other molecular phenotypes such as transcriptomes

and proteomes with the goal of elucidating the relevant path-

ways underlying complex disease phenotypes (Ferrara et al,

2008; Connor et al, 2010; Inouye et al, 2010).

The goal of the current study was to characterize the genetic

landscape of liver metabolites in rodents. We quantified and

performed genome-wide association analysis (GWAS) of the liver

metabolome in the Hybrid Mouse Diversity Panel (HMDP)

comprised of 104 classical inbred strains and recombinant inbred

strains (Bennett et al, 2010). While human metabolomic studies

are largely restricted to either blood serum or urine, using experi-

mental organism such as the mouse, it is possible to examine

other tissues. Moreover, since the HMDP strains are inbred (and,

therefore, renewable), metabolite levels can be readily integrated

with other measured traits and molecular phenotypes. In the pres-

ent study, we examined the extent of genetic regulation of metab-

olite levels in the liver of HMDP strains. These strains have been

densely genotyped and, in most cases, fully sequenced and, thus,

following correction of population structure, we were able to

finely map loci controlling a large fraction of the measured

metabolites. We also examined the extent of liver metabolites

covariation with both liver transcriptomic data and 58 cardio-

metabolic traits.
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Results

Metabolite profiling

Using mass spectrometry (Metabolon Inc., Durham, NC) we exam-

ined liver metabolites in male mice across 104 inbred strains

comprising the HMDP (for details of metabolite profiling see Materi-

als and Methods). This methodology enabled us to quantify a

comprehensive set of 283 metabolites present in mouse liver tissues

across the HMDP panel. This set comprised of a diverse group of

small molecules derived from the metabolism of four major class of

macromolecules (Lipids, Carbohydrates, Proteins, Nucleic acids) as

well as vitamins and cofactors, xenobiotics, and molecules related

to energy metabolism. The transformed metabolite measurements

can be found in Supplementary Table S1. We classified the 283

metabolites according to the primary metabolic pathway from which

they are derived. The major classes identified were: lipid metabo-

lism (“Lipids”), amino acid metabolism (“Amino Acids”), carbohy-

drate metabolism (“Carbohydrates”), nucleotide metabolism

(“Nucleotides”), peptide-derived molecules (“Peptides”), xenobiotics

(“Xenobiotics”), vitamins and cofactors (“Cofactors”), and energy

metabolism (“Energy”). From the 283 metabolites, the Lipids class

represented the highest fraction (121 metabolites) followed by

Amino Acids (78), Carbohydrates and Nucleotides (23 each),

Peptides (10), Energy (7), and Xenobiotics (5) (Supplementary Fig

S1). The metabolites exhibited significant correlations both within

and between classes (Fig 1 and Supplementary Table S2). Overall,

1,639 pairwise correlations were significant after Bonferoni correc-

tion for multiple comparison (P-value < 1.25e-06), from which 68%

(1,112/1,639) belonged to the within class pairs and 32% (527/

1,639) belonged to between class correlations across all classes

(Supplementary Table S2) reflecting shared biochemical pathways

or regulatory interactions for metabolites across different classifica-

tions. We also observed that the extent to which metabolites corre-

lated with other metabolites depended on the classification of the

metabolites. Metabolites classified as “Cofactors and Vitamins”,

“Energy”, and “Xenobiotics” exhibited the least and metabolites

classified as “Lipids”, “Amino Acids”, and “Carbohydrates” had the

largest number of significant within and between class correlations.

Genetic regulation of metabolites

Figure 2A shows the variation of each of the 283 metabolites across

the HMDP mice (each metabolite is ordered by its z-score in the

HMDP population). A high degree of variability, as evident by the

wide distribution of z-scores across all the eight major classes,

reflects the influence of both genetic and environmental factors

regulating metabolite levels. In order to explore the extent of genetic

controls of metabolite variation, we compared the variance across

the HMDP mice to the variance among five biological replicates in

the commonly used C57BL/6J (B6) strain. Both the mean and

median of variance for B6 mice were smaller than the entire popula-

tion (mean of 0.36 in B6 versus 0.51 in HMDP, and median variance

of 0.12 versus 0.30 in HMDP) suggesting the presence of genetic

factors affecting metabolite variation in HMDP.

To identify the loci regulating the metabolite variation, we

applied the genome-wide association analysis approach utilizing

107,145 SNPs from the Broad Institute and Wellcome Trust Center

database (http://www.broadinstitute.org/mouse/hapmap) which

had a minor allele frequency >5% in the HMDP population of 104

inbred and recombinant inbred mouse strains. With this panel of

SNPs, we performed genome-wide association for each of the 283

metabolites using Efficient Mixed Modeling Algorithm (EMMA) that

corrects for population structure and genetic relatedness among

strains (Kang et al, 2008b). To avoid false positive associations

resulting from over 20 million statistical tests performed in the

GWAS, we set the statistical significance threshold at the genome-

wide FDR cutoff of 5% corresponding to the association P-value of

7.6 × 10�6 (Storey & Tibshirani, 2003). This corresponds roughly to

the genome-wide significance level obtained using simulation analy-

ses (Bennett et al, 2010). Significant linkage disequilibrium blocks

Figure 1. Correlation heatmap for the 283 metabolites measured in
HMDP mouse liver.
The color bars on the top and the side of the heatmap represent the different
classes as labeled. Within the heatmap, red represents a positive correlation, blue
represents a negative correlation, and white represents a non-significant
correlation.

Figure 2. Summary of GWAS results for metabolites.

A Metabolite variation in the HMDP mice. The Z-score for each metabolite across the 104 HMDP mice is plotted along the X-axis. Each row represents one of the 283
metabolites measured. Each metabolite is represented by the color shown in the color key.

B Genome-wide plot for the most significant GWAS result (pyridoxate metabolite). The dotted line depicts the genome-wide significance threshold.
C Distribution of the number of loci regulating metabolites.
D GWAS results for succinylcarnitine, which mapped to 18 distinct loci across the genome. The dotted line depicts the genome-wide significance threshold. The

asterisks depict the significant loci.

