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Abstract

This article examines the regulatory function of the skeletal muscle, renal, and adrenergic 
systems in potassium homeostasis. The pathophysiologic bases of hypokalemia, systematic 
approach for an early diagnosis, and therapeutic strategy to avert life-threatening com-
plications are highlighted. By promoting skeletal muscle uptake, intense physical exercise 
(post), severe trauma, and several toxins produce profound hypokalemia. Hypovolemia 
due to renal and extra-renal fluid losses and ineffective circulation activate secondary 
aldosteronism causing urinary potassium wasting. In addition to hypokalemic alkalosis, 
primary aldosteronism causes low-renin hypertension. Non-aldosterone mineralocorticoid 
activation leading to low-renin and low-aldosterone hypertension occurs in Liddle’s syn-
drome and apparent mineralocorticoid excess. Although there is enzymatic inhibition of 
cortisol synthesis in congenital adrenal hyperplasia, precursors of aldosterone produce low-
renin hypokalemic hypertension. In addition to the glucocorticoid effect, hypercortisolism 
activates mineralocorticoid receptors in Cushing’s syndrome. Genetic mutations involving 
furosemide-sensitive  Na+-K+-2Cl− co-transporters and thiazide-sensitive  Na+-Cl− transporters 
result in (non-hypertensive) salt-wasting nephropathy. Proximal and distal renal tubular 
acidosis is associated with hypokalemia. Eating disorders causing hypokalemia include 
bulimia, laxative abuse, and diuretic misuse. Low urinary potassium (<15 mmol/day) and/
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or low urinary chloride (<20 mol/L) suggest a gastrointestinal pathology. Co-morbidity of 
hypokalemia with chronic pulmonary and cardiovascular diseases may increase the fatal-
ity rate.

Introduction

Adequate distribution of a potassium cation  (K+) in 
the body fluids is essential to maintain the physio-
logic function of all the human systems. Hypokalemia, 
defined as a plasma potassium concentration below 
3.5 mmol/L, is a relatively common electrolyte disor-
der in children and adults [1•]. Apart from the direct 
impact of primary disease, physiologic responses to 
illness such as profuse sweating, diarrhea, and vom-
iting produce hypokalemia [2, 3]. In addition, com-
mon therapeutic interventions such as diuretic agents 
are frequent sources of a potassium deficit [4]. Con-
sequently, hypokalemia occurs in about 20% of the 
hospitalized patients and accounts for a two-fold 

higher mortality rate [1•, 4]. In this review, we shall 
examine the potassium physiology based on the con-
tribution from the gastrointestinal, musculoskeletal, 
endocrine, cardiovascular, and renal systems. We shall 
explore the etiologies of hypokalemia and examine the 
influence of potassium deficit on the clinical outcome 
of selected diseases. We have chosen this approach 
because the initial presentation of hypokalemia sel-
dom occurs in isolation but is often appreciated in 
the context of a given pathology. Finally, a pragmatic 
approach to diagnosis if the initial presentation is 
hypokalemia and the required therapeutic strategy 
will be addressed.

Materials and Methods

We reviewed the relevant literature by conducting a PubMed search using the 
terms hypokalemia, potassium deficiency, and electrolyte disorders. Only the 
articles published in the English language were included. We retrieved available 
original articles, clinical trials, meta-analyses, case reports, and clinical case series 
on hypokalemia-related disorders.

Fundamentals of Potassium Homeostasis

The critical role of potassium in the human body is exemplified by its involve-
ment in the  Na+-K+-ATPase, an essential electrogenic enzyme that facilitates 
transcellular ion transport [5, 6]. Potassium, the most abundant intracellular 
cations (150 mmol/L), must be maintained at a precise concentration (within 
and out of the cells) to generate electrical gradient for basic physiologic function 
[1•, 5]. It is a co-factor to many essential enzymatic processes, and it maintains 
cellular integrity by preserving osmotic equilibrium [7, 8].

Skeletal Muscle and Potassium Homeostasis

Although long-term control of plasma potassium depends on the renal 
capacity for excretion, skeletal muscles are needed for a minute-to-minute 
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regulation [9]. Skeletal muscles are the largest single repository of potassium 
in the body with a total content of 2600 mmol [200-fold of serum  K+] [10]. 
In theory, activation of its numerous potassium channels can clear extra-
cellular fluid (ECF) of its content within 25 s [10]. Primarily regulated by 
 Na+-K+-ATPase, insulin, catecholamines, hyperkalemia, and alkalosis stimu-
late myocyte potassium uptake, while hypokalemia, hypertonicity, physical 
exercise, and acidemia maintain the extracellular content [1•, 5, 6, 11].

