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Image acquisition parameters for computed tomography scans such as slice thickness and field of view may
vary depending on tumor size and site. Recent studies have shown that some radiomics features were de-
pendent on voxel size (= pixel size � slice thickness), and with proper normalization, this voxel size depend-
ency could be reduced. Deep features from a convolutional neural network (CNN) have shown great
promise in characterizing cancers. However, how do these deep features vary with changes in imaging ac-
quisition parameters? To analyze the variability of deep features, a physical radiomics phantom with 10 dif-
ferent material cartridges was scanned on 8 different scanners. We assessed scans from 3 different
cartridges (rubber, dense cork, and normal cork). Deep features from the penultimate layer of the CNN
before (pre-rectified linear unit) and after (post-rectified linear unit) applying the rectified linear unit activation
function were extracted from a pre-trained CNN using transfer learning. We studied both the interscanner
and intrascanner dependency of deep features and also the deep features’ dependency over the 3 car-
tridges. We found some deep features were dependent on pixel size and that, with appropriate normaliza-
tion, this dependency could be reduced. False discovery rate was applied for multiple comparisons, to
mitigate potentially optimistic results. We also used stable deep features for prognostic analysis on 1 non–
small cell lung cancer data set.

INTRODUCTION
In medical research, imaging plays an important role in identify-
ing abnormalities by creating a visual depiction of the internal
organs of the human body for clinical analysis. Radiomics (1, 2)
refers to the extraction of quantitative features from medical
images to discover prognostic or diagnostic disease markers.
These features may have the ability to enable building classifiers
for effective detection, diagnosis, and therapy outcome predic-
tion of cancer.

Computed tomography (CT) scans are used extensively in
cancer diagnosis and treatment. CT scans between patients may
have different acquisition and reconstruction parameters. These

parameters vary among scanner vendors as well. In addition, ev-
ery institution follows its own scan protocols; therefore, scans
for the same body part may differ among institutions. As a result,
a radiomics prediction model generated on one institution’s data
may not be usable or may not generate acceptable performance
with another institution’s data. Hence, it is necessary to analyze
the stability of features under varying imaging parameters to
assess the impact of the latter on the former.

Most reports on the stability and robustness of radiomics
features with variation in image acquisition parameters are on
patients’ CT scans. In a previous study (3), we analyzed the vari-
ability and stability of radiomics features across different image
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acquisition parameters using 8 scanners from 3 different manu-
facturers. The acquired images had 7 different pixel sizes ranging
from 0.39 to 0.98mm, and the slice thickness varied from 1.25 to
3.75mm. It was found that some radiomics features were voxel
size–dependent, but with a proper normalization approach, this
dependency could be reduced or eliminated. Galavis (4) analyzed
the variability of texture features under various acquisition and
reconstruction parameters using 20 patients with solid tumors. In
total, 50 texture features were extracted and further classified
into 3 groups based on variation range: small variability features
(range � 5%), intermediate variability features (10% � range �
25%), and large variability features (�30%). Hunter (5) analyzed
radiomics features that were stable and informative across differ-
ent machines using 56 patients with non–small cell lung cancer
(NSCLC) from 3 CT scan machines of 2 institutions. The Jaccard
index and dice similarity coefficient were used to analyze the sta-
bility of radiomics features across multiple machines. He found
that redundancy and stability of features depended on the CT
image type and CT scanner. Balagurunathan (6) analyzed the sta-
bility of features from CT scans of 32 patients with NSCLC.
Baseline and follow-up scans of the patients were obtained
within a gap of 15minutes using the same CT scanner and imag-
ing protocol. There were 23 stable features out of a total of 219
features extracted. To show the prognostic potential of these 23
features, another independent NSCLC data set with 59 lung
adenocarcinomas was used.

