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Abstract. 4‑Methoxydalbergione (4‑MD) can inhibit the 
progression of certain types of cancer; however, its effects on 
esophageal cancer (EC) remain unclear. The present study 
aimed to investigate the inhibitory effect of 4‑MD on EC and 
its molecular mechanism. ECA‑109 and KYSE‑105 cells were 
treated with or without lipopolysaccharide (LPS) and 4‑MD. 
Cell Counting Kit‑8 and colony formation assays were used to 
analyze cell proliferation. Wound healing assay was performed 
to evaluate cell migration. ELISA and western blotting were 
performed to measure the expression levels of NF‑κB and 
inflammatory cytokines. In cells treated with 4‑MD, prolifera‑
tion and migration were significantly inhibited, the levels of 
inflammatory cytokines were downregulated and the NF‑κB 
signaling pathway was inactivated. Notably, proliferation, 
migration, inflammation and NF‑κB were promoted by LPS, 

whereas 4‑MD reversed the increases induced by LPS in EC 
cells. In conclusion, 4‑MD may attenuate the proliferation and 
migration of EC cells by inactivating the NF‑κB signaling 
pathway.

Introduction

It has previously been reported that the incidence of esopha‑
geal cancer (EC) is ~604,100 per year, thus accounting for 
3.1% of new cancer cases diagnosed and ranking 7th in cancer 
incidence worldwide. In addition, it has been reported that 
there are 544,000 cases of EC‑associated mortality per year, 
accounting for 5.5% of cancer‑associated deaths and ranking 
6th in cancer deaths worldwide (1). EC is divided into squamous 
cell carcinoma and adenocarcinoma according to histological 
subtype (2). The highest incidence of esophageal squamous 
cell carcinoma has been reported to occur in Eastern Asia, 
especially in China (1). EC is difficult to diagnose at an early 
stage due to the lack of specific biomarkers; therefore, patients 
are nearly always diagnosed with advanced EC (3). The overall 
5‑year survival of patients with EC is 15‑20% worldwide (4); 
therefore, a novel therapeutic strategy to improve the 5‑year 
survival rate of patients with EC is required.

During the COVID‑19 pandemic, it was revealed that 
traditional Chinese medicine (TCM), such as Jinhua Qinggan 
granules and Lianhua Qingwen capsules, had a decisive role 
in the clinical treatment of COVID‑19 by targeting ACE (5). 
Furthermore, a large number of studies have demonstrated 
that TCM serves an important role in the treatment of cancer, 
including colorectal cancer (6), breast cancer (7), hepatocel‑
lular carcinoma (8), lung cancer (9) and EC (10‑12). Notably, 
the active ingredients of TCM are thought to inhibit cancer 
progression by regulating certain genes or signaling pathways.

4‑Methoxydalbergione (4‑MD) is a flavonoid with methoxy 
groups, which is isolated and purified from Dalbergia sissoo 
Roxb. 4‑MD has been indicated to have anti‑inflammatory 
effects via inhibition of the NF‑κB signaling pathway (13) 
and antitumor effects due to its high cytotoxicity in tumor 
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cells (14). In addition, it has been demonstrated that 4‑MD 
can inhibit osteosarcoma (15), human astroglioma (16) and 
bladder cancer  (17) by regulating multiple signaling path‑
ways, including JAK2/STAT3 and Akt/ERK, but not NF‑κB. 
However, the inhibitory effect of 4‑MD on EC remains to be 
determined.

It has been reported that the development of EC is 
a multistep pathogenic process from inf lammation to 
cancer  (18,19). The malignant degree of EC is positively 
associated with inflammatory factors, such as tumor necrosis 
factor α (TNF‑α)  (20), and the survival time of patients 
with EC has been confirmed to be negatively correlated 
with inflammation  (21,22). Furthermore, EC is acceler‑
ated though EC angiogenesis via activation of the NF‑κB 
signaling pathway  (23). Therefore, inf lammation may 
accelerate the progression of EC. Whether 4‑MD regulates 
the NF‑κB signaling pathway to inhibit EC remains unclear. 
Previous studies have shown that NF‑κB can promote the 
release of TNF‑α  (24,25), the synthesis of prostaglandin 
E2 (PGE2) (26‑28), and the expression of cyclin‑dependent 
kinase 1 (CDK1) (29,30), cyclin D1 (31,32) and proliferating 
cell nuclear antigen (PCNA)  (33,34). However, whether 
4‑MD inhibits EC by suppressing the release of PGE2 
and TNF‑α, and the expression of proliferation‑associated 
proteins through the NF‑κB signaling pathway requires 
further investigation. Therefore, the present study aimed to 
explore the effects of 4‑MD on cell proliferation and inva‑
sion, and to determine the underlying mechanism by which 
4‑MD regulates the malignant characteristics of EC cells.