Hypokalemia Due to Intracellular Potassium Shift: Skeletal Muscle

Alteration in the physiochemical environment of skeletal muscles affects the 
total body potassium distribution. The occurrence of hypokalemia in these 
instances is frequently associated with predictable morbidity (Table 1).

Physical Exercise

Altered rate of skeletal muscle depolarization during an intense physical exer-
cise doubles the arterial plasma potassium content in 1 min (40 mmol/min) 
[12]. To prevent the harmful effect of hyperkalemia, there is rapid diffusion 
of potassium into the dilated surrounding capillaries. Stress stimulation of 
adrenergic drive causes a massive myocyte re-uptake by upregulation of  Na+/
K+ pumps to produce a transient (post-exercise) hypokalemia [6, 10]. The 
rapid turnover of the plasma content of potassium has been implicated in 
the development of cardiac arrhythmia (and sudden death) during and after 
intense physical exercise [13]. A regular physical exercise program before 
a vigorous activity upregulates the  Na+/K+ pump on skeletal myocytes and 
thereby prevents potentially harmful hyperkalemia [13]. In addition, the use 
of a β2-adrenergic agonist during intense physical activity minimizes hyper-
kalemia and prevents the development of a rebound (severe) hypokalemia 
[14•, 15].

Beta‑Adrenergic Agonists

There is a dose-dependent development of hypokalemia that results from 
the therapeutic use of β2-adrenergic agonists [16]. The molecular basis 
for cellular uptake of potassium by the skeletal muscles is similar in all 
instances and will hereby be reviewed (Figure 1). The β2-adrenoceptor 
stimulates Gs protein to activate adenylyl cyclase, which in turn converts 
ATP to the cyclic AMP [15]. Cyclic AMP-dependent protein kinases phos-
phorylate phospholemman, an inhibitory regulatory protein of the  Na+/
K+-ATPase. There is a parallel activation of the mitogen-activated protein 
kinases which in turn stimulates  Na+-K+-2Cl− co-transporters [15]. The 
inward movement of potassium depletes the ECF of its content to produce 
hypokalemia. Used in the treatment of asthma, a prevalent disease in most 
countries, β2-adrenergic agonists are commonly available in many house-
holds. A conventional dose of these agents could drop serum potassium 
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by 0.4 to 0.6 mmol/L and has been associated with prolonged QT interval, 
ventricular arrhythmia, and sudden deaths [17, 18]. In addition, its liquid 
formulations, with lower efficacy but greater toxicity, are common sources 
of unintentional poisoning in children [19]. Due to a poor safety profile, 
clenbuterol, a long-acting β2-adrenergic agonist, is not approved for human 
use in many countries. Clenbuterol increases energy expenditure and pro-
motes fatty acid oxidation, and it is therefore illegally used to enhance 
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Fig. 1  Cellular uptake of potassium due to adrenergic upregulation of Na+ -K+ pump on the skeletal muscle cell. Adrena-
line or β-adrenergic agonists activate adrenoceptors on the skeletal muscle sarcolemma. The receptor is coupled to the 
stimulatory G-proteins, which in turn activate the adenylate cyclase enzyme (1). The enzyme converts adenosine triphos-
phate (ATP) to adenosine 3′,5′-cyclic monophosphate (3,5-cAMP). 3′,5′-cAMP can be degraded by phosphodiesterase (2). 
The activity of the c-AMP induces cAMP-dependent protein kinases (PKA) and mitogen-activated protein kinase (MAPK) 
pathways (3). PKA phosphorylates ryanodine receptors (RYR1) (4), transmembrane voltage-activated Ca2+ channels (5), 
and phospholamban (6). Both RYR1 and L-type Ca2+ channels release Ca2+ into the cytosol. Phosphorylation PLB reduces 
its binding to the sarcoendoplasmic reticulum (SR) Ca2+-ATPase, SERCA, and thereby decreases its Ca2+ transportation into 
the SR (6). Consequently, high cytosolic Ca2+ enhances myofiber contraction (7). PKA phosphorylates phospholamban, an 
inhibitory regulatory protein for Na+ /K+-ATPase, causing an increase in the exchange of Na+ for K+ by enhancing its affin-
ity for both cations (8). Parallel activation of MAP kinase enhances the activity of sodium-potassium dichloride (NKCC2) 
cotransporter [Na-K-2Cl co-TX] (9). Exaggerated cellular uptake by the vast number of potassium-related channels on the 
skeletal muscles produces hypokalemia
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skeletal muscle mass by athletes [20•]. Occurrence of atrial fibrillation from 
profound hypokalemia has been reported in clenbuterol overdose [21].