▶
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occur among the HMDP strains (Frazer et al, 2007; Keane et al,

2011) and in such blocks (defined as SNPs exhibiting an R-squared

> 0.5), we only consider the peak SNP (i.e. the most significant

SNP) as the true association.

Using 5% FDR as the genome-wide cutoff (P-value =

7.6 × 10�6), we were able to identify 240 significant associations,

from which 12 are expected to be false positives, for 119 of the 283

metabolites (Table 1 lists the top 10 associations and Supplemen-

tary Table S3 lists all the significant associations). Based on the peak

SNP, the 240 significant associations corresponded to 227 distinct

loci across the genome. The strongest association was found for

pyridoxate mapping to the locus at 58.2 Mb on chromosome 1 with

the P-value of 1.6e-28 (Fig 2B). The largest number of genome-

wide significant associations found at a single marker was on

chromosome 19 at 46.7 Mb, corresponding to three metabolites

(methylmalonate, malonate, and gulono-1,4-lactone). Defining the

size of the locus as a 2 Mb window (1 Mb on each side of the peak

SNP), there were 45 candidate genes residing at this locus including

Elovl3 (3-keto acyl-CoA synthase) which functions in the fatty acid

elongation pathway. From the 119 metabolites with at least one

significant association, 73 metabolites mapped to only one locus

and the remaining 46 metabolites mapped to more than one locus

(Fig 2C). The largest number of loci identified for any metabolite

was for succinylcarnitine which mapped to more than 10 loci in the

genome (Fig 2D). Calculation of percent variance explained for the

peak markers underlying the 227 loci revealed that on average each

significant peak SNP explained 26% of variation (Fig 3). We also

found four loci that explained more than 50% of metabolite varia-

tions: the locus on chromosome 1 at 58.2 Mb explains 72% of pyri-

doxate variation, the locus on chromosome 7 at 152.4 Mb explains

52% of gamma-aminobutyrate (GABA) variation, the locus on chro-

mosome 8 at 119 Mb explains 51% of malonate variation, and the

locus on chromosome 9 at 106.5 Mb explains 50% of N-acetylgluta-

mate variation.

To assess the genetic complexity of metabolites in each class, we

evaluated both the strength of the association P-value and the

percent variance explained by the significant loci identified and

found no significant differences between the eight major classes

(Fig 3 and Supplementary Fig S2). Using Fisher’s Exact Test, we

also found no over- or under-representation of eight major classes

of metabolites among the 119 loci mapped.

Candidate gene prioritization

The number of candidate genes influencing metabolite levels at

each associated locus varies from a few to dozens, depending

upon the level of linkage disequilibrium. To help narrow down

the list of candidate genes and to gain further insight into the

molecular mechanism regulating metabolite levels, we integrated

data from both the public database and from gene expression

microarray analyses with the metabolite data. For the latter, we

have previously reported the transcriptome profiling of the HMDP

mice (Bennett et al, 2010) using Affymetrix HT_MG-430A gene

expression microarray platform consisting of over 23 thousand

probes, as well as mapping of transcript levels using EMMA

(Ghazalpour et al, 2011).

To identify potential candidate genes affecting metabolite levels,

we took two different approaches: First we reasoned that if any

enzyme or a gene is involved in the production or turnover of a

metabolite within the cell, it will be functionally linked to the

metabolite and both qualify as a potential candidate gene and vali-

date the identified locus as a true association based on prior knowl-

edge. For this, we examined public databases for biochemical

pathways and, for each metabolite, we asked if any of the genes that

are physically located at the locus to which metabolite maps are co-

annotated with the metabolite. We performed this analysis using

two independent public databases KEGG (http://www.genome.jp/

kegg) and HMDB (http://www.hmdb.ca) (Wishart et al, 2009).

From the total of 240 associations, 3 associations (1%) were found

to be validated by the public database annotation of biochemical

pathways. The three validated associations included pyridoxate

mapping to the chromosome 1 locus containing aldehyde oxidase 1

(Aox1), glycerol 3-phosphate mapping to chromosome 2 locus

containing glycerol-3-phosphate dehydrogenase 2 (Gpd2), and N-

acetylglutamate mapping to chromosome 9 locus containing amino-

acylase 1 (Acy1).

In the second approach we searched in the expression data for

any local eQTL that coincided with each of the 227 loci identified for

the metabolites. As such, local eQTLs are useful in narrowing

down the list of candidate genes at each locus. The local eQTLs

utilized in this study were identified using the 5% FDR cutoff

(P-value = 1.7 × 10�5) and map within a megabase of the gene

whose expression is affected. From the 227 loci identified, local eQTL

Table 1. Top 10 GWAS results

Metabolite Class Pathways
GWAS
P-value Chromosome Base pair

Pyridoxate Cofactors and vitamins Vitamin B6 metabolism 1.66E-28 1 58,236,240

Glucarate (saccharate) Cofactors and vitamins Ascorbate and aldarate metabolism 7.84E-17 4 118,382,970

N-acetylglutamate Amino acids Glutamate metabolism 1.09E-15 9 106,563,342

Malonate (propanedioate) Lipids Mevalonate metabolism 2.59E-15 8 119,096,872

Glycerate Carbohydrates Glycolysis, gluconeogenesis, pyruvate metabolism 2.11E-14 12 43,670,942

Methylmalonate (MMA) Amino acids Valine, leucine and isoleucine metabolism 6.50E-14 8 119,096,872

Succinylcarnitine Energy Krebs cycle 1.16E-13 3 144,100,853

Methylmalonate (MMA) Amino acids Valine, leucine and isoleucine metabolism 4.79E-13 19 46,764,525

Methylmalonate (MMA) Amino acids Valine, leucine and isoleucine metabolism 8.84E-13 1 32,385,974

Kynurenate Amino acids Tryptophan metabolism 3.83E-11 2 134,733,767
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analysis identified at least one candidate gene for 174 of the loci