Materials and methods

Cell culture. ECA‑109 esophageal squamous carcinoma 
cells were purchased from the American Type Culture 
Collection and KYSE‑150 esophageal squamous carcinoma 
cells were purchased from The Cell Bank of Type Culture 
Collection of The Chinese Academy of Sciences. ECA‑109 
cells were cultured in Dulbecco's modified Eagle's medium 
(cat. no. SH30021; Hyclone; Cytiva) and KYSE‑150 cells were 
cultured in RPMI 1640 (cat. no. 11875093; Gibco; Thermo 
Fisher Scientific, Inc.). The media were supplemented with 10% 
fetal bovine serum (cat. no. SH30396; Hyclone; Cytiva) and 1% 
penicillin‑streptomycin (cat. no. V900929; MilliporeSigma). 
Cells were incubated in a humidified incubator containing 5% 
CO2 at 37˚C.

Drug preparation. 4‑MD (cat. no. CB31393122; Chemical 
Book) was dissolved in DMSO to form a 10 mmol/l solution, 
which was stored at ‑20˚C. The storage solution was not diluted 
to the corresponding concentration of the working solution 
until it was used.

Cell Counting Kit‑8 (CCK‑8) assay. The proliferation of cells 
was analyzed using the CCK‑8 assay. ECA‑109 cells were 
seeded into 96‑well plates at 1,000 cells/well, and were treated 
with different concentrations of 4‑MD (0, 3.125, 6.25, 12.5, 25, 
50 and 100 µmol/l) for 24 h. The optical density (OD) of the 
cells was evaluated using a spectrophotometer at a wavelength 
of 450 nm. Using the OD of cells, the half maximal inhibi‑
tory concentration (IC50) and IC50 95% confidence interval 

(CI) were calculated using GraphPad Prism 8.3 (GraphPad 
Software, Inc.). In addition, ECA‑109 and KYSE‑150 cells 
were seeded into 96‑well plates at 1,000 cells/well, and were 
pre‑incubated with or without 1 µg/ml lipopolysaccharide 
(LPS; cat. no. ST1470; Beyotime Institute of Biotechnology) 
for 30 min at 37˚C in an incubator with 5% CO2 to activate 
NF‑κB (35), followed by treatment with or without 20 µmol/l 
4‑MD for 12, 24, 36 or 48 h at 37˚C in an incubator with 5% 
CO2. Subsequently,10 µl CCK‑8 (cat. no. C0038; Beyotime 
Institute of Biotechnology) solution was added to each well. 
After culture for 1 h in an incubator, the OD value of the cells 
was evaluated.

Colony formation assay. ECA‑109 and KYSE‑150 cells 
were re‑suspended in culture medium. Subsequently, 
1,000 cells/well were seeded into 24‑well plates, and were 
treated with or without 20 µmol/l 4‑MD and 1 µg/ml LPS 
for 10 days in a humidified incubator containing 5% CO2 
at 37˚C. ECA‑109 and KYSE‑150 cells were then fixed with 
4% paraformaldehyde (cat. no. P0099; Beyotime Institute of 
Biotechnology) for 30 min at room temperature (RT) and 
were stained with crystal violet (cat. no. C0121; Beyotime 
Institute of Biotechnology) for 5  min at RT. Finally, the 
cell colonies containing ≥50 cells were observed, images 
were captured under a light microscope and colonies were 
analyzed using ImageJ software (version  1.8.0; National 
Institutes of Health).