Severe Trauma

Hypokalemia occurs in about 34.5% of patients with various degrees of 
trauma [22]. There is a positive correlation between the severity of trauma 
and the degree of hypokalemia [22]. An adaptive stimulation of catechola-
mine produces an elevation in plasma glucose, glucagon, and insulin [22, 
23••]. Both insulin and catecholamines profoundly increase potassium cellu-
lar uptake [23••]. Consequently, a higher ratio of serum glucose and (plasma) 
potassium is predictive of greater mortality in patients with intracerebral hem-
orrhage [23••]. The control of intracranial hypertension (from trauma) with a 
pentobarbital-induced coma is frequently complicated by refractory hypoka-
lemia [24]. This is due to an inhibition of the outward current of the voltage-
dependent potassium channels on the skeletal muscles [25••]. An overzealous 
correction of hypokalemia frequently produces rebound hyperkalemia [24].

Diabetic Ketoacidosis (DKA)

Rarely, severe hypokalemia may complicate DKA with a potential for a fatal 
outcome [26, 27•]. At initial presentation, net potassium depletion may be 
underestimated due to extracellular displacement by insulin deficiency, hyper-
glycemia, and metabolic acidosis [28]. In addition to the potassium wasting 
from osmotic diuresis, the resultant hypovolemia stimulates secondary aldo-
steronism. Furthermore, insulin treatment with the resolution of hyperglyce-
mia aggravates serum potassium depletion by increasing the cellular uptake. 
To forestall against severe hypokalemia, serum potassium (<3.3 mmol/L) 
often requires replenishment before the institution of insulin treatment [27•].

Drugs and Toxins

Overdose of certain therapeutic agents and poisonous substances may inad-
vertently produce severe hypokalemia that results in cardiac arrhythmia and 
death. Whereas β-adrenergic agonists, theophylline, and caffeine increase 
endogenous catecholamines, cationic barbiturates, barium chloride, and chlo-
roquine impair potassium release by sarcolemma [29–34, 35•]. Hypokalemia 
may result with the therapeutic use of insulin or following an overdose in a 
suicidal attempt [31]. Apart from a direct insulin effect, hypoglycemia potenti-
ates cellular potassium uptake by stimulating catecholamine release. A pro-
longed QT interval observed in this clinical setting may account for the obser-
vation of sudden (overnight) deaths in many diabetic patients [32]. Overdose 
of barium chloride in a suicidal attempt may produce severe hypokalemia 
and a fatal ventricular arrhythmia [33, 34]. There are also reports of incidental 
hypokalemia following widespread food poisoning due to industrial barium 
contamination of table salt [33]. In addition to the hypokalemia effect, chlo-
roquine potentiates cardiac arrhythmia by inhibition of the atrioventricular 
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conduction [35•]. Penicillin causes a dose-dependent adverse effect of 
hypokalemia [36••]. A non-absorbable anion, penicillin, promotes a potas-
sium exchange for  Na+ in the distal convoluted tubule (DCT) [36••].

Hypokalemic Periodic Paralysis (HPP)

HPP is a rare autosomal recessive (AR) genetic disorder (0.1 per 100,000) that 
is due to the genes encoding either voltage-gated  Na+ or L-type  Ca2+ chan-
nels of the skeletal muscle membrane [37]. There is a recurrent attack of a 
self-limiting (mostly) lower limb paralysis that results from an intracellular 
shift of potassium in response to a carbohydrate-rich diet or physical exercise 
[37]. The postulated mechanism of action is interference in the generation of 
an action potential by an aberrant gating pore current [37]. Thyrotoxic HPP 
is also rare but disproportionately occurs with greater frequency in men of 
Asian and Latin American ancestry. Close to 30% of those affected will have 
a mutation of the gene for inward rectifying Kir2.6 potassium channel [38].