Every scanner has its own set of image acquisition and
reconstruction parameters as shown in Table 1. The variability of
image acquisition and reconstruction parameters across different
machines could be measured to enable adjustments by scanning
a given patient multiple times with different sets of imaging pa-
rameters for each machine. However, scanning the same patient
multiple times is ethically questionable owing to the accumu-
lated ionizing radiation dose. To address this problem, a physical
phantom can be used to acquire multiple scans while varying
imaging parameters for different machines. Zhao et al. (7) ana-
lyzed 22 phantom lesions for exploring slice thickness and
reconstruction kernel variation using 14 radiomics features. In
total, 3 different slice thicknesses (1.25, 2.5, and 5mm) and 2
reconstruction kernels were used to obtain the scans. They
observed that all features were significantly different when

imaged at 1.25-mm versus 5-mm slice thickness and suggested
that thinner (1.25 and 2.5mm) and thicker (5mm) slice images
should not be used concurrently. Mackin et al. (8) investigated
the interscanner variability of radiomics features using phantoms
by obtaining scans from 17 different scanners. In total, 20
patients with NSCLC were also used to measure the variability of
features from tumors. They concluded that the variability of
some radiomics features extracted from NSCLC tumors was com-
parable to the variability of the same radiomics features obtained
from CT scans of phantoms across different CT scanners. We also
previously studied the variation of feature values across different
scanners for several manufacturers (3).

In recent years, with the advancement of neural networks (9,
10), deep features obtained from deep neural networks have been
proposed for analyzing cancerous tumors alone or in combina-
tion with conventional radiomics features. One of the most cru-
cial traits of deep features to qualify as a potential imaging
biomarker is stability across scans. Until now, there was not
much work regarding deep features’ variability over scanner pa-
rameters other than our previous work (11), in which prerectified
linear unit (pre-ReLU) features (deep features from the layer
before the outputs of a pretrained convolutional neural network
[CNN] before applying the ReLU activation function) were used
for the analysis of deep feature variability. Our current work is
an extension of our previous work on deep feature stability anal-
ysis. In this paper, we have made the following contributions
using the following CT radiomics phantom images:

1. In total, 8 different scanners from 3 different manufac-
turers were investigated in our current study.

2. As post-ReLU features have shown better classification
performance (12), along with the pre-ReLU features, these
were also examined for stability analysis.

3. In our previous work, only the rubber cartridge, which showed
textural similarity to NSCLC tumors, was used. The dense cork
cartridge also showed textural similarity to NSCLC tumors
(13). In this study, we examined dense cork and natural cork
cartridges in addition to the rubber cartridge.

4. As the rubber cartridges had Hounsfield unit (HU) values
similar to those of NSCLC tumors, the stable deep features

Table 1. CT Scanners and Scanner Parameters Used in This Study E

Scanner
kVp mAs

Scan
Type Pitch

Rotation
Time
(Sec)

Reconstruction
Kernel

Detector
Configuration

(mm)

Slice
Thickness

(mm)

GE Discovery STE (GE1)a 120 250b Helical 0.984 1.0 Standard Det. Coverage = 40 1.25, 2.5, and 3.75

GE LightSpeed 32 pro (GE2) 120 250b Helical 0.984 1.0 Standard Det. Coverage = 40 1.25, 2.5, and 3.75

Philips Big Bore (P1) 120 250 Helical 1.024 1.0 Standard (B) 16�0.75 1.5 , 2 , and 3

Philips Brilliance 64 (P2) 120 250 Helical 1.024 1.0 Standard (B) 64�0.625 1.5, 2, and 3

Siemens Definition As (S1) 120 250 Helical 1.0 1.0 I31f-2 64�0.625 1.5, 2, and 3

Siemens Sensation 64 (S2) 120 250 Helical 1.0 1.0 B31f 64�0.625 1.5, 2, and 3

Siemens Sensation 40 (S3) 120 250 Helical 1.0 1.0 B31f 40�0.625 1.5, 2, and 3

Siemens Sensation 16 (S4) 120 250 Helical 1.0 1.0 B31f 16�0.75 1.5, 2, and 3
a GE1 (GE Discovery STE) was a PET/CT scanner.
b For GE scanners, manual mAs were used; for all other scanners, quality reference mAs were used.
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for the rubber cartridge were also tested on the 2 other car-
tridges for classification analysis.

The goal of this study was to analyze the stability of deep
features extracted from CT scans (images) from 3 different
manufacturers with different image acquisition parameters
and to evaluate the stable features’ utility in building accu-
rate classifiers.