Wound‑healing assay. ECA‑109 and KYSE‑150 cells were 
used for wound‑healing assay. A total of 1ⅹ105 cells/well were 
seeded into 12‑well plates. Once cells reached 100% conflu‑
ence, a scratch was evenly drawn using a 10‑µl pipette tip. 
Subsequently, the cells were incubated in FBS‑free medium 
in a 5% CO2 incubator at 37˚C, and treated with or without 
20 µmol/l 4‑MD and 1 µg/ml LPS for a further 36 or 48 h. 
Finally, the images of wound healing were captured under 
a light microscope. The wound area was analyzed using 
ImageJ software. The rate of migration was calculated using 
the following formula: Rate of migration (%)=(scratch area 
at 0 h‑scratch area at 48 h)/scratch area at 0 h ⅹ100.

ELISA. The levels of TNF‑α and PGE2 in the culture super‑
natant of ECA‑109 cells treated with or without LPS and 
4‑MD were analyzed using TNF‑α (cat. no. PT518; Beyotime 
Institute of Biotechnology) and PGE2 (cat. no. HB833‑Hu; 
Shanghai Hengyuan Biotechnology Co., Ltd.) ELISA kits 
according to the manufacturers' protocols. OD value was 
measure at 450 nm using a spectrophotometer.

Antibodies. All antibodies were purchased from Beyotime 
Institute of Biotechnology. The antibodies used for western 
blotting (WB) were as follows: Cyclin D1 rabbit monoclonal 
antibody (1:1,000; cat. no. AF1183), CDK1 rabbit polyclonal 
antibody (1:500; cat. no. AF0111), PCNA rabbit monoclonal 
antibody (1:1,000; cat. no. AF1363), phosphorylated (p)‑IKBα 
(Ser32) rabbit monoclonal antibody (1:1,000; cat. no. AF1870), 
IKBα rabbit monoclonal antibody (1:1,000; cat. no. AF1282), 
P65 rabbit monoclonal antibody (1:1,000; cat. no. AF1234), 
p‑NF‑κB P65 (Ser536) rabbit polyclonal antibody (1:500; 
cat. no. AF5881), β‑actin rabbit monoclonal antibody (1:2,000; 
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cat.  no.  AF5003) and HRP‑labeled goat anti‑rabbit IgG 
(1:1,000; cat. no. A0208).

WB. ECA‑109 cells were harvested and lysed in pre‑chilled 
RIPA buffer (cat.  no.  P0013B; Beyotime Institute of 
Biotechnology) on ice for 30 min. The supernatants were 
collected after centrifugation of lysates at  13,300 x g for 
30 min at 4˚C. The concentrations of proteins were quantified 
using a NanoDrop ND‑2000 spectrophotometer (NanoDrop; 
Thermo Fisher Scientific, Inc.). Subsequently, ~20 µg proteins 
were separated by SDS‑PAGE on 10% gels. The proteins were 
then transferred onto PVDF membranes (cat. no. IPVH00010; 
Mill iporeSigma) and blocked with 5% skim milk 
(cat. no. P0216; Beyotime Institute of Biotechnology) for 2 h 
at room temperature (RT). The membranes were incubated 
with primary antibodies overnight at 4˚C, then incubated with 
the secondary antibody for 2 h at RT. Finally, the bands were 
observed by chemiluminescence using SuperSignal™ West 
Pico PLUS (cat. no. 34577; Thermo Fisher Scientific, Inc.), and 
images were captured using a gel imaging system (Chemidoc 
MP; Bio‑Rad Laboratories, Inc.) and blots were analyzed using 
ImageJ software (version 1.8.0; National Institutes of Health).

Statistical analysis. All data from three or five independent 
experiments are presented as the mean  ±  SD, and were 
analyzed by SPSS 23.0 (IBM Corp.) or GraphPad Prism 8.3 
software (GraphPad Software, Inc.). Unpaired Student's t‑test 
was performed to analyze the differences between two groups. 
One‑way ANOVA followed by Sidak's multiple comparisons 
test was used to analyze the differences among multiple 
groups. P<0.05 was considered to indicate a statistically 
significant difference.