Hypokalemic Alkalosis from Renal Losses: Aldosteronism

Secondary Aldosteronism

Stimulation of aldosterone is a major physiologic mechanism to defend 
against hypovolemia. A lower glomerular filtration rate (GFR) causes proxi-
mal renal sodium reabsorption [39••, 40]. A lower delivery of sodium and 
chloride to the macula densa enhances plasma renin, angiotensin II, and 
aldosterone secretions. Aldosterone activates the epithelial sodium channel 
(ENaC) on the DCT, thereby restoring the blood volume (Table 1 and Algo-
rithm) [39••, 40]. To neutralize the generated negative luminal potential 
difference (PD), there is a preferential secretion of tubular hydrogen ions 
 (H+) and a minimal  K+ release [41]. Angiotensin-II stimulates basolateral 
Kir4.1, which in turn activates sodium chloride co-transporter (NCCT) and 
therefore reduces  Na+ exchange for potassium secretion in the late DCT [41]. 
Paradoxically, the absence of angiotensin-II in primary aldosteronism aggra-
vates potassium depletion [41].

Primary Aldosteronism

Primary aldosteronism (PA) is an autonomous secretion of aldosterone that 
is independent of renin, angiotensin II, sodium, and volume status [42]. 
Although many patients present as intractable or severe low-renin hyperten-
sion, personal experience suggests early diagnosis may be facilitated by a 
prompt evaluation of individuals exhibiting low-normal hypokalemia (and 
hypertension) [42]. Apart from injury of hypertension, there is direct end-
organ damage by a persistent aldosterone receptor activation [43]. Surgical 
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adrenalectomy is the treatment of choice for unilateral disease, while bilateral 
hyperplasia required lifelong mineralocorticoid inhibition [42].

Non‑Aldosterone Mineralocorticoid Activities

Unlike PA, Liddle’s syndrome, licorice ingestion, and apparent mineralocor-
ticoid excess (AME) cause hypertension and hypokalemic alkalosis but both 
plasma renin and serum aldosterone levels are suppressed [39••, 44••, 45]. 
Liddle’s syndrome is due to an autosomal dominant (AD) gain-in-function 
mutation of ENaC in the DCT. Although some patients respond to amiloride, 
intractable hypertension, accelerated kidney disease, and premature death 
from cerebrovascular accidents have been described [46]. With close to two 
decades of pediatric nephrology practice, I have encountered only one patient, 
a teenager. A presentation with a protracted course of severe resistant hyper-
tension justified renal transplantation (despite a normal GFR) with a good 
clinical outcome [44••, 46]. Licorice contains glycyrrhizinic acid (occurs in 
herbal tea) which inhibits the enzymatic conversion of abundant cortisol 
to the inactive cortisone by 11β-hydroxysteroid dehydrogenase type 2 (11β-
HSD2) [39••, 45, 47]. Unlike the physiologic concentration, an excessive 
amount of cortisol can activate aldosterone receptors in the DCT [45]. Fur-
thermore, there is a recent recognition of the inhibitory effects of antifungal 
posaconazole and itraconazole on 11β-HSD2 [48]. There is an AR muta-
tion in the gene producing 11β-HSD2 in the syndrome of AME [44••, 49, 
50••]. Prompt recognition and treatment may prevent fatal outcomes in early 
infancy [44••, 50••]. As in Liddle’s syndrome, hypertension may respond to 
amiloride; and renal transplantation is curative.

Congenital Adrenal Hyperplasia

The gene mutations of both 11β-hydroxylase (CYP11B1) and 17-alpha 
hydroxylase (CYP17A1) present as precocious puberty, hirsutism, hypoka-
lemia, and hypertension in older children and teenagers [44••]. There is an 
enzymatic block of cortisol synthesis and a build-up of precursors of andro-
gens and aldosterone [44••]. Treatment consists of glucocorticoid inhibition 
of ACTH stimulation of steroid synthesis.