MATERIALS AND METHODS
Image Acquisition and Reconstruction
The credence cartridge radiomics (CCR) phantom reported by
Mackin (8) was used in image acquisition. In total, 8 different
scanners from 3 different manufacturers (GE, Philips, and
Siemens) were used to obtain scans using the CCR phantom at
the H. Lee. Moffitt Cancer Center and Research Institute, Tampa,
FL. Slice thicknesses for the GE scanners were 1.25, 2.5, and
3.75mm, and those for the Philips and Siemens scanners were
1.5, 2, and 3mm. The adjacent reconstruction interval or zero
interslice gap was used for all CT phantom scans. For every slice
thickness, the reconstruction field of view (FOV) varied from 200
to 500mm (200, 250, 300, 350, 400, 450, and 500mm) corre-
sponding to pixel sizes ranging from 0.39 to 0.98mm. The pixel
size was calculated as FOV/matrix size, and a matrix size of 512
�512 was kept constant for all scans. Parameters for each scan-
ner are shown in Table 1. CT (HU) numbers and SDs for different
cartridges within the CCR phantom are reported in online supple-
mental Table 1). The noise power spectrum (NPS) of the rubber
cartridge using 5 different scanners was reported in a recent pa-
per (14) for the same pixel sizes and slice thicknesses. The NPS
provides the noise texture of an image. Noise texture in a CT
image varies with variation of slice thickness, pixel size, and
reconstruction kernels. Here, we want to point out that NPS can

be used to quantify the noise texture introduced because of dif-
ferent imaging parameters. For example, when the same slice
thickness has similar noise texture, it results in similar NPS val-
ues. So, noise texture is intrinsically associated with images,
while NPS is an analytical tool to quantify that texture. The
investigation of the impact of noise on deep features could be
significant and thus needs future evaluation. For the same pixel
size and slice thickness, CT images might provide the same NPS
and thus similar noise texture. However, for different kernels, the
NPS, as well as the noise texture, will be different.

Convolutional Neural Networks and Transfer Learning
A CNN (9, 10) is a variant of feedforward neural networks, and it
has been used extensively for object recognition and classifica-
tion. A CNN typically consists of �1 convolutional layers along
with pooling layers followed by �1 fully connected layers, as in
a classical multilayer feedforward network. Each neuron has a
bias input, accepts some input values on weighted links, executes
a dot product, and forwards the output to the next layer. A non-
linear activation function is normally used on the outputs.

Training a CNN from scratch requires a large amount of data
(preferably hundreds of images per class, eg, ImageNet data set).
In medical imaging, obtaining a large amount of data (ie, a large
number of images) is often difficult. To counter this problem, a
transfer learning approach (15, 16) has been used. Using previ-
ously learned knowledge to solve a new task is known as transfer
learning. In this study, we chose 1 CNN (visual geometry group-
slow [VGG-S]) (17) already trained using natural camera images
from the ImageNet data set (18). The VGG-S CNN architecture is
shown Figure 1. This pretrained CNN has 5 convolution layers
followed by 3 fully connected layers. We obtained deep features
from the penultimate layer of the CNN before (pre-ReLU) and af-
ter (post-ReLU) applying the ReLU activation function. The

Figure 1. Visual geometry group-slow (VGG-S) architecture containing 5 convolution layers, conv 1–conv 5, and 3 fully
connected layers. A� K� K means subimages created using a K� K kernel; st. indicates convolution stride; LRN indi-
cates local response normalization; pad indicates padding; pool indicates max pooling; and ReLU indicates rectified lin-
ear units.
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frequently used ReLU activation function for a CNN is repre-
sented by the following equation:

f ¼ max 0; xð Þ ¼ x; if x � 0
0; if x < 0

�

where x is the feature value. Notice that after applying the ReLU
activation function, negative feature values are set to 0 and posi-
tive feature values remained unchanged.

Contouring and Feature Extraction
The phantom had 10 different cartridges, from which we chose
rubber, dense cork, and natural cork cartridges for our experi-
ments. We analyzed the rubber and dense cork cartridges because
of the similarity of their HU to NSCLC HU values (13), and natural
cork was also investigated owing to some visible textural pat-
terns. Throughout the scanning procedure, a 512� 512 image
size was used. Contouring of regions of interest (ROIs) was done
with the help of Mirada software (3) (the central region of each
cartridge was captured with a spherical ROI of volume 4.2 cm3.)
As this was a 2D approach, for every scan of the phantom using
a different pixel size and FOV, 1 slice from each of the 3 car-
tridges was chosen for analysis.

