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Dataset of spiking and LFP activity 
invasively recorded in the human 
amygdala during aversive dynamic 
stimuli
Tommaso Fedele1, Ece Boran   2, Valerii Chirkov   3, Peter Hilfiker   4, Thomas Grunwald4, 
Lennart Stieglitz   2, Hennric Jokeit4,5 & Johannes Sarnthein   2,5 ✉

We present an electrophysiological dataset collected from the amygdalae of nine participants attending 
a visual dynamic stimulation of emotional aversive content. The participants were patients affected by 
epilepsy who underwent preoperative invasive monitoring in the mesial temporal lobe. Participants 
were presented with dynamic visual sequences of fearful faces (aversive condition), interleaved with 
sequences of neutral landscapes (neutral condition). The dataset contains the simultaneous recording of 
intracranial EEG (iEEG) and neuronal spike times and waveforms, and localization information for iEEG 
electrodes. Participant characteristics and trial information are provided. We technically validated this 
dataset and provide here the spike sorting quality metrics and the spectra of iEEG signals. This dataset 
allows the investigation of amygdalar response to dynamic aversive stimuli at multiple spatial scales, 
from the macroscopic EEG to the neuronal firing in the human brain.

Background & Summary
Several aspects of perception and cognition involve the amygdala. Neural activity within the amygdala is implied 
in novelty detection1, perception of faces2, emotions3 and aversive learning4. Emotional recognition is facilitated 
by presentation of fearful facial expression and especially their dynamic presentation5. Presentation of dynamic 
faces has been shown to elicit strong electrophysiological responses in the scalp electroencephalography (EEG)6. 
Within the face perception network, the human amygdala is an important node7 where its role has been mainly 
investigated by means of Blood Oxygen Level Dependent (BOLD) responses8–10. Electrophysiological oscillatory 
responses in the human amygdala are mostly explored in patients with refractory epilepsy who are undergoing 
pre-surgical monitoring11,12. In these patients, the intracranial electroencephalography (iEEG) records local field 
potentials that result from the activity of thousands of neurons13. Thanks to technological advance, iEEG can be 
combined with recordings of single neuron activity in the human amygdala14–16. While these two different types 
of data provide complementary information on the processing of sensory stimuli, their simultaneous recording 
remains rare.

Here, we describe a publicly released data set recorded from 14 amygdalae of 9 epilepsy patients. It consists 
of simultaneously acquired iEEG and single-neuron recordings. Differences in amygdala activation were found 
in response to watching sequences from thriller and horror movies showing actors portraying fearful faces in 
contrast to relaxing landscape recordings. The task (Fig. 1a) presents salient visual stimuli in a naturalistic way, 
different from most human single-neuron studies that have only used static stimuli3,16,17. Previous publications 
with the same task have shown strong amygdala responses with BOLD10,18 and iEEG11,12 together with enhanced 
firing of single neurons12. In a detailed analysis of the dataset12, we have described the interactions between iEEG 
and neuronal firing. Along with the iEEG traces and neuronal recordings, we here provide the technical valida-
tion of the quality of the isolated neurons, the localization information for iEEG electrodes, and the task video19. 
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This dataset represents a unique opportunity for further investigation of the cross-scale dynamics that define the 
relation between macroscopic oscillatory activity in the iEEG and the neuronal firing in the human amygdala.

Methods
Task.  Short video sequences with dynamic fearful faces were compiled to activate the amygdala (Fig. 1a). The 
video was first used with fMRI in10 and later with iEEG11 and single neuron recordings12. The video is available 
in the original AVI format and read by a custom program19. Schacher et al.10 describe the video as follows: “To 
activate the amygdala, we developed a paradigm utilizing visual presentations of dynamic fearful faces. Stimuli 
were presented in a block design. The paradigm consisted of eight activation (aversive) and eight baseline (neu-
tral) blocks each lasting 24 seconds. The activation condition consisted of 75 brief episodes (2 to 3 seconds) from 
thriller and horror films. All episodes showed the faces of actors who were expressing fear with high intensity. 
None of the episodes showed violence or aggression. Quality and applicability of film sequences were evaluated 
by an expert panel consisting of nine psychologists. Of an initial collection of 120 scenes, only sequences that were 
considered appropriate by the majority of the expert panel were extracted for the paradigm. Evaluation criteria 
were as follows: 1) actor’s face is clearly visible; 2) emotion displayed is clearly recognizable as fear; 3) fear is the 
only clearly recognizable emotion (no other emotion, e.g., anger, sadness, surprise, is displayed); and (4) the fear 
displayed is of high intensity. During baseline blocks, 72 short episodes of similar length (2 to 3 seconds) with 
dynamic landscape video recordings were presented. Video clips of calm domestic landscapes were used owing to 
their stable low emotional content while their general visual stimulus properties were comparable with the movie 
clips. Frequency and duration of the sequences (2 to 3 seconds) were matched for aversive and neutral conditions.”