Cushing’s Syndrome (CS)

Excessive adrenocorticotrophic hormone (ACTH) stimulation of adrenal ster-
oids in pituitary adenoma and from a carcinoid tumor (in ectopic ACTH) may 
produce refractory hypokalemia and hypertension [51•, 52]. Rarely, a fatal 
cardiac arrhythmia may complicate such severe hypokalemia [53]. There is 
a recent description of a rare mutation of the gene [NR3C1] for glucocorti-
coid receptor in patients with similar hormonal profiles but who are lack-
ing the physical features of CS [54]. Due to the small size, delayed localiza-
tion of the tumor in ectopic CS increases fatality. The recent availability of 
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 [68Ga]-DOTATATE positron-emitting tomography which targets somatostatin 
receptors on neuroendocrine tumors may facilitate early diagnosis [55••].

Hypokalemic Alkalosis Due to Renal Loss (Without Hypertension)

A review of the renal control of potassium balance will be followed by the 
description of its dysregulation in the proximal tubule (PT), the thick ascend-
ing loop of Henle (TALH), and the DCT, respectively.

Potassium Control by the Proximal Tubules

Most of the potassium in the glomerular filtrates is passively reabsorbed 
across the paracellular pathway by solvent drag in the PT [56]. Its basolateral 
uptake by  Na+-K+-ATPase pump is recycled by an outward basolateral potas-
sium channel [56]. Potassium balance plays a crucial role in the regulation of 
acid-base homeostasis. During metabolic acidosis, there is an exchange of  K+ 
for the extracellular  H+, thereby providing a basis for the PT cell to generate 
 NH3, and thereafter causes urinary excretion of net ammonium acids [57•]. 
Close to 100% of the filtered potassium is reabsorbed by PT and the TALH 
[56].

Potassium Physiology in the TALH

Apical transcellular co-transportation of sodium, potassium, and chloride 
ions (NKCC2) by the TALH is maintained by an apical potassium recycling 
[39••, 58]. The positive luminal PD created by the recycling enhances the 
paracellular transport of  K+,  Ca2+, and  Mg2+ into the blood [39••, 58]. In addi-
tion, basolateral potassium uptake by the  Na+/K+-ATPase is recycled by both 
the Kir4.1 channel and a K-Cl co-transporter. Basolateral chloride channels 
on the TALH and DCT, CIC-ka and CIC-kb, are also required to maintain a 
transepithelial equilibrium [39••, 58].

Bartter and Bartter‑Like Syndrome

Type I BS results from a mutation of the gene that encodes NKCC2, while type 
II BS is due to mutation of the gene that produces ROMK channel [39••, 58, 
59]. Types I and II are the most severe forms of BS and are characterized by 
polyhydramnios, newborn hypotension, and hypokalemic alkalosis [39••, 
58]. Hypovolemia and delivery of unabsorbed sodium to the DCT provoke 
a secondary aldosteronism in all variants of BS [39••]. Type III BS is caused 
by mutations of the gene that produces the ClC-kb (chloride) channel, while 
type IV BS may be due to either a mutation in the BSND gene encoding 
barttin, a subunit of both the CLCKa and CLCKb channels, or a combined 
mutation in both the CLCNKB and CLCNKA genes [39••, 58]. Type III BS 
is less severe and manifests in older children, while type IV may present in 
infancy [58]. A gain-of-function mutation of a gene that encodes basolateral 
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calcium-sensing receptor, CaSR, inactivates luminal NKCC2 on the TALH to 
produce type V BS [39••, 58]. Similarly, cationic molecules of aminoglycoside 
produce acquired BS by increasing the sensitivity of the CaSR (Figures 1 and 
2) [39••, 58].

Potassium Physiology in the DCT

Renal secretion of potassium predominantly involves the DCT and the cortical 
collecting duct (CCD). The early section of the principal cell (DCT1) has api-
cal NCCT, and the later part has ENaC (DCT2) [39••, 60]. Type A intercalated 
cells (IC) on the CCD has a luminal proton pump and  H+-K+-ATPase, and 
type B IC has apical  Cl−/HC03− exchanger (Pendrin) [39••, 57•, 62]. Sodium 
uptake by ENaC generates a lumen-negative PD, which in turn increases a 
basal amount of  K+ recycle by the apical ROMK (Kir1.1) of the DCT2 [39••, 
57•]. An apical Maxi-K with a larger capacitance is recruited to handle greater 
demand for  K+ secretion (as in hyperkalemia and/or higher tubular flow) 
[39••, 61]. Recent studies suggest the basolateral K channel, Kir4.1, located 
on the DCT may be particularly important in the K regulation [63]. A low 
dietary potassium increases with-no-lysine kinase (WNK) while activating 
ste20-proline alanine-rich kinase (SPAK). The phosphorylated SPAK upregu-
lates the activity of the NCCT. A lower sodium delivery to DCT2 reduces the 
expression of ENaC, reduces K secretion, and therefore corrects the potassium 
deficiency [63]. CCD contributes to acid-base regulation such that negative 
lumen created by ENaC through  Na+ absorption enhances  H+ secretion by 
type A IC [39••, 57•, 62].