Results

4‑MD alleviates the proliferation and migration of ECA‑109 
cells. To explore the inhibitory effect of 4‑MD on EC cells, 
ECA‑109 cells were treated with different concentrations of 
4‑MD for 24 h. As shown in Fig. 1A, the IC50 of 4‑MD was 
15.79 µmol/l and the 95% CI of IC50 was 10.03‑24.97 µmol/l. 
Subsequently, 20 µmol/l 4‑MD was used for further studies. 
ECA‑109 cells were treated with 4‑MD, and the proliferation 
of cells was analyzed by CCK‑8 and colony formation assays. 
Compared with those in the untreated control group, the OD 
values of cells treated with 4‑MD were significantly lower 
at 36 and 48 h (Fig. 1B). In addition, the colonies of cells 
treated with 4‑MD were fewer and smaller than those in the 
control group (Fig. 1C). A wound‑healing assay was performed 
to evaluate the migration of ECA‑109 cells treated with or 
without 4‑MD for 48 h. The migration rate of control cells was 
~80%, whereas the migration rate of cells treated with 4‑MD 
was ~60%, thus suggesting that the migration of ECA‑109 
cells was suppressed by 4‑MD (Fig. 1D). The expression levels 
of proliferation‑associated proteins were determined by WB. 
The results revealed that the protein expression levels of cyclin 
D1, CDK1 and PCNA were significantly downregulated in 
cells treated with 4‑MD compared with those in the control 
group (Fig. 1E). These results indicated that 4‑MD inhibited 
proliferation and migration, and downregulated the expression 
levels of cyclin D1, CDK1 and PCNA in ECA‑109 cells.

4‑MD reduces the production of inflammatory cytokines in 
ECA‑109 cells. To investigate the inhibitory effects of 4‑MD on 
inflammation, the levels of inflammatory cytokines, including 
TNF‑α and PGE2, were measured in ECA‑109 cells by ELISA. 

Figure 1. 4‑MD inhibits the proliferation and migration of ECA‑109 cells. (A) ECA‑109 cells were treated with different concentrations of 4‑MD for 24 h. The 
IC50 of 4‑MD was 15.79 µmol/l, as determined by the CCK‑8 assay. Cells were then treated with 20 µmol/l 4‑MD. (B) Proliferation and (C) colony formation 
(x40 magnification) were analyzed by CCK‑8 and colony formation assays, respectively. (D) Migration was measured by a wound‑healing assay (x40 magnifi‑
cation); 4‑MD inhibited the migration of ECA‑109 cells. S represents the scratch area in the images; there was no significant difference in the scratch area at 0 h 
between the groups. (E) Expression levels of cyclin D1, CDK1 and PCNA were evaluated by WB in ECA‑109 cells. Data were obtained from three (for WB) 
or five (for CCK‑8, colony formation and wound‑healing assays) independent experiments, and are presented as the mean ± SD. *P<0.05 vs. control (unpaired 
Student's t‑test). 4‑MD, 4‑methoxydalbergione; CCK‑8, Cell Counting Kit‑8; CDK1, cyclin‑dependent kinase 1; IC50, half maximal inhibitory concentration; 
OD, optical density; PCNA, proliferating cell nuclear antigen; WB, western blotting.
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As shown in Fig. 2A and B, the production of TNF‑α and 
PGE2 was significantly decreased in ECA‑109 cells treated 
with 4‑MD. In addition, WB was performed to measure the 
expression levels of IKBα and P65. Compared with those in 
the control groups, the expression levels of p‑IKBα and p‑P65 
were decreased in cells treated with 4‑MD, thus suggesting 
that 4‑MD could inactivate NF‑κB in ECA‑109 cells (Fig. 2C).

4‑MD reverses the LPS‑induced proliferation and migration 
of EC cells. To further assess whether 4‑MD inhibits the 
proliferation and migration of EC cells by inactivating NF‑κB, 
ECA‑109 cells were treated with LPS to activate NF‑κB, and 
subsequently treated with 4‑MD. Results of the CCK‑8 assay 
revealed that the proliferation of cells pre‑incubated with LPS 
was significantly increased compared with that in the control 
group, whereas cell proliferation was inhibited following 
treatment with LPS and 4‑MD, thus indicating that 4‑MD 
partly inhibited the LPS‑induced increase in cell proliferation 
(Fig. 3A). Furthermore, the size and number of cell colonies was 
increased in the LPS group compared with that in the control 
group, whereas the colonies in the group treated with LPS and 