Participants.  Nine participants participated in the study (Table 1). All participants were patients with 
drug-resistant focal epilepsy. They were implanted with depth electrodes in the amygdala and in contiguous areas 
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Fig. 1  Task and recordings. (a) Aversive (red) and neutral (blue) video sequences were presented in blocks of 
24 s, interleaved with a repeated 2 s neutral baseline (green). The images are representative video stills drawn 
from the video sequences. (b) iEEG was recorded with macroelectrodes and neuronal action potentials were 
recorded with microelectrodes. iEEG signals were stored trial-wise as recorded and after bipolar re-referencing. 
Neuronal action potentials (spikes) were extracted from the microelectrode recordings by spike sorting and 
stored trial-wise for each neuron.

Participant 
number Age Gender Pathology

Implanted 
electrodes

Seizure onset zone 
(SOZ) electrodes

1 31 M sclerosis AL, AR AR

2 48 M gliosis AL, AR AR

3 19 F sclerosis AL

4 22 M sclerosis AL

5 34 M sclerosis AR AR

6 23 M sclerosis AL, AR AR

7 39 M gliosis AL, AR AR

8 27 F astrocytoma AL

9 22 M sclerosis AL, AR AL, AR

Table 1.  Participant characteristics. M: male; F: female; A: amygdala; L: left; R: right.
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of the mesial temporal lobe for the potential surgical treatment of epilepsy. The implantation sites were selected 
solely based on the clinical indication. The study was approved by the institutional ethics review board (Kantonale 
Ethikkommission Zürich, PB-2016-02055). All participants provided written informed consent to participate in 
the study. The ethics approval covers the administration of multiple cognitive tasks. Some participants partici-
pated in several cognitive tasks. The data obtained in one of these other cognitive tasks has already been analysed 
and published earlier20,21.

Recording setup.  Data were recorded with a standard setup used in many hospitals that do human iEEG and 
single neuron recordings. We replicate here the description given in our earlier publications19–21. “We measured 
iEEG with depth electrodes (1.3 mm diameter, 8 contacts of 1.6 mm length, spacing between contact centers 
5 mm, ADTech®, Racine, WI, www.adtechmedical.com), implanted stereotactically into the amygdala. Each mac-
roelectrode had nine microelectrodes that protruded approximately 4 mm from its tip (Fig. 1b). Recordings were 
done against a common intracranial reference at a sampling frequency of 4 kHz for the macroelectrodes and 
32 kHz for the microelectrodes via the ATLAS recording system (0.5–5000 Hz passband, Neuralynx®, Bozeman 
MT, USA, www.neuralynx.com). iEEG data were resampled at 2 kHz.” In the presented dataset, we share epoched 
iEEG data (trials of 26 seconds) as recorded and after bipolar re-referencing, and neuronal activity in the form of 
time stamps and average neuronal spike waveform.
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Fig. 2  Neuronal firing and spike sorting quality metrics. (a) Example neuron in the amygdala. Top: 
Peristimulus time histogram (bin size: 100 ms; step size: 10 ms) for aversive (red) and neutral (blue) conditions. 
Shaded areas represent ± s.e.m. across trials of all spikes associated with the neuron Inset: mean extracellular 
waveform ± s.e.m. Bottom: Raster plot of trials reordered by trial condition for plotting purposes only. The trial 
onset is at time t = 0. (b) Histogram of percentage of inter-spike intervals (ISI) <3 ms. The majority of neurons 
had less than 0.5% of short ISI. (c) Histogram of average firing rate for all neurons. (d) Histogram of the signal-
to-noise ratio (SNR) of the peak of the mean waveform.
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Depth electrode localization.  Electrodes were localized in the same way as in our earlier publications19–21, 
which we replicate in the following. “We used postimplantation CT scans and postimplantation structural 
T1-weighted MRI scans. Each scan was aligned to the ACPC (anterior commissure, posterior commissure) coor-
dinate system. For each participant, the CT scan was registered to the postimplantation scan as implemented in 
FieldTrip22. In the coregistered CT-MR images, the electrode contacts were visually marked. The contact positions 
were normalized to the MNI space and assigned to a brain region using Brainnetome23. Anatomical labelling of 
each electrode contact was verified by the neurosurgeon (L.S.) after merging preoperative MRI with postimplan-
tation CT images of each individual participant in the plane along the electrode (iPlan Stereotaxy 3.0, Brainlab, 
München, Germany). We specify whether electrodes were inside the seizure onset zone (SOZ).”