Gitelman and Gitelman‑Like Syndrome

(a) GS is due to AR mutations of the gene that encodes NCCT [39••, 58]. 
It is often milder than BS and predominantly occurs in older children and 
young adults [39••, 58]. A primary event may be an incidental laboratory 
discovery of hypokalemic alkalosis [39••]. An abundance of transcellular 
 Ca2+ transport via TRPV5 produced the universal finding of hypocalciuria 
[39••]. Recently described AR rare variants of GS, both with peculiar physical 
features are HELIX and EAST syndromes [39••, 63–65]. The former is due to 
impaired paracellular  Na+ absorption by TALH because of claudin 10b gene 
mutation, and the latter is due to a disorder of the Kir4.1 potassium channel 
on the DCT. Autoantibody formation in Sjögren’s syndrome may inactivate 
NCCT to produce an acquired form of GS [39••, 66]. In addition to oral sup-
plementation, the use of indomethacin and amiloride may minimize renal 
electrolyte losses. I often avoided gastric bleeding complications by limiting 
the duration of indomethacin treatment to less than 5 years.

Diuretics, Hypomagnesemia, and Hypokalemia

In a retrospective study of over 58,000 in-hospital patients, drugs (mostly 
diuretics) accounted for 56% of hypokalemia [67]. Potassium loss is 
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24-hour urinary potassium excretion < 15 mmol/L or urine potassium-creatinine ratio < 1.5
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Fig. 2  Approach to the diagnosis of hypokalemia using urinary potassium excretion as the initial parameter. (1) The first 
step in the evaluation of unexplained hypokalemia is to exclude pseudohypokalemia: traumatic venipuncture, cold ambi-
ent temperature, delayed laboratory processing, thrombocytosis, leukocytosis, and ethylenediamine tetra-acetic acid (EDTA) 
tubes; (2) urinary K:Cr ratio < 1.5 suggests nutritional deficiency, extra-renal losses, or intracellular shift. Causes of an 
intracellular shift are drugs, stress (catecholamines), periodic paralysis, and refeeding. Stool K is high (80–90 mmol/L) in 
diarrhea. Fecal chloride is elevated in congenital chloride diarrhea (>90 mmol/L); (3) if there is high renal K excretion and 
a normal anion gap acidosis: a diagnosis of RTA. A positive urine anion gap (Na + K-Cl) in distal RTA indicates a low NH4Cl 
excretion. A negative value occurs in proximal RTA (adequate urine NH4+). (4) High urine K loss and alkalosis suggest diu-
retic abuse/Bartter syndrome (urine Cl > 20 mmol/L) or gastric effluent (low urine Cl < 10 mmol/L). (5) If elevated urine 
K and normal or low blood pressure, associated high plasma renin and aldosterone levels suggest secondary aldosteronism. 
If there is hypertension, renovascular etiology and renin secreting tumor are more likely. (6) A low plasma renin and high 
serum aldosterone levels suggest primary aldosteronism and glucocorticoid-remediable aldosteronism. (7) A non-aldoster-
one mineralocorticoid activity produces low serum renin and low serum aldosterone levels; it occurs in Cushing’s syndrome 
(with high serum cortisol), Liddle’s syndrome (normal serum cortisol), and AME (with high serum cortisol). (8) Low plasma 
renin and low serum cortisol but elevated corticosterone and androgens are seen in 11β- or 17αhydroxylase deficiency. AME 
= apparent mineralocorticoid excess; BP = blood pressure; Cl = chloride; Cr = creatinine; EAST syndrome = epilepsy, ataxia, 
sensorineural deafness and tubulopathy; HELIX syndrome (hypohidrosis, electrolyte disturbances, hypolacrimia, ichthyosis, 
xerostomia) occurs in claudin 10b gene mutation in the tight unction of thick ascending loop of Henle; K= potassium; High 
PRA = High plasma renin activity > 4.3 ng/h; Low PRA = low plasma renin activity < 0.6 ng/h; PAC = plasma aldosterone 
concentration > 15 ng/dL; Low PAC = low plasma aldosterone concentration < 5 ng/dL; RTA = renal tubular acidosis
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dose-dependent and may be minimized by sodium restriction. Diuretic aggra-
vation of volume contraction in cardiac insufficiency propagates secondary 
aldosteronism and  K+ loss. In addition to diuretic magnesium  (Mg2+) wasting, 
a dietary deficiency frequently potentiates hypomagnesemia [68].  Mg2+ defi-
ciency causes urinary  K+ wasting by stimulating ROMK. Adequate repletion 
of potassium is not feasible in the presence of  Mg2+ deficiency [68].