(~75% of the loci). We report these 174 loci along with the local

eQTL candidate genes in Supplementary Table S4, and, below, we

describe two specific examples in which the metabolite locus candi-

date gene was supported by the local eQTL data (Fig 4A and B). The

first example is for the “hypoxanthine” metabolite. This metabolite,

which belongs to the “Nucleotide” class of metabolites, can be

produced in the cell either from xanthine or by degradation of

purine. The former reaction is catalyzed by the enzyme xanthine

oxidase (also known as xanthine dehydrogenase or Xdh), which is

encoded by the Xdh gene located on chromosome 17. In HMDP mice,

there is a genetic variation in this gene that affects the transcript

levels of this gene, with a significant eQTL. It appears that this varia-

tion is also affecting the hypoxanthine pool in the liver of HMDP

mice as hypoxanthine maps to the same locus as both the Xdh gene

and the mRNA variation of Xdh (Fig 4A). The second example is for

the locus on chromosome 2 where glycerol-3-phosphate dehydroge-

nase 2 gene (Gpd2) resides. The protein product of this gene, which

is localized to the mitochondrial inner membrane, functions in the

glycerophospholipid metabolism pathway, and catalyzes the conver-

sion of glycerol-3-phosphate (G3P) to dihydroxyacetone phosphate,

using FAD as a cofactor. HMDP mice have a DNA variation which

affects the transcription of this gene, as is evident by the local eQTL

for Gpd2. In the metabolite GWAS results, G3P, the Gpd2 substrate,

maps to the exact location as Gpd2 mRNA, suggesting that the same

variation that affects Gpd2 transcription also affects the G3P abun-

dance in the liver of HMDP mice (Fig 4B).

Candidate gene validation

Searching public databases coupled with transcriptome and metabo-

lome mapping data resulted in a list of candidate genes regulating

metabolites in liver. In order to evaluate the validity of our candi-

date gene identification approach, we performed biological valida-

tion of selected candidate genes by adenovirus overexpression.

Since our aim was to demonstrate proof of principle rather than

Figure 3. Genetic regulation of metabolite variation.
Comparison of percent metabolite variance explained by the peak maker in the GWAS analysis across various classes of metabolites. The largest variance explained was
observed for the Vitamins and Cofactors class with the peak marker explaining 72% of the pyridoxate variation.

Figure 4. Validation of metabolite loci by the local eQTLs.

A Co-localization of xanthine dehydrogenase mRNA (red) with its product
hypoxanthine (blue), at the chromosome 17 locus where the xanthine
dehydrogenase gene, Xdh1 resides.

B Co-localization of glycerol-3-phosphate dehydrogenase 2 mRNA (red) with
its substrate glycerol 3-phosphate (blue), at the chromosome 2 locus where
glycerol-3-phosphate dehydrogenase 2 gene (Gpd2) resides.
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novel gene discovery, our selection of candidates was based on

prior biochemical knowledge. The three candidate genes selected

for this purpose were Gpd2, Aox1, and Acy1, and based on mapping

locations they were predicted to affect glycerol-3-phosphate,

N-acetylglutamate, and pyridoxate metabolite levels in the liver,

respectively. For each experiment, 4 C57BL/6J mice were injected

with adenovirus expressing the candidate gene of interest and

6 days post injection the liver tissues were collected and metabolites

profiled by the same methodology used for profiling metabolites of

the HMDP strains (for details see Materials and Methods). An

adenovirus expressing LacZ was used as a control.

As shown in Fig 5A, Gpd2 overexpression by adenovirus in mice

resulted in a significant reduction of glycerol-3-phosphate levels in

liver compared to the control mice. These results were consistent

with the GWAS data in which mice with the high-expressor geno-

types for Gpd2 had significantly reduced G3P levels.

In the second experiment, adenoviral overexpression of Acy1

gene in the liver of mice also resulted in changes predicted by the

GWAS results. As shown in Fig 5B, GWAS data predicted that mice

with the allele expressing higher levels of Acy1 have significantly

lower N-acetylglutamate levels compared to mice carrying the

variant that lowers Acy1 levels. Consistent with this observation,

adenoviral overexpression of Acy1 in mice significantly lowered the

N-acetylglutamate levels in the liver, establishing the causal rela-

tionship between the Acy1 gene and N-acetylglutamate metabolite.

Lastly, GWAS data predicted that mice with higher Aox1 tran-

script levels would have elevated pyridoxate levels. We observed

slightly elevated levels of pyridoxate in mice overexpressing Aox1

(Fig 5C) although these changes were not statistically significant.

We note that 28 other local eQTL, including two other amylase gene

family members, Aox3 and Aox4, were present at the locus to which

pyridoxate levels mapped and, thus, it is possible that the locus

contains multiple genes influencing pyridoxate levels.

In summary, 2 of 3 validation experiments confirmed the effect

of the candidate genes identified in the GWAS study, and the third

was suggestive.

Comparison of mouse and human loci

An immediate question arising from the results obtained in metabo-

lite profiling of mouse liver data is whether the loci identified corre-

spond to the loci regulating metabolite levels in human. Although

no current human study is available in which liver metabolites have

been measured, Illig et al recently published GWAS results for 163

blood serum metabolites in two large European populations (Illig

et al, 2010) and subsequently Suhre et al published a meta-analysis

of these GWAS results and expanded the metabolite profiles to over

250 (Suhre et al, 2011). As the second report includes more metabo-

lites we compared our results with theirs. In this meta-analysis,

authors reported 37 significant loci passing the genome-wide signifi-

cance. From these 37 loci, 17 loci regulated 17 separate single

metabolite levels and 20 loci regulated the ratio of pair of metabo-

lites. To investigate human-mouse concordance in genetic regula-

tion of metabolites, we first asked from the 37 significant loci in

human how many replicated in our study. Of these, eleven metabo-

lites were also measured in our study and from these eleven, five

metabolites (succinylcarnitine, isobutyrylcarnitine, proline, carni-

tine, and isovalerylcarnitine) had at least one significant locus in the

mouse GWAS results. When searched for the human syntenic loci in

mouse for these five metabolites, succinylcarnitine was the

only metabolite that was found to significantly map to the

syntenic region in mouse (P-value of 1.98e-10) (Supplementary

Table S5).”