The input image size for the pretrained network was
224� 224; so, a subimage of the required size was extracted
from the center of the 512� 512 scanned image. The pretrained
CNN was trained using color camera images (24-bit images),
whereas the phantom’s images were grayscale. Hence, deep fea-
tures were extracted by feeding phantom images through the red
channel only (zeros were sent through green and blue channels).
The vector size of the extracted deep features was 4096 (12).
After extraction, deep features were normalized between 1 and
�1. Figure 2 shows a phantom image slice of a rubber cartridge
and 224� 224 extracted subregions from different cartridges.

Feature Normalization
Using 1 cartridge of the phantom at a time (rubber, dense cork, or
normal cork) for every scanner, we obtained scans of 3 different
slice thicknesses and, for each slice thickness, 7 different pixel
sizes. For every cartridge, 21 different scans were generated with
the intent to analyze the stability of each deep feature across
these scans.

The deep features were normalized by pixel area and voxel
size using the following equations (according) to our previous
studies (3, 11):

fn ¼ p2 � f [1]

fnv ¼ p2 � t � f ; [2]

where fn and fnv are the normalized feature value by pixel area
and voxel size, respectively; p is the pixel size; t is the slice thick-
ness; and f is the original feature value.

For each of the 4096 features, the concordance correlation
coefficient (CCC) (19) across the 21 scans was calculated with
respect to the pixel size before and after feature normalization.
The maximum CCC after feature normalization was around 0.8 for
some deep features, whereas those same features had much lower
CCC (�0.3) before feature normalization. As the CCC values could
be low even after normalization, improvements in the CCC
values after normalization were noted. Each CCC value was
converted to a z value (using Fisher transformation equation
[3] (20), and the improvement was calculated by equation [4].
After that, the z value was converted to a P-value, and the
improvement significance was checked at the 95% signifi-
cance level, P = .05. If any feature was found to be improved
with a P >.05, then that feature was not evaluated further.
Equations [3] and [4] are as follows:

Z ¼ 0:5� loge
1þ r
1� r

[3]

Zdiff ¼ Z1� Z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 3
þ 1
m� 3

r ; [4]

where r is the CCC value; Z is the transformed z value obtained
from a CCC; Z1 and Z2 are the transformed z values obtained
from the CCC of the original deep feature and the normalized
deep feature, respectively; and n and m are the number of data
points for every feature (here it is 21 for 7 pixel sizes and 3 slice
thicknesses).

After using CCC for further filtering, the SD was also com-
puted for each feature after normalization. Stability was deter-
mined using thresholds as follows. A threshold value of 0.25 was
chosen for the SD. If a feature value had an SD <0.25, that fea-
ture value was considered stable across different pixel sizes. The
chosen threshold value encompassed 12.5% of the feature range.
The SD threshold will mostly rule out features that have widely
disparate values but will vary little, on average. After normaliza-
tion, a feature will be called stable with respect to a change of
pixel size, if it had P-values <.05 and <.25 for its CCC and SD,
respectively.

Figure 2. Phantomimagesliceoftherubber
cartridge(A),224�224extractedregion
fromrubbercartridge(B),224�224
extractedregionfromdensecorkcartridge,
and(C)224�224extractedregionfromnor-
malcorkcartridge(D).
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For the stability analysis, 4096 deep features were extracted
from the pretrained CNN. This large number has the problem of
multiple comparisons potentially showing spurious results. To
avoid this, false discovery rate (FDR) (22) was applied to the dis-
covered stable features to adjust their P-value.

EXPERIMENTS AND RESULTS
In Section 3, the results of multiple scans of cartridges are analyzed
for deep feature stability. If a feature varies with the change of pixel

size or voxel size, then a machine learning model built with deep
features extracted using one institution’s data may not work on
another institution’s data. Stable features are needed across different
scanner parameters. We called a feature stable if, after normaliza-
tion, the feature had a similar value within a chosen threshold limit
independently of scanner parameters, which meant that the feature
was stable across variations of parameters.