Hypokalemia in Renal Tubular Acidosis (RTA)

RTA is defined as a non-anion gap hyperchloremic metabolic acidosis that 
occurs in the presence of a normal or modestly reduced kidney function 
[57•]. Type I and type II RTA are frequently associated with hypokalemia. (i) 
Distal RTA (d-RTA) is due to a defect in  H+ secretion (and therefore  NH4+) 
by the IC of the DCT [57•]. Genetic mutations in children may lead to a 
deficiency of basolateral  Cl−-HC03− exchanger, apical ATPase  H+, and apical 
ATPase  H+ pump on the DCT [57•]. Acquired form occurs in an adult due to 
medications (e.g., amphotericin B) and autoimmunity (Sjögren’s syndrome) 
[57•, 66]. Hypokalemia occurs partly because of  K+ renal wasting from a 
decreased activity of the  H+/K+-ATPase of the IC and in response to a second-
ary aldosteronism [57•, 69]. (ii) Proximal RTA is due to a reduction in the 
threshold for absorption of filtered  HCO3− by the PT (in exchange for  H+) 
which is normally set at about 25 mmol/L [57•]. This leads to the delivery of a 
larger amount of  HCO3− to the DCT beyond the capacity for its reabsorption 
[57•]. A mutation of the gene for the  Na+-HC03− exchanger produces isolated 
p-RTA. Delivery of  Na+ load at DCT activates secondary aldosteronism and 
 K+ wasting [57•].

Gastrointestinal Disorders and Hypokalemia

An average adult consumes a dietary potassium content of 80 mmol/day [70]. 
Gastrointestinal tracts (GI) absorb 75 mmol and close to 5 mmol is excreted 
in the feces. Although the exact mechanism is unclear, the extra-ordinary renal 
capacity to excrete the exact amount of daily GI absorption may be partly 
mediated by signal transduction from a sensor of dietary change (before 
there is a hormonal response) located in the splanchnic vascular bed [56, 71].

Nutritional Deficiency

Nutritional deficiency is unlikely to cause clinically significant hypokalemia. 
With a stool  K+ content of 20–50 mmol/L, diarrhea is the commonest cause 
of hypokalemia in children. The principal driver of fatality from severe acute 
malnutrition is a co-morbidity with diarrhea potassium loss [72•]. Although 
there is a minimal  K+ loss from gastric content (5–10 mmol/L) in emesis, a 
resultant alkalosis and secondary aldosteronism commonly produce hypoka-
lemia [39••]. Nutritional rehabilitation after the anabolic phase of severe 
malnutrition may produce a potentially fatal refeeding syndrome [73]. The 
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renewed supply of glucose causes hyperglycemia and exaggerated insulin 
response. Death from severe hypokalemia may result from respiratory mus-
cle weakness and ventricular arrhythmia [74].

Eating Disorders

ED, a common disease in adolescents and young adults, occurs in 3 different 
forms including surreptitious vomiting, laxative abuse, and diuretic misuse 
[39••]. Life-threatening electrolyte changes are the major reasons for hos-
pitalization [39••]. Instead of metabolic acidosis in acute diarrhea, laxative 
abuse causes a chronic volume loss which activates secondary aldosteronism 
[39••, 75]. Diuretic abuse with urinary losses of potassium, chloride, and 
sodium ions may mimic GS (see Figure 2). Toxicologic analysis of the urine 
for the offending diuretic agents may help confirm the diagnosis [75].