4‑MD were fewer and smaller compared with in the group 
treated with LPS alone, indicating that 4‑MD suppressed the 
acceleration of cell proliferation induced by LPS in ECA‑109 
cells (Fig. 3B). Cell migration was analyzed by wound healing. 
The migration rate of the control cells was ~80% 48 h after 
scratching; however, the migration rate was ~100% in the 
group of cells treated with LPS, and was ~90% in the group of 
cells treated with LPS and 4‑MD, which suggested that 4‑MD 
could partly abolish the LPS‑induced increase in cell migra‑
tion (Fig. 3C). To fully demonstrate the inhibitory effect of 
4‑MD on another EC cell line, KYSE‑105 cells were treated 
with LPS and 4‑MD, and proliferation and migration were 
measured. Notably, the results of CCK‑8, colony formation 
and wound‑healing assays in KYSE‑105 cells were consistent 
with the results in ECA‑109 cells, which indicated that 4‑MD 
could inhibit the LPS‑induced increase in the proliferation and 
migration of KYSE‑105 cells (Fig. 3D‑F).

4‑MD inhibits the production of TNF‑α and PGE2, and 
the expression levels of proliferation‑related proteins by 
inactivating NF‑κB in ECA‑109 cells. To elucidate the 

Figure 2. 4‑MD downregulates the levels of inflammatory cytokines and inactivates NF‑κB in ECA‑109 cells. ECA‑109 cells were treated with 4‑MD for 48 h. 
Subsequently, the production of (A) TNF‑α and (B) PGE2 were analyzed by ELISA, which indicated that 4‑MD downregulated the levels of inflammatory 
cytokines. (C) Expression levels of NF‑κB‑related proteins were analyzed by WB, which indicated that 4‑MD inactivated the NF‑κB signaling pathway in the 
ECA‑109 cells. Data were obtained from three (for WB) or five (for ELISA) independent experiments, and are presented as the mean ± SD. *P<0.05 (unpaired 
Student's t‑test). 4‑MD, 4‑methoxydalbergione; p‑, phosphorylated; PGE2, prostaglandin E2; TNF‑α, tumor necrosis factor α; WB, western blotting.
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Figure 3. 4‑MD partially abrogates the LPS‑induced proliferation and migration of esophageal cancer cells. (A‑C) ECA‑109 and (D‑F) KYSE‑105 cells 
were pre‑incubated with LPS, and were then treated with or without 4‑MD. The proliferation of (A) ECA‑109 and (D) KYSE‑105 cells was analyzed using 
the Cell Counting Kit‑8 assay, which indicated that 4‑MD could reverse LPS‑induced proliferation. *P<0.05 vs. control; #P<0.05 vs. LPS + 4‑MD (one‑way 
ANOVA). The proliferation of (B) ECA‑109 and (E) KYSE‑105 cells was also measured by colony formation assay (x40 magnification), which revealed that 
4‑MD inhibited the increase in proliferation induced by LPS. The migration of (C) ECA‑109 and (F) KYSE‑105 cells was assessed by wound‑healing assay 
(x40 magnification), which demonstrated that 4‑MD reversed LPS‑induced migration. S represents the scratch area in the images; there was no significant 
difference in the scratch area at 0 h among the groups. Data were obtained from five independent experiments and are presented as the mean ± SD. *P<0.05 
(one‑way ANOVA). 4‑MD, 4‑methoxydalbergione; LPS, lipopolysaccharide; OD, optical density.
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potential mechanism underlying the suppressive effects 
of 4‑MD on the proliferation and migration of EC cells, 
ECA‑109 cells were incubated with LPS and 4‑MD. As shown 
in Fig. 4A, the expression levels of cyclin D1, CDK1 and 
PCNA were increased in cells treated with LPS compared 
with those in the control group; meanwhile, the expression 
levels of these proteins were downregulated in cells treated 
with LPS and 4‑MD compared with those in cells treated 
with LPS alone.

The production of TNF‑α and PGE2 was analyzed by 
ELISA. The levels of TNF‑α (Fig. 4B) and PGE2 (Fig. 4C) 
were increased in cells treated with LPS compared with those 
in the control group. By contrast, compared with in cells 
treated with LPS alone, the levels of TNF‑α and PGE2 were 
decreased in cells treated with LPS and 4‑MD. Compared with 
in the control cells, the protein expression levels of p‑IKBα 
and p‑P65 were increased in cells treated with LPS, whereas 
p‑IKBα and p‑P65 expression levels were significantly 
decreased in cells treated with LPS and 4‑MD compared with 
those in cells treated with LPS alone (Fig, 4D), which indicated 
that 4‑MD could inhibit LPS‑induced activation of NF‑κB.