Spike detection and neuron identification.  For spike sorting, we followed the same procedure as in our 
earlier publications19–21, where we described the method as follows. “The Combinato package (https://github.
com/jniediek/combinato) was used for spike sorting24. Combinato follows a similar procedure to other freely 
available software packages: peak detection in the high-pass (>300 Hz) signal, computation of wavelet coefficients 
for detected peaks, and superparamagnetic clustering in the feature space of wavelet coefficients. As an advan-
tage over other clustering procedures, Combinato is more sensitive in the detection of clusters of small size (few 
action potentials). We visually inspected each identified cluster based on the shape and amplitude of the action 

General information

Institution conducting the experiment

Recording location

Related publications (name, doi)

Recording setup (devices and settings)

Task

Name

Description

URL for downloading the task for PresentationⓇ

Participant
For each particpant: Age, gender, pathology, depth electrodes, electrodes in seizure onset zone (SOZ)

Trials properties for each trial (trial number, condition, condition name)

Session
Number of trials

Trial duration

Intracranial EEG data
For each trial: Bipolar montage of signals recorded with a sampling frequency of 2 kHz

Labels and time axis

Spike waveforms For each unit: Mean and standard deviation of spike waveform in a 2-ms window, sampled at 32 kHz

Spike times For each unit: Spike time with respect to t = 0 in the trial

Depth electrodes

MNI coordinates in millimeters

Electrode label

Anatomical label updated after visual inspection of MRI

Electrodes in the seizure onset zone (SOZ)

Table 2.  Data types in the NIX data.

Fig. 3  Power spectrum of the iEEG. The power spectrum for the aversive (red) and neutral (blue) conditions 
averaged over channels in the amygdalae outside of the SOZ (total 7 channels). Hann window 5 cycles of each 
frequency bin (temporal resolution: 100 ms; frequency resolution: 2 Hz).
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potentials and the interspike interval (ISI) distributions. We removed clusters noisy waveforms, or nonuniform 
amplitude or shape of the action potentials in the recorded time interval. Moreover, to avoid overclustering, we 
merged highly similar clusters identified on the same microelectrode to obtain units. We considered only units 
with firing rate >1 Hz. Finally, we computed several metrics of spike sorting quality (Fig. 2b–d).”

Data Records
The dataset was released in the G-Node/NIX format and can be downloaded at https://doi.org/10.12751/g-nod
e.270z5925,26.The README describes the repository structure and the instructions for downloading the data.

Data from each participant was saved in a single hierarchical data format (.h5) file. Each file has the same 
format and includes general information, information on the task, participant and session, intracranial EEG 
data, spike times and waveforms, and information on depth electrodes (Table 2). We adhere to the standard NIX 
format. Whenever we introduce a custom name, we explain the name in NIX_File_Structure.pdf. The NIX_File_
Structure.pdf describes the structure of that data that our script reads (Main_Load_NIX_Data.m). The script calls 
the NIX library and is well-commented.

The dataset was also released in the iEEG-BIDS format on the OpenNeuro repository (https://doi.org/10.18112/
openneuro.ds003374.v1.1.1)27–29. This repository includes metadata and iEEG data, and also the extended dataset 
in the NIX format. iEEG data is provided as the BrainVision and European data format (EDF) files.

Technical Validation
Spike-sorting quality metrics.  Spike sorting yielded single unit activity (SUA) and multiunit activity 
(MUA). We refer here to a putative unit by the term ‘neuron’. The example neuron in Fig. 2a increased its firing 
rate during the presentation of faces. For all neurons, the histogram of the percentage of inter-spike intervals (ISI) 
<3 ms is shown in Fig. 2b. The majority of neurons had less than 3% of short ISI. The percentage of ISI below 3 ms 
was 1.15 ± 0.9%. The histogram of average firing rate is given in Fig. 2c. The average firing rate of all neurons was 
1.66 ± 2.65 Hz. For the mean waveform, the ratio of the peak amplitude to the standard deviation of the noise 
(waveform peak signal-to-noise ratio) was 4.62 ± 1.46 (Fig. 2d). These metrics are in the range of what is expected 
for the physiology of neuronal firing.