Based on both SD and improvement in CCC, we grouped the
deep features into 2 different groups. Group 1 consisted of

Figure 3. Feature improvement by normalization. Before normalization (SD = 0.49) (A) and after normalization using
pixel area (SD = 0.1 and false discovery rate [FDR] corrected P = .045) (B) (post-VGG-S features from Philips Brilliance
64 scanner and dense cork cartridge).

Figure 4. Feature that did not improve by normalization. Before normalization (SD = 0.38) (A) and after normalization
using pixel area (SD = 0.48) (B) (pre-VGG-S features from Philips Brilliance 64 scanner and dense cork cartridge) (y-axis
represents feature value and x-axis represents pixel size).
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features whose improvement in CCC resulted in P-value and SD
values <.05 and <0.25, respectively. These features showed less
variability with the change of pixel sizes and slice thicknesses,
and they were considered stable across pixel sizes. Group 2 com-
prised unstable features that did not become stable after applying
normalization (ie, showed variability before and after normaliza-
tion). We analyzed the stability of deep features for both pre-
ReLU and post-ReLU features extracted from 3 different phantom
cartridges. Figures 3 and 4 show examples of a feature that
improved and of one that did not improve after normalization,
respectively. Figure 5A shows stability results of VGG-S pre-
ReLU and post-ReLU features obtained from the rubber cartridge.
Figure 5B shows the analysis of the dense cork, and Figure 5C
describes results from the normal cork.

We observed that normalization using the pixel area helped
to obtain more stable features (reducing variations and increas-
ing stability across different pixel sizes) better than normaliza-
tion using voxel size. After analyzing intrascanner dependency
(investigating features from every scanner separately), we ana-
lyzed features from different scanners jointly (interscanner de-
pendency). Interscanner dependency evaluates the number of
stable features by comparing all 4096 features among all scan-
ners. Different cartridges (rubber, dense cork, and normal cork),
normalization approaches, and deep features (post-ReLU and

pre-ReLU) were also compared. Figure 6 shows the results
obtained from the interscanner dependency analysis. Only 1 pre-
ReLU feature obtained from different scanners was found to be
stable across 3 cartridges. Whereas for post-ReLU features, 19
features were found to be stable across 3 cartridges. Figure 7
shows a feature found to be stable after normalization (interscan-
ner dependency).

FDR was applied on the discovered stable features to adjust
their P-value. Now the features with adjusted P-value were com-
pared against those with P-value of .05. After the FDR correction,
the number of stable features was reduced (49, 71, and 70 deep
features were stable on rubber, dense cork, and normal cork car-
tridges, respectively). Interscanner dependency (analysis of fea-
tures obtained from different scanners) was also explored. Each
of these 3 cartridges had different HU values and textures. Only 1
post-ReLU feature (feature column 299) from CNN was found to
be stable across different scanners for all 3 cartridges after P-val-
ues were corrected using FDR. The stability of features changed
significantly with the change of cartridges. Hence, the question
of stability on a cartridge was examined. The results obtained af-
ter applying FDR are shown in Figures 8 and 9.

One data set was chosen to analyze the relevant utility of the
stable deep features for prognostic analysis. Deidentified data
from the National Lung Screening Trial (NLST) was obtained via

Figure 5. Results from rubber cartridge (A), dense cork (B), and normal cork cartridge (C) (only the number of features
that are stable are shown).
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the data access system of the National Cancer Institute under an
IRB-approved process. Figure 10 describes the NLST study time-
line as well as the criteria for dividing the SDLCs and NPCs into
Cohort1 and Cohort2. It should be noted that the scans performed
on the physical phantom (120 kVp, 250 mAs) were not equiva-
lent to the low-dose scans used on the NLST data set (120–140
kVp, 40–80 mAs). Nevertheless, we have shown that stable deep
features identified using phantom images can be used to enhance
malignancy classification in humans during low-dose CT screen-
ing, which uses a higher mAs value. A detailed description of the
data set is in the online supplemental Appendix (23, 24) which
includes Figure 10 describing the data. Deep features from the
CNN were extracted using the red-color channel. In our previous
study (21), we experimented with the original deep features
(without choosing any stable features) and the top 5 / 10/15 / 20

deep features were selected using the symmetric uncertainty (25)
feature selector. In Paul et al.’s study (21), using VGG-S deep fea-
tures from the red-color channel gave the best classification ac-
curacy of 65.4% with 0.66 area under the curve (AUC) using 15
features.