Alternatively, we also looked at reproducibility of 119 mouse

liver metabolites found to be significantly mapping to 240 loci in

our study by looking at the GWAS results published by Suhre et al

(2011) for single metabolites. From the 119 metabolites 54 metabo-

lites were also measured in the human study. These common

metabolites mapped to 115 distinct loci in mice. For each of these

loci and their corresponding metabolites we asked if a human

syntenic region harbors evidence of association. For the purpose of

this comparison we relaxed the significance criteria in human data

from genome-wide cutoff to any GWAS P-value result ≤ 4.3 × 10�4

as set by Bonferoni correction for the 115 loci (0.05 divided by 115).

From the 115 total loci, we found evidence of GWAS association for

39% of these loci (45 out of 115) (Supplementary Table S6). Out of

the 45 loci, 40 loci were found in only one of the two populations

(either TwinUK or Kora) and for 5 loci we found significant

evidence in both populations. This included a highly significant

locus on chromosome 9 in mouse for succinylcarnitine. In humans

this metabolite mapped to the syntenic region on chromosome 15

(61.2 Mb) with the GWAS P-values of 6.8e-21and 1.5e-07 in the

KORA and TwinUK populations, respectively. The variation at this

locus in mouse explained 32% of total succinylcarnitine variation in

the HMDP. It is worth noting that, from the four mouse metabolites

mapping to the loci that explained more than 50% of the variations,

one locus (the mouse chromosome 1 locus regulating pyridoxate)

was also found in the syntenic region in the KORA population, with

the P-value of 1.9e-04. We were unable to examine the other three

loci as the metabolites mapping to these loci were not measured in

human.

It has been suggested that mapping metabolite ratios instead

of single metabolites may improve the mapping results in GWAS.

To investigate this, we mapped the metabolite ratios which had

at least one genome-wide significance in the human blood serum

metabolite meta-analysis (Suhre et al, 2011) and asked whether

the mapping results are significantly improved compared to

mapping single metabolite levels. As shown in Supplementary Fig

S3, we found no marked improvement in GWAS results when

ratios of two related metabolites were mapped compared to single

metabolite levels. The only instance in which mapping ratios

resulted in significant result was for the Docosahexaenoate/

Eicosapentaenoate ratio which mapped to the locus on Chromo-

some 14 (Supplementary Fig S3). In addition, none of the highly

significant human loci published for metabolite ratios replicated

for their corresponding metabolite ratios in mice (Supplementary

Table S5).

Correlations between metabolites, transcripts, and clinical traits

In an effort to understand the relationship between gene expression,

metabolite levels, and clinical traits using a “systems genetics”

approach (Civelek & Lusis, 2014), we integrated metabolite levels

with gene expression microarray data and clinical trait data that

were available for the HMDP. We studied the relationship between

transcript and metabolite levels by calculating pair-wise correlations
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between mRNA levels and the metabolites abundance. At the 5%

FDR (P-value of 1.28e-05), we found a total of 1,497 significant

metabolite-mRNA correlations of which 721 (48%) were positive

and 776 (52%) were negative. The 1,497 significant correlations

included 969 probesets on the gene expression microarray and 145

metabolites. To investigate the significance of integrating metabolite

Figure 5. Biological validation of candidate genes.

A Biological validation for the Gpd2 gene and its effect on liver G3P levels. The GWAS results for the G3P metabolite levels and Gpd2 mRNA levels are shown on the top.
On the bottom the results of adenovirus experiments in mice overexpressing Gpd2 (red) and control mice (black) are shown. For each group four mice were used
(n = 4).

B Biological validation for the Acy1 gene and its effect on liver N-acetylglutamate levels. The GWAS results for the N-acetylglutamate metabolite levels and Acy1 mRNA
levels are shown on the top. On the bottom the results of adenovirus experiments in mice overexpressing Acy1 (red) and control mice (black) are shown. For each
group four mice were used (n = 4).

C Biological validation for the Aox1 and its effect on liver pyridoxate levels. The GWAS results for the pyridoxate metabolite levels and Aox1 mRNA levels are shown on
the top. On the bottom the results of adenovirus experiments in mice overexpressing Aox1 (red) and control mice (black) are shown. For each group four mice were
used (n = 4).
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and transcript data, we also correlated each of these molecular

phenotypes with 58 metabolic syndrome related clinical traits

(Supplementary Table S7). The clinical traits utilized in this study

are part of our ongoing effort to collect HMDB phenotypes with the

focus on traits related to cardiovascular and metabolic disorders. At

a cutoff of 5% FDR (P-value = 1e-04), we found 36 significant corre-

lations. These included both known (such as lactate-plasma glucose,

fructose-plasma glucose, 7-beta-hydroxycholesterol-plasma unesteri-

fied cholesterols, and betaine-fat pad mass) and novel metabolite-

trait relations (such as glycerate-bone density, and ascorbate-plasma

total cholesterol levels). Two-dimensional hierarchical clustering of

transcripts against metabolites and clinical traits revealed discrete

clusters of mRNA-metabolite-trait relationships (Supplementary

Fig S4).

Discussion

In the past decade, major efforts have been focused on developing

efficient methods to extract and quantify metabolite profiles from

various tissues (Wang et al, 2010). Several recent reports have

investigated the utility of metabolome in discovering genetic varia-

tions underlying human disease, biomarkers for cancer, and biomar-

kers for pharmacological responses (Gieger et al, 2008; Bain et al,

2009; Illig et al, 2010; Suhre et al, 2011; Wang et al, 2011). One

limitation of the human studies is that these studies mainly

measured metabolites in blood serum. Here, we investigated the

relationships of a large set of metabolites encompassing major meta-

bolic processes in the mouse liver, a central tissue for metabolism.

Overall we were able to map approximately 40% of the metabolites

to at least one locus in the genome. Our study shows that the major-

ity of loci regulating these metabolites accounted for 20–40% of

total metabolite variation and a few (4 loci) accounted for more than

50% variation. This contrasts to loci regulating physiological/clini-

cal traits which generally explain 10% or less of the phenotypes. In

principal, genetic effect sizes are expected to be larger for molecular,

or “intermediate”, phenotypes, such as metabolites or transcript

levels, as compared to clinical phenotypes, and to be larger in exper-

imental organisms, where environmental factors can be reduced as

compared to human studies. The latter may also explain why we

found many more loci regulating metabolite levels in mice

compared to the recent human studies (240 significant loci found in

our study versus 37 in the human report). Moreover, we found

evidence for similarity in genetic regulation of metabolites in mouse

and human for 39% of the loci found to be significant in mice.