Taken together, these results suggested that 4‑MD inhib‑
ited the proliferation and migration of EC cells by decreasing 
TNF‑α and PGE2 production, and downregulated cyclin D1, 
CDK1 and PCNA expression through inactivating the NF‑κB 
pathway.

Discussion

Approximately 25% of cancer is caused by inflammation, 
including EC (36). EC is an aggressive malignant tumor of the 
digestive system, which is seriously life‑threatening and has 
a complex pathogenesis. Studies have shown that microbial 
infections serve a catalytic role in EC development (37‑39). 
Furthermore, it has been suggested that inflammation triggered 
by infections is a notable cause of cancer (40,41). Increasing 
evidence has shown that inflammation is the main cause of EC 
induction (19). In the present study, the inflammatory inducer 
LPS (42,43) was used to promote inflammation in EC cells, 
which simulated the inflammatory response of EC cells.

Esophagectomy is one of the main treatments for advanced 
EC but is likely to impair quality of life (44). In a previous study, 
the single‑cell transcriptomic analysis of EC indicated that 
genes related to macrophages and neutrophils were activated 
in early esophageal tissue, which created a chronic inflamma‑
tory environment that accelerated the progression of EC (18). 
During the follow‑up of patients with EC, it has been revealed 
that the levels of inflammatory cytokines in recurrent EC are 
significantly higher than those in patients without recurrence, 
and inflammation is positively associated with the recurrence 
of EC, thus suggesting that inflammation could accelerate EC 
recurrence (45). Under inflammatory stimulation, the expres‑
sion levels of microRNA‑302b have been reported to be 

Figure 4. 4‑MD downregulates the levels of TNF‑α, PGE2 and proliferation‑related proteins by inhibiting NF‑κB in ECA‑109 cells. (A) Expression levels 
of cyclin D1, CDK1 and PCNA were measured by WB, which indicated that 4‑MD inhibited the LPS‑induced upregulation of proliferation‑related proteins 
in ECA‑109 cells. (B) TNF‑α and (C) PGE2 levels were evaluated by ELISA in the culture medium of ECA‑109 cells treated with or without LPS and 
4‑MD; 4‑MD inhibited the LPS‑induced increase in the levels of TNF‑α and PGE2. (D) Expression levels of NF‑κB‑related proteins were analyzed by WB, 
which indicated that 4‑MD abolished the LPS‑induced activation of the NF‑κB signaling pathway in ECA‑109 cells. Data were obtained from three (for 
WB) or five (for ELISA) independent experiments, and are presented as the mean ± SD. *P<0.05 (one‑way ANOVA). 4‑MD, 4‑methoxydalbergione; CDK11 
cyclin‑dependent kinase 1; LPS, lipopolysaccharide; p‑, phosphorylated; PCNA, proliferating cell nuclear antigen; PGE2, prostaglandin E2; TNF‑α, tumor 
necrosis factor α; WB, western blotting.



ONCOLOGY REPORTS  49:  42,  2023 7

decreased in EC cells, resulting in increased expression levels 
of ERBB4, IRF2 and CXCR4, which may promote tumor cell 
growth (46). These findings suggested that inflammation could 
promote the development and recurrence of EC. Therefore, 
inhibiting inflammation may be a therapeutic strategy for the 
treatment of EC. Patients with EC undergoing continuous oral 
administration of vitamin C exhibited reduced drug resistance 
via the inactivation of NF‑κB (47). Furthermore, curcumin 
has been shown to enhance the sensitivity of EC to chemo‑
therapy by reducing the expression levels of cyclooxygenase‑2 
and lipoxygenase through inhibiting the inflammatory 
response (48). Natural astaxanthin (49) and lycopene (50) may 
also significantly inhibit the occurrence of EC by suppressing 
NF‑κB activity. These results indicated that NF‑κB may be an 
effective molecular target for the treatment of EC.