The deep features (49) that were found to be stable on
rubber cartridges over different scanners and parameters
were evaluated further to determine whether the use of sta-
ble features could lead to improved classification perform-
ance. The classification performance was evaluated with
respect to accuracy and area under the receiver operating
characteristic curve (26). We also choose the top 5 / 10/
15 / 20 deep features from our stable features using the sym-
metric uncertainty feature selector and using all 49 features
to classify using random forests classifier (27). We found

Figure 7. Inter-scanner dependency (post-ReLU 4096th feature using rubber cartridge): feature improvement after nor-
malization, before normalization (SD = 0.28) (A), after normalization using pixel area (SD = 0.1 and FDR corrected P-
value = .0024) (B). [Note: In figure, GE1 = GE Discovery STE, GE2 = GE LightSpeed 32 pro, P1 = Philips Big Bore, P2 =
Philips Brilliance 64, S1 = Siemens Definition As, S2 = Siemens Sensation 64, S4 = Siemens Sensation 40, and S4 =
Siemens Sensation 16].

Figure 6. Results from interscanner stability (only the
number features that are stable are shown in the figure).
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that using pixel area normalized deep features enabled
67.08% accuracy with 0.67 AUC, which was an improve-
ment over our previous analysis using all 4096 features. The
classification performance was further enhanced to 68.77%
(0.68 AUC) by using all 49 stable features, a 2% accuracy
increase over using unnormalized features. Detailed results
are shown in Table 2. Online supplemental Appendix Table
2) compares the performance of different classifiers [deci-
sion tree (28), naïve Bayes (29), and nearest neighbors (30)]
with unmodified deep features and normalized stable deep fea-
tures. From this study, we observed the importance of deep feature
stability assessment before prognostic evaluation. By choosing the
stable features, we may avoid using unreliable and irrelevant
features.

DISCUSSION
CT imaging plays a critical role in current NSCLC treatment and
research. The FOV can vary from scan to scan depending on the
size, location, and NSCLC tumor stage and patient size. Slice
thickness is another important parameter selected for obtaining a
scan. How these image acquisition parameters affect features
extracted from a CNN remains unexplored. Hence, the main
focus of this study was to evaluate how deep features behave
with variation in image acquisition parameters. There has been
recent work (31) on finding semantic meaning for deep features,

suggesting that meaning may be ascertained for stable deep fea-
tures. To the best of our knowledge, this is the first work analyz-
ing the stability of deep features with varying slice thickness and
FOV. In this paper, only pixel size and slice thickness dependency
and variability were chosen for analysis. The goal was to gain a
better understanding of the variability and allow focus on ways
to remove or reduce variability.

In our previous study (21), deep features extracted from dif-
ferent color channels of a pretrained CNN were analyzed and
variations in classification accuracies were also obtained. Deep
features were extracted from the red channel of the pretrained
CNN (VGG-S) for our current study. VGG-S was chosen for our
study because deep features from VGG-S showed good classifica-
tion for NSCLC nodules (21).

From this study, we observed that some deep features
were stable as shown in Figure 4 (small variability with the
variation of pixel size) within a chosen threshold. These sta-
ble features did not appreciably change with the change of
pixel sizes. Some of the deep features were pixel size–de-
pendent. These features showed variation with changes in
pixel size. Robust and stable features across different
reconstruction kernels and image acquisition parameters
are desirable in radiomics. In an attempt to stabilize these
features across the variability of pixel sizes, we proposed 2
normalization procedures using pixel area and voxel size

Figure 8. Results after using FDR: rubber cartridge (A), dense cork (B), and normal cork cartridge (C) (only the number
of features that are stable are shown).
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(11, 14). In some cases, features stabilized after being
normalized by pixel area or voxel size. However, some of
these pixel size–dependent features showed variability
even after normalization. They were not stable with pixel
size. Hence, we found that some deep features also had
pixel size dependencies such as the conventional radiomics
features, and a similar correction approach could be used to
reduce the dependency.