However, 61% of loci that were found to be significant in our study

did not replicate in the human published studies. The observed

dissimilarities between the mouse data and the human can be partly

explained by interspecies differences between mouse and human,

and partly by the study design differences where serum metabolites

were mapped in human whereas we report on loci regulating liver

metabolites.

The study described in this manuscript has several limitations.

First, the list of prioritized candidate genes was mainly derived

from the overlapping cis-eQTL data. As this list would only

support genetic variations affecting transcript levels, candidate

genes regulated at the protein level will not be included in this

list. To compensate for that, we queried the prior knowledge from

publicly available databases, but this approach only added mini-

mally to prioritization of candidate genes reflecting our incom-

plete state of knowledge about the genetic factors regulating

metabolite levels and supporting the limited utility of the curated

databases to find potential candidate genes. An alternative

approach to find candidate genes would be to take a network

based approach which would allow for identification of genes

driving network modules comprised of metabolites and other

nodes (i.e. transcripts or clinical traits). Initial studies taking this

integrative approach have proved useful in inferring the drivers of

network module by combining genetic variation with metabolite

and transcriptome data (Inouye et al, 2010).

Another limitation of our study was the use of limited number

of replicates in measuring metabolites for each inbred strain. The

presence of biological replicates among the population of geneti-

cally distinct inbred mice allows one to accurately assess the vari-

ation in metabolites due to genetic factors. However due to

practical limitations we were able to only include five biological

replicates for only one of the strains in our study. Also, since we

used a P-value threshold based on FDR, some of our findings

(12/119 loci) are likely to correspond to false positives. Another

limitation of the current study includes the absence of environ-

mental perturbation. We have shown that in mice physiological

response to environmental perturbations (such as diet) may trig-

ger response differently depending on the genetic make up of the

organism (Parks et al, 2013). In addition, evidence suggests that

in genetically diverse populations diet might be a major factor

accounting for metabolite variation (Holmes et al, 2008). More-

over, metabolites relating to mitochondrial energy metabolism

were found to differentiate gender and age (Slupsky et al, 2007).

In our study we only focused on the effect of natural variation

on liver metabolites in the absence of both sex differences and

environmental perturbations. For future studies, however, the

HMDP population offers an ideal resource to elucidate the extent

of the interaction between environment and genes to regulate

metabolite levels. This resource is also ideal for examining the

effect of age and sex on metabolite profile and our future studies

are aimed at addressing these questions. Lastly, it has been

shown that there is a great within-individual longitudinal varia-

tion compared to population variation in the human urine metab-

olite levels (Nicholson et al, 2011). The design of our study,

however, prevented us from examining such variation within

each mouse as our study was performed on the liver which could

not be resampled over time.

In our study, we found significant intra- and inter-class corre-

lations between metabolites, reflecting shared biochemical path-

ways or regulatory interactions. This was especially true for the

metabolites classified as Lipids, Amino Acids, and Carbohydrates.

The presence of significant correlations between metabolites cate-

gorized in two separate classes presumably reflects either

multiple roles of metabolites or interactions between metabolic

pathways.

Our study highlights the value of integrating data from various

biological scales, such as metabolome, transcriptome, phenome,

and genome. The integration of transcriptome data and the corre-

sponding eQTL profile assisted us in reducing the number of

candidate genes residing under each metabolite locus. The validity

of this approach was highlighted by the biological validation of
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two of the candidate genes identified. In each validation experi-

ment the results were in complete concordance with what we had

found in the GWAS results, both supporting the validity of our

approach and providing a resource that should aid in identifying

the genetic factors affecting metabolite variations. The results of

validation experiments are also consistent with the biochemical

function of the tested candidate genes. Gpd2 is an enzyme that

belongs to the glycerol phosphate shuttle and catalyzes the conver-

sion of glycerol-3-phosphate (G3P) to dihydroxyacetone phosphate.

Therefore, it is expected that the mice with high expression of this

enzyme will have lesser amount of the G3P substrate. This

hypothesis was also supported by the GWAS results and subse-

quently shown to be true by our validation experiment. Interest-

ingly, St-Pierre et al (2001) has published evidence for association

between variation in Gpd2 and free fatty acid concentration in

French Canadians. Accordingly we examined the previously

published free fatty acid GWAS results in HMDP and found a

suggestive LOD score for this trait on chromosome 2 where G3P

and Gpd2 map and where the Gpd2 gene is physically located

(data not shown).

Similarly, our biological validation of Acy1 supported the hypoth-

esis generated by the GWAS results. The GWAS data predicted that

this enzyme was affecting the levels of N-acetylglutamate in the

liver. According to the KEGG pathway database, Acy1 is an interme-

diate enzyme in the biochemical pathway that converts glutamine

to ornithine, with the latter being subsequently utilized in the Urea

Cycle. Therefore, as expected, mice that express higher levels of

Acy1 will be expected to have lower levels of N-acetylglutamate.

Our validation corroborated this expectation and provided a causal

link between variation in Acy1, an intermediate enzyme in the

conversion of glutamine to ornithine, and N-acetylglutamate. Inter-

estingly, the ornithine levels neither mapped to the Acy1 locus nor

were they changed in the mice injected with adenovirus carrying

the Acy1 construct. This perhaps is due to the complex regulation of

ornithine levels in liver, as this metabolite is being used in Urea

Cycle and can be produced by means other than conversion of

glutamine.

In our third validation experiment, Aox1 overexpression, was

predicted to affect pyridoxate levels. Although we did observe a

change in pyridoxate levels consistent with the GWAS data, the

difference did not reach statistical significance. In the GWAS analy-

sis, pyridoxate levels mapped to chromosome 1 at 58 Mb locus with

highly significant P-value of 1.66e-28. A closer examination of this

locus revealed that in addition to Aox1, there are several other

candidate genes, including two other members of the amylase gene

family with local eQTLs in this region.