Spectra of iEEG.  iEEG power spectra of signals from healthy amygdalae (outside the seizure onset zone, 
Table 1) for the two conditions in Fig. 3.

Code availability
An example script is provided with the dataset26,29. It contains commented scripts for reading and plotting the 
data in NIX format25. We have also included scripts for the generation of Figs 2 and 3. All code is implemented in 
MATLAB (Mathworks Inc., version R2019a).

Received: 8 June 2020; Accepted: 1 December 2020;
Published: xx xx xxxx

References
	 1.	 Balderston, N. L., Schultz, D. H. & Helmstetter, F. J. The Effect of Threat on Novelty Evoked Amygdala Responses. PloS One 8, e63220 

(2013).
	 2.	 Adolphs, R. & Spezio, M. Role of the amygdala in processing visual social stimuli. Prog. Brain Res. 156, 363–378 (2006).
	 3.	 Wang, S. et al. Neurons in the human amygdala selective for perceived emotion. Proc. Natl. Acad. Sci. USA 111, E3110–E3119 

(2014).
	 4.	 Janak, P. H. & Tye, K. M. From circuits to behaviour in the amygdala. Nature 517, 284–292 (2015).
	 5.	 Calvo, M. G., Avero, P., Fernández-Martín, A. & Recio, G. Recognition thresholds for static and dynamic emotional faces. Emotion 

16, 1186–1200 (2016).
	 6.	 Recio, G., Sommer, W. & Schacht, A. Electrophysiological correlates of perceiving and evaluating static and dynamic facial emotional 

expressions. Brain Res. 1376, 66–75 (2011).
	 7.	 Duchaine, B. & Yovel, G. A Revised Neural Framework for Face Processing. Annu. Rev. Vis. Sci. 1, 393–416 (2015).
	 8.	 Krumhuber, E. G., Kappas, A. & Manstead, A. S. R. Effects of Dynamic Aspects of Facial Expressions: A Review: Emotion Review 

41–46, https://doi.org/10.1177/1754073912451349 (2013).
	 9.	 Pitcher, D., Ianni, G. & Ungerleider, L. G. A functional dissociation of face-, body- and scene-selective brain areas based on their 

response to moving and static stimuli. Sci. Rep. 9, 8242 (2019).
	10.	 Schacher, M. et al. Amygdala fMRI lateralizes temporal lobe epilepsy. Neurology 66, 81–87 (2006).
	11.	 Zheng, J. et al. Amygdala-hippocampal dynamics during salient information processing. Nat. Commun. 8, 14413 (2017).
	12.	 Fedele, T. et al. The relation between neuronal firing, local field potentials and hemodynamic activity in the human amygdala in 

response to aversive dynamic visual stimuli. Neuroimage 213, 116705 (2020).
	13.	 Lachaux, J.-P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N. E. High-frequency neural activity and human cognition: Past, 

present and possible future of intracranial EEG research. Prog. Neurobiol. 98, 279–301 (2012).
	14.	 Fried, I., MacDonald, K. A. & Wilson, C. L. Single Neuron Activity in Human Hippocampus and Amygdala during Recognition of 

Faces and Objects. J. Neurosci. 29, 13613–13620 (1997).
	15.	 Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nature Neuroscience 21, 474–483 

(2018).
	16.	 Rutishauser, U. et al. Single-Unit Responses Selective for Whole Faces in the Human Amygdala. Curr. Biol. 21, 1654–1660 (2011).
	17.	 Canli, T., Sivers, H., Whitfield, S. L., Gotlib, I. H. & Gabrieli, J. D. E. Amygdala Response to Happy Faces as a Function of 

Extraversion. Science 296, 2191 (2002).
	18.	 Steiger, B. K., Muller, A. M., Spirig, E., Toller, G. & Jokeit, H. Mesial temporal lobe epilepsy diminishes functional connectivity 

during emotion perception. Epilepsy Res. 134, 33–40 (2017).
	19.	 Fedele, T. et al. Dynamic visual sequences of fearful faces. Archives of Neurobehavioral Experiments and Stimuli (2020).
	20.	 Boran, E. et al. Dataset of human medial temporal lobe neurons, scalp and intracranial EEG during a verbal working memory task. 