Notably, the active ingredients of TCM have attracted 
attention due to their inhibitory effects on cancer. A 
previous study showed that sulforaphene activated the 
GADD45B/MAP2K3/p38/p53 feedback loop, and down‑
regulated the expression levels of SCD and CDH3 to alleviate 
the progression of EC (51). Echinatin has also been shown to 
inhibit the proliferation and invasion of EC cells by inducing 
AKT/mTOR signaling pathway‑dependent autophagy and 
apoptosis (52). These findings indicated that the active ingredi‑
ents of TCM may act on different genes/signaling pathways to 
inhibit the progression of EC. 4‑MD was isolated and purified 
from D. sissoo Roxb. It has been shown that 4‑MD can suppress 
the proliferation and induce apoptosis of human osteosarcoma 
cells by downregulating the JAK2/STAT3 pathway in vitro 
and in vivo  (15). 4‑MD can also effectively arrest the cell 
cycle of astroglioma cells in G2 phase, and regulate multiple 
genes that enrich the cell cycle and the p53, TNF and MAPK 
signaling pathways (16). 4‑MD has been reported to attenuate 
the proliferation of bladder cancer cells by inducing autophagy 
and suppressing the Akt/ERK signaling pathway in vitro (17). 
The present study revealed that the OD value and the number 
of cell colonies were reduced, the size of colonies was smaller, 
and wound healing was significantly inhibited in EC cells 
treated with 4‑MD. Furthermore, WB showed that the expres‑
sion levels of cyclin D1, CDK1 and PCNA were decreased in 
EC cells treated with 4‑MD. These results indicated that 4‑MD 
may be a potential drug for the treatment of EC that functions 
by downregulating cyclin D1, CDK1 and PCNA.

It has previously been reported that 4‑MD can suppress 
inflammatory responses in addition to being a potent inhibitor 
of cancer. 4‑MD has been demonstrated to exert cytoprotec‑
tion by inducing anti‑inflammatory effects, specifically via 
inhibiting the LPS‑induced production of nitric oxide and 
PGE2 in microglia (53) and reducing LPS‑induced inflamma‑
tion in RAW264.7 cells (54,55). In the present study, the levels 
of TNF‑α and PGE2 were decreased in EC cells treated with 
4‑MD, as determined by ELISA. Subsequently, the related 
proteins in the NF‑κB signaling pathway were analyzed by 
WB, and the results revealed that p‑IKBα and p‑P65 expres‑
sion levels were significantly reduced, thus suggesting that 
4‑MD reduced inflammatory cytokines by inactivating NF‑κB 
in EC cells. To confirm that 4‑MD inhibited the proliferation 
and migration of EC cells by suppressing inflammation, EC 
cells were treated with the NF‑κB agonist LPS. Proliferation, 
migration, and TNF‑α and PGE2 levels were markedly 

increased, and the NF‑κB signaling pathway was activated in 
response to LPS. These results were consistent with the finding 
that LPS can promote the proliferation of EC cells (35,56). 
Following activation of NF‑κB, EC cells were treated with 
4‑MD. Notably, 4‑MD partially reversed the LPS‑induced 
increases in proliferation, migration and inflammatory 
cytokines (TNF‑α and PGE2), and activation of the NF‑κB 
signaling pathway.

In conclusion, the results of the present study demon‑
strated that 4‑MD significantly inhibited proliferation and 
migration by inactivating the NF‑κB signaling pathway in 
EC cells, thus providing a novel strategy for 4‑MD‑induced 
inhibition of NF‑κB in the treatment of EC. However, the 
present study has the following limitations: First, esophageal 
inflammation is one of the pathogeneses that accelerate the 
occurrence of EC. 4‑MD can inhibit the malignant charac‑
teristics of EC cells by reducing the release of inflammatory 
factors; however, the present study does not show that the 
antitumor effect of 4‑MD is superior to other antitumor 
drugs. Second, the present study revealed that 4‑MD 
inhibited EC by inactivating the NF‑κB signaling pathway; 
however, whether the inactivation of NF‑κB is the dominant 
role of 4‑MD in tumor suppression requires further investi‑
gation. Third, 4‑MD has only been demonstrated to inhibit 
the proliferation of EC cells by suppressing NF‑κB in vitro; 
therefore, further studies are needed to explore the inhibitory 
effect of 4‑MD on EC in vivo.
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