Overall, our study complements other recent reports in estab-

lishing the influence of genetic variation on metabolites and

provides support for the utility of metabolome integration with

transcriptome to elucidate novel relationships across various

biological scales. Investigation of metabolite levels will clearly be

important in establishing the flow of information that underlies

common diseases. In particular, human GWAS studies have identi-

fied thousands of loci contributing to common diseases, and a

major challenge at present is to understand the pathways that are

perturbed. A “systems genetics” approach as described here should

complement more traditional “one-gene-at-a-time” approaches

(Civelek & Lusis, 2014).

Materials and Methods

Clinical trait measurements

Animals and Clinical Phenotypes: Male mice from the HMDP panel,

approximately 6-10 weeks of age, were purchased from Jackson

Laboratory and were fed Purina Chow (Ralston-Purina Co., St.

Louise, MO) containing 4% fat until sacrifice. All mice were main-

tained on a 12 h light/dark cycle. At 16 weeks of age, whole body

fat, fluids and lean tissue mass of mice were determined using a

Bruker Optics Mini spec nuclear magnetic resonance (NMR)

analyzer (The Woodlands, TX, USA) according to the manufac-

turer’s recommendations. We also calculated the total mass of the

mice, sum of lean mass, free fluid, fat mass, body fat percentage,

and fat mass/total mass. Following a 16-h fast, mice were weighed

and then bled retro-orbitally under isoflurane anaesthesia. Complete

blood counts were performed using a Heska CDC-Diff analyzer

(Heska Corp, Loveland, CO, USA). Plasma lipids were determined

as previously described (Mehrabian et al, 1993). Glucose levels

were determined using commercially available kits from Sigma (St.

Louis, MO, USA). Insulin levels were measured using commercial

ELISA kits (ALPCO Diagnostics). All measurements were performed

in triplicate according to the manufacturer’s instructions. Mice were

euthanized by cervical dislocation and the mass of individual

tissues and fat depots (heart, kidney, retroperitoneal fat pad, epidid-

ymal fat pad, subcutaneous fat pad, and omental fat pad) were

determined by dissecting and weighing each tissue/pad separately

after the mice were euthanized. Following this, liver tissues were

dissected out, flash frozen in liquid nitrogen, and kept at �70°C

until further processing. Bone Mineral Density (BMD) was deter-

mined as previously described (Farber et al, 2011). Plasma Apolipo-

protein levels of ApoA1, ApoA2, ApoA4, ApoB, ApoC2, ApoC3,

ApoD, ApoE, ApoM, Clusterin, LCAT, LpPLA2, PON1, and SAA1

were determined by the Protein Analysis Research Center (PARC) at

Indiana University School of Medicine. Briefly, 100 ll aliquots of

mouse plasma were used to determine apolipoprotein abundance

using an MRM-based targeted proteomic approach. After constant

amount of human apolipoprotein was spiked into each sample, all

apolipoproteins were enriched and digested with trypsin using AB/

SCIEX 4000 QTRAP and Dionex U3000 HPLC system. A microspray

source was used for all the MS analyses. Source temperature was

set at 450°C, and source voltage was set at 5,500 V. Collision

Energy (CE) and Declustering Potential (DP) for each transition

were automatically calculated by the Skyline algorithm. Transitions

for each peptide were averaged for each sample on the log2 Area-

Under-the-Curve (AUC) scale to get a single number for peptide

level for each sample. A relative amount of protein was calculated

against commercially available pooled healthy mouse plasma. The

analysis was carried out using JMP. LCAT activity was measured

using a kit according the manufacturers’ specifications (Roar

Biomedical, Inc., New York, NY). PON activity was determined as

(Shih et al, 1998). Phospholipid Transfer Protein (PLTP) was deter-

mined using a commercially available kit (# P7700 from Roar

Biomedical, Inc., New York).

All animals were handled in strict accordance with good animal

practice as defined by the relevant national and/or local animal

welfare bodies, and all animal experiments and work were carried

out with UCLA IACUC approval.
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Metabolic profiling

A total of 104 strains were used for metabolite profiling. All mice

were fasted overnight and liver samples were harvested between 10

AM and 12 PM the next day. Liver samples were then shipped to

Metabolon and the profiling was completed in 6 days. For the

majority of strains used in this study we only measured metabolites

in the liver of one mouse per strain. For 20 strains, however, we

profiled more than one mouse per strain. The strains with more

than one mouse profiled includes: AJ, AXB19b, AXB24, B6, BALB/c,

BXA16, BXD19, BXH4, C3H, CXB1, CXB11, CXB12, CXB13, CXB2,

CXB3, CXB4, CXB6, CXB7, CXB8, CXB9, and DBA (all except B6 had

2 mice per strain). For the strains with more than one mouse per

strain, we used the mean of the liver metabolite across the mice to

represent the metabolite value. For the B6 strain, in particular, we

included five mice to estimate the intrastrain (nongenetic) variation.

The non-targeted metabolic profiling instrumentation employed

for this analysis combined three independent platforms: ultrahigh

performance liquid chromatography/tandem mass spectrometry

(UHPLC/MS/MS2) optimized for basic species, UHPLC/MS/MS2

optimized for acidic species, and gas chromatography/mass spec-

trometry (GC/MS). Samples were processed essentially as described

previously (Evans et al, 2009; Ohta et al, 2009). For each sample,

100 ll was used for analyses. Using an automated liquid handler

(Hamilton LabStar, Salt Lake City, UT), protein was precipitated

from the tissue water homogenate with methanol that contained

four standards to report on extraction efficiency. The resulting

supernatant was split into equal aliquots for analysis on the three

platforms. Aliquots, dried under nitrogen and vacuum-desiccated,

were subsequently either reconstituted in 50 ll 0.1% formic acid in

water (acidic conditions) or in 50 ll 6.5 mM ammonium bicarbon-

ate in water, pH 8 (basic conditions) for the two UHPLC/MS/MS2

analyses or derivatized to a final volume of 50 ll for GC/MS analy-

sis using equal parts bistrimethyl-silyl-trifluoroacetamide and

solvent mixture acetonitrile: dichloromethane: cyclohexane (5:4:1)

with 5% triethylamine at 60°C for 1 h. In addition, three types of

controls were analyzed in concert with the experimental samples:

aliquots of a pooled sample derived from a portion of all experimen-

tal samples served as technical replicates throughout the data set,

extracted water samples served as process blanks, and a cocktail of

standards spiked into every analyzed sample allowed instrument

performance monitoring. Experimental samples and controls were

randomized across platform run days.