Scientific Data 7, 30 (2020).

https://doi.org/10.1038/s41597-020-00790-x
https://doi.org/10.12751/g-node.270z59
https://doi.org/10.12751/g-node.270z59
https://doi.org/10.18112/openneuro.ds003374.v1.1.1
https://doi.org/10.18112/openneuro.ds003374.v1.1.1
https://doi.org/10.1177/1754073912451349


6Scientific Data |             (2021) 8:9  | https://doi.org/10.1038/s41597-020-00790-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

	21.	 Boran, E. et al. Persistent hippocampal neural firing and hippocampal-cortical coupling predict verbal working memory load. 
Science Advances 5, eaav3687 (2019).

	22.	 Stolk, A. et al. Integrated analysis of anatomical and electrophysiological human intracranial data. Nat. Protoc. 13, 1699–1723 
(2018).

	23.	 Fan, L. et al. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture. Cereb. Cortex 26, 3508–3526 
(2016).

	24.	 Niediek, J., Boström, J., Elger, C. E. & Mormann, F. Reliable Analysis of Single-Unit Recordings from the Human Brain under Noisy 
Conditions: Tracking Neurons over Hours. PloS One 11, e0166598 (2016).

	25.	 Stoewer, A., Kellner, C. J., Benda, J., Wachtler, T. & Grewe, J. File format and library for neuroscience data and metadata. Front. 
Neuroinform, https://doi.org/10.3389/conf.fninf.2014.18.00027 (2014).

	26.	 Fedele, T. et al. Dataset of neurons and intracranial EEG from human amygdala during aversive dynamic visual stimulation. G-node 
https://doi.org/10.12751/g-node.270z59 (2020).

	27.	 Gorgolewski, K. J. et al. The brain imaging data structure, a format for organizing and describing outputs of neuroimaging 
experiments. Scientific Data 3, 160044 (2016).

	28.	 Holdgraf, C. et al. iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology. 
Scientific data 6, 102 (2019).

	29.	 Fedele, T. et al. Dataset of neurons and intracranial EEG from human amygdala during aversive dynamic visual stimulation. 
OpenNeuro https://doi.org/10.18112/openneuro.ds003374.v1.1.1 (2020).

Acknowledgements
We thank the physicians and the staff at Schweizerische Epilepsie-Klinik for their assistance and the participants 
for their participation. We acknowledge grants awarded by the Swiss National Science Foundation (SNSF 
320030_156029 to J.S.), Mach-Gaensslen Stiftung (to J.S.), Stiftung für wissenschaftliche Forschung an der 
Universität Zürich (to J.S.), Forschungskredit der Universität Zürich (to T.F.) and Russian Foundation for Basic 
Research (RFBR 20-015-00176 A to T.F.). The funders had no role in the design or analysis of the study.

Author contributions
J.S. and H.J. designed the experiment. P.H. set up the recordings. J.S., T.F. conducted the experiments. T.F., E.B., 
V.C. analysed the data. T.G. provided patient care. L.S. performed surgery. T.F., V.C. and J.S. wrote the manuscript. 
All of the authors reviewed the final version of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The Creative Commons Public Domain Dedication waiver http://creativecommons.org/publicdomain/zero/1.0/ 
applies to the metadata files associated with this article.
 
© The Author(s) 2021

https://doi.org/10.1038/s41597-020-00790-x
https://doi.org/10.3389/conf.fninf.2014.18.00027
https://doi.org/10.12751/g-node.270z59
https://doi.org/10.18112/openneuro.ds003374.v1.1.1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

	Dataset of spiking and LFP activity invasively recorded in the human amygdala during aversive dynamic stimuli

	Background & Summary

	Methods

	Task. 
	Participants. 
	Recording setup. 
	Depth electrode localization. 
	Spike detection and neuron identification. 

	Data Records

	Technical Validation

	Spike-sorting quality metrics. 
	Spectra of iEEG. 

	Acknowledgements

	Fig. 1 Task and recordings.
	Fig. 2 Neuronal firing and spike sorting quality metrics.
	Fig. 3 Power spectrum of the iEEG.
	Table 1 Participant characteristics.
	Table 2 Data types in the NIX data.