Normalization using pixel area generated a greater number
of stable features (less variability across pixel size changes) than
using voxel size. In fact, voxel size normalization by itself was of
minimal help, perhaps because we are dealing with planar images
(2D), 1 slice per scan. It added only a couple more stable features,
in some cases, to the set found with pixel area normalization.
Voxel size is a volume that may explain the lack of improvement

when normalizing by it. Interscanner dependency (analysis of
features obtained from different scanners) was also explored.
Each of these 3 cartridges (rubber, dense cork, and natural cork)
had different HUs and textures, yet 1 pre-ReLU and 19 post-ReLU
features from a VGG-S pretrained CNN were found to be stable
across different scanners for all 3 cartridges.

Previously (12, 21) we found that using post-ReLU features
provided better classification performance than using pre-ReLU
features for lung nodules. Post-ReLU features lack negative val-
ues (all the negative values were made 0) owing to the ReLU acti-
vation function. Pre-ReLU features had negative feature values.
Both sets of features (pre- and post-ReLU) were investigated to
gain our understanding of feature stability. From our current
study, we found more post-ReLU deep features could be stabi-
lized than pre-ReLU features.

Figure 9. Results from interscanner stability after
FDR (only the number features that are stable are
shown in the figure).

Figure 10. National Lung
Screening Trial (NLST) study and
(A) flowchart of selection of cohort
1 and cohort 2 from the NLST study
(B).
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We found that the features also changed significantly
when using different scanners with different protocols. Our
analysis also showed that more deep features from the dense
cork cartridges were stable than features from the rubber
and normal cork cartridges. This happened because the tex-
ture of dense cork cartridge is more uniform than that of the
rubber and normal cork cartridges.

Finally, in this study, pre- and post-ReLU features were
obtained from a transfer learning approach, which was a limi-
tation of the study because the VGG-S CNN was not trained on
any type of medical images or any medical imaging modality.
We used transfer learning because we do not yet have the large
number of medical images needed to train a complex CNN and
to explore the utility of transfer learning. Given our present
results, deep features from a CNN trained on CT images will be
investigated in the future. Even though phantoms were made
of different materials with different texture, an analysis using
real human CT scans would be useful. No scans from human
subjects were used for stability analysis, which was a limita-
tion of this study. In future work, more analysis using patient
data will be analyzed for prognostic evaluation after using the
proposed pixel size-based normalization. Deep features from
only the red channel of the VGG-S network were used for this
study, which was another limitation. In the future, feature nor-
malization will be analyzed during CNN training to determine
if it is possible to identify characteristics of features that would
benefit from normalization. The deep features will be analyzed
further using different scanner parameters and various recon-
struction kernels.

CONCLUSIONS
The goal of this study was to analyze whether deep features were
stable across different scanner parameters and manufacturers.
Stability is one of the essential characteristics of deep features to
qualify as a potential imaging biomarker. From this study, we
found that many deep features were dependent on pixel size, as
are many conventional radiomics features. It was found that this
dependency could be reduced, for some, by normalizing the deep
features using pixel area and voxel size. We found that the stabil-
ity of deep features changed significantly when using different
phantom cartridges (49, 71, and 70 deep features were stable on
rubber, dense cork, and normal cork cartridges, respectively). We
also looked for deep features that were stable across 3 physical
phantom cartridges for post-ReLU, and found 1 feature. The 3
cartridges were made of different components and had differen-
ces in texture uniformity and HU values. It is therefore advisable
to analyze the stability of deep features among different car-
tridges independently. The stable and normalized deep features
achieved improved classification performance compared with
the original deep features chosen by the symmetric uncertainty
feature selector, which shows the usefulness of stable features for
prognosis analysis. Based on this study, some deep features may
be candidates for future imaging biomarkers, but researchers
must be cautious because most deep features show dependence
on image acquisition parameter variations.

Supplemental Materials
Supplemental Appendix: https://doi.org/10.18383/j.tom.2020.00003.
sup.01
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