For UHLC/MS/MS2 analysis, aliquots were separated using a

Waters Acquity UPLC (Waters, Millford, MA) and analyzed using an

LTQ mass spectrometer (Thermo Fisher Scientific, Inc., Waltham,

MA) which consisted of an electrospray ionization (ESI) source and

linear ion-trap (LIT) mass analyzer. The MS instrument scanned 99–

1,000 m/z and alternated between MS and MS2 scans using

dynamic exclusion with approximately six scans per second. Deriva-

tized samples for GC/MS were separated on a 5% phenyldimethyl

silicone column with helium as the carrier gas and a temperature

ramp from 60 to 340°C and then analyzed on a Thermo-Finnigan

Trace DSQ MS (Thermo Fisher Scientific, Inc.) operated at unit mass

resolving power with electron impact ionization and a 50–750

atomic mass unit scan range.

In order to account for run-to-run variation across instruments

and day-to-day variation, well characterized internal standards were

spiked into each sample. The compounds used as internal standards

are chosen so as not to interfere with the measurement of the

endogenous compounds in the sample. In addition, a cocktail of

homogeneous pool containing a small amount of all study samples

served as technical replicates throughout each run. This cocktail

was sent across the GC/MS, and LC/MS/MS2 instruments 5–6 times

per run day as a mechanism to monitor variation within runs and

between runs. The use of technical replicates revealed that the

instrument variability was 5% and overall variability (defined as

within and between run variability) was 9%. To account for such

variability and to standardize data across runs, data were corrected

by registering the median of each run-day to one followed by

normalizing each data point proportionately.

Metabolites were identified by automated comparison of the ion

features in the experimental samples to a reference library of chemi-

cal standard entries that included retention time, molecular weight

(m/z), preferred adducts, and in-source fragments as well as associ-

ated MS spectra, and were curated by visual inspection for quality

control using software developed at Metabolon (Dehaven et al,

2010).

This methodology enabled us to quantify a comprehensive set of

342 metabolites present in mouse liver tissues across the HMDP

panel. In order to minimize false positive associations in our subse-

quent genome-wide association study, we filtered out the metabo-

lites that exhibited significant numbers of missing values (> 20%)

in the samples profiled. As a result, 59 of the metabolites were

filtered out and the remaining 283 metabolites were selected for

further analysis.

RNA isolation and expression profiling

At 16 weeks of age, the liver tissues of the mice were dissected and

flash frozen in liquid nitrogen, and kept at �70°C until further

processing. For RNA profiling, the RNA from three mice per strain

were hybridized to Affymetrix Mouse Genome HT_MG-430A arrays.

Frozen liver samples were weighed and homogenized in Qiazol

according to the manufacturer’s protocol. Following homogeniza-

tion, RNA extraction was performed using Qiagen’s RNeasy kit (cat#

74104). 92 strains of mice had three biological replicates, five strains

had two biological replicates and two strains with one biological

replicate each. All RNA samples were cleaned using a Biosprint96

(Qiagen, Valencia, CA) with RNA cleanup beads (Agencourt Biosci-

ence, Beverly, MA) following manufacturer’s protocol with adapta-

tions for use with the Biosprint. The quality of the total RNA from

the those samples were monitored by the Agilent 2100 Bioanalyzer

(Agilent Technologies, Palo Alto, CA) and RNA quantity was

measured with a NanoDrop (NanoDrop Technologies, Inc., Wilming-

ton, DE) following the manufacturer’s instructions. All samples

were arrayed into three 96-well microtiter plates following a

randomized design format that places samples from the same strain

on different plates to better estimate variance across testing strains.

All target labeling reagents were purchased from Affymetrix (Santa

Clara, CA). Double-stranded cDNAs were synthesized from 1lg total

RNA through reverse transcription with an oligo dT primer contain-

ing the T7 RNA polymerase promoter and double strand conversion

using the cDNA Synthesis System. Biotin-labeled cRNA was gener-

ated from the cDNA and used to probe Affymetrix Mouse Genome

HT_MG-430A arrays. The HT_MG-430A Array plate consists of 96
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single MG-430A arrays arranged into standard SBS 96-well plate

format. All cDNA and cRNA target preparation steps were processed

on a Caliper GeneChip Array Station from Affymetrix. Array hybrid-

ization, washing and scanning were performed according to the

manufacturer’s recommendations. Scanned images were subjected

to visual inspection and a chip quality report was generated by the

Affymetrix’s GeneChipOperating System (GCOS) and Expression

console (Affymetrix). Two of 288 chips were excluded due to low

QC scores. The image data was processed using the Affymetrix

GCOS algorithm utilizing quantile normalization or the Robust

Multiarray method (RMA) to determine the specific hybridizing

signal for each gene. Expression data can be obtained from Geo

database (GSE16780). To avoid the effect of SNP on hybridization,

we matched the location of approximately 14 million SNPs from

dbSNP database (NCBI) to the location of the individual probes on

the genome. If the location of the probe had a matching SNP within

it, we flagged the probe and excluded it from the cdf file prior to

RMA normalization. If a probeset contained SNP in 8 or more

25-mer probes, we excluded the probeset from the analysis. The

cleaned datasets were then background corrected and normalized

using the affy package (from bioconductor) using rma, pmonly, and

median-polish normalization methods.

Genotyping and genome-wide association mapping

Inbred strains were previously genotyped by the Broad Institute

(http://www.broadinstitute.org/mouse/hapmap), and they were

combined with the genotypes from Wellcome Trust Center for

Human Genetics (WTCHG). Genotypes of RI strains at the Broad

SNPs were inferred from WTCHG genotypes by interpolating alleles

at polymorphic SNPs among parental strains, calling ambiguous

genotypes missing. Of the 140,000 SNPs available, 107,145 were

informative with an allele frequency > 5%. These SNPs were used

for metabolite, transcript, and clinical trait genome-wide association

analysis.

We applied the following linear mixed model to account for the

population structure and genetic relatedness among strains in the

genome-wide association mapping (Kang et al, 2008a,b):

y ¼ lþ xbþ uþ e

In the formula, l represents mean, x represents SNP effect, u

represents random effects due to genetic relatedness with Var

(u) = rg2K and Var(e) = re2, where K represents IBS (identity-by-

state) matrix across all genotypes in the HMDP panel. A restricted

maximum likelihood (REML) estimate of rg2 and re2 are computed

using EMMA, and the association mapping is performed based on

the estimated variance component with a standard F-test to test

b 6¼ 0. We applied Efficient Mixed Model Association (EMMA) as an

R implementation of a linear mixed model. The percent of variance

explained for each molecular phenotype was calculated using the

SNP effect calculated from EMMA by defining it as: 1 � [(variance

of residuals)/(variance of original phenotypes)]. It should be noted

that since EMMA is orders of magnitude faster than other implemen-

tations commonly used, we were able to perform statistical analyses

for all pairs of transcripts/metabolites and genome wide markers in

a few hours using a cluster of 50 processors.

The “peak SNP” reported for each metabolite was identified by

first finding all the SNPs that exceeded the genome-wide cutoff for

that particular metabolite. Next, SNPs were ordered by the strength

of association, and among the ranked SNPs the SNP R-squares were

calculated. Among the SNPs that had R-square > 0.5, only the SNP

that showed the strongest association was kept and reported as the

“peak SNP” in the manuscript. To look for candidate genes for each

metabolites, we took each metabolite’s “peak SNP” at each signifi-

cant locus and searched for the presence of local eQTL in the inter-

val spanning from 1 Mb proximal to 1 Mb distal to the metabolite

peak SNP. eQTL were defined as “local” if the peak association SNP

position for the transcript was within a 4 Mb interval, flanking

2 Mb on either side of the transcription start and end of the gene

under regulation.

Genome-wide cutoff: Genome-wide cutoffs were calculated as

the false discovery rates using the “q-value” package for FDR calcu-

lation in the R statistical software (Storey & Tibshirani, 2003). FDR

calculation was carried out separately for the metabolites and tran-

script dataset. For transcript data, due to the computational

complexity associated with evaluating q-values for over 400 million

P-values, we computed the FDRs by taking the average FDR for 100

samples each containing 5 million randomly selected P-values from

the original calculated P-values. The FDR threshold is similar to that

calculated in the HMDP population using simulation or a Bonferroni

correction for SNPs examined(Bennett et al, 2010). The fact that it

is larger than the usual human GWAS threshold reflect the fact that

the linkage disequilibrium blocks in the HMDP are larger than those

in human populations(Bennett et al, 2010; Parks et al, 2013).

Adenovirus generation, purification and infection in vivo

Recombinant adenovirus was generated using the AdEasy system as

previously described (Bennett et al, 2013). Briefly, linearized shuttle

vector containing full-length mouse cDNA for each of the three

candidate genes (Gpd2, Acy1, and Aox1) was transformed into

E. coli BJ5183AD cells containing the adenoviral backbone plasmid

pAdEasy-1 for homologous recombination. Positive recombinants

were linearized and transfected into HEK293AD cells for virus pack-

aging and propagation. Adenoviruses expressing the candidate gene

were purified by CsCl banding and stored at �80°C until use. For

adenoviral infection, 10-week-old male C57BL/6 mice were injected

with adenoviral construct (~2 × 109 PFUs diluted in 0.2 ml saline)

through the tail vein. After overnight fasting, mice were sacrificed

6 days post injection, the liver tissue was extracted, the expression

of each candidate gene was assessed by RT-PCR, and the metabo-

lites were profiled by Metabolon, Inc (Durham, NC). For each candi-

date gene, we utilized four mice (n = 4). The control group

consisted of mice injected with adenoviral construct expressing the

LacZ gene.

Other statistical methods/Software

The z-scores for each metabolite in each mouse was calculated using

standard formula: z-score = (relative metabolite level in the sample –

mean of metabolite level in the samples)/standard deviation of

metabolite levels in the samples. The calculated z-scores were used

both in genome-wide association and in correlation analysis.

Public databases utilized to pair metabolites with genes were

Kyoto Encyclopedia of Genes and Genomes (KEGG) at http://

www.genome.jp/kegg and Human Metabolome Database (HMDB)

at www.hmdb.ca (Wishart et al, 2009). For KEGG, we searched the
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pathways specific to mouse. HMDB, however, is a freely available

electronic database containing detailed information about small

molecule metabolites found in the human body. To translate the

information to mouse, we downloaded all the relationships docu-

mented between small molecules and genes in HMDB version 2.5

and converted all the human genes to mouse orthologous genes.

The resulting mouse gene-small molecule file was then used

throughout the paper.

All statistical analyses, database annotation, and data visualiza-

tions were carried out using the R (version 2.13.1) statistical soft-

ware (available at http://cran.r-project.org/) and Python 3.0

(http://python.org/). All the correlation coefficients and corre-

sponding P-values reported in the paper are calculated using the

bicor function in the WGCNA R package (Langfelder & Horvath,

2008) The main advantage of using bicor, which performs biweight

midcorrelation calculation, over Pearson’s correlation is based the

robustness of the correlation coefficient measurement to the pres-

ence of outliers in the data.

Data accessibility

All the genome-wide significant mapping results for metabolites

along with the candidate genes regulating each metabolite are

provided in Supplementary Tables and deposited in our website at

http://systems.genetics.ucla.edu. In addition, the liver metabolite

data from this publication have been submitted to the Mouse

Phenome Database at http://phenome.jax.org and assigned the

identifiers HMDPpheno6, HMDPpheno7, HMDPpheno8, HMDPphe-

no9, and HMDPpheno10. Liver mouse transcript data are deposited

to the GEO at http://www.ncbi.nlm.nih.gov/geo/ and assigned the

identifier GSE16780.

Supplementary information for this article is available online:

http://msb.embopress.org
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