Other Gastrointestinal Potassium Losses

Secondary aldosteronism with kaliuresis aggravates gastric losses in pyloric 
stenosis [76]. Metabolic alkalosis in congenital chloride diarrhea causes 
potassium wasting [77]. Upregulation of colonic maxi-K occurs in secretory 
diarrhea of Ogilvie’s syndrome [78]. A vasoactive intestinal polypeptide (or 
gastrin) induces diarrheal potassium losses in neuroendocrine tumors [79, 
80]. Finally, hypochloremic alkalosis produces hypokalemia following sweat 
chloride losses in cystic fibrosis [2, 81].

Hypokalemia in Cardiovascular Disorders (CVD)

Stress-induced activation of the sympathetic drive produces hypokalemia in 
congestive heart failure (CHF). A co-morbidity of hypokalemia and CVD is 
associated with a greater risk of ventricular fibrillation and sudden death [82•, 
83]. The prevalence of hypokalemia in CHF ranges from 20 to 54%; the wide 
variation depends on the choice of therapeutic intervention [84, 85]. Treat-
ment with insulin and diuretics lowers the prevalence but there is a greater 
incidence with the use of beta-blockers [84]. Diuretic use enhances volume 
contraction and secondary aldosteronism in CHF. Takotsubo cardiomyopathy, 
a recently described entity, manifests as an idiopathic coronary event and left 
ventricular hypertrophy [86]. An excessive catecholamine may account for the 
common finding of hypokalemia [86].

Electrophysiology of Hypokalemia

Hypokalemia produces a more negative resting membrane potential, and, in 
electrical diastole, it reduces excitability by increasing the threshold for the 
generation of the action potential [87, 88]. Internalization of the potassium 
channel IKr and downregulation of the IKs expression reduce the phase 3 out-
ward  K+ current with a prolongation of repolarization [87]. The development 
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of after-depolarizations produces ventricular arrhythmias [87, 88]. The pro-
longed repolarization causes a reduction in the amplitude of the T-waves on 
the electrocardiogram [87]. There is also a prominent U-wave and depression 
of the ST segment. There is a fusion of T- and U-waves in severe hypokalemia. 
The reduced electrical conduction causes a longer duration of QRS, atrioven-
tricular block, peaked p-wave, and a prolonged P–R interval [87].

COVID‑19 and Hypokalemia

COVI-19 infection, originating from China in early 2020, caused a worldwide 
pandemic with an extraordinary case fatality rate. Hypokalemia, a common 
finding in COVID-19 infection, is predictive of critical illness and manifests 
EKG indices that are supportive of greater susceptibility to ventricular arrhyth-
mia [89, 90].

The Clinical Approach in the Diagnosis and Treatment of Hypokalemia

a) Diagnosis

A systematic approach is necessary to unravel diagnosis in patients who 
present with initial hypokalemia. As depicted in the algorithm (Fig. 2), a 
determination of urinary potassium excretion differentiates renal from extra-
renal losses (and intracellular shifts) [1•, 91]. However, despite enteral losses 
in vomiting and chronic diarrhea, urinary potassium may be elevated due to 
secondary aldosteronism. Elevated urinary K excretion should be stratified 
by acid-base status: non-anion gap acidosis suggests RTA, while alkalosis 
indicates salt-losing nephropathy [1•, 91]. Kaliuresis, elevated plasma renin, 
and serum aldosterone occur in secondary aldosteronism (no hypertension), 
while low serum renin with high serum aldosterone (and hypertension) sup-
ports a diagnosis of PA [42]. Low serum renin and low serum aldosterone 
(and hypertension) are seen in Cushing’s disease (elevated serum cortisol), 
Liddle’s syndrome (normal serum cortisol), and congenital adrenal hyper-
plasia [44••, 45–49, 50••, 51•, 52].

b) Treatment

Hypokalemia is often a reflection of an underlying pathology that war-
rants early treatment. Correction of alkalosis may restore normal serum 
potassium. Oral supplementation is often adequate in patients with serum 
potassium levels between 2.5 and 3.5 mmol/L [1•, 91]. Urgent intravenous 
treatment is undertaken if serum K <2.5 mmol/L, and/or if associated with 
EKG changes. A frequent assessment of serum K during and after therapy may 
be necessary to avoid exceeding a target of 4–5 mmol/L [1•, 91, 92].  Mg2+ 
depletion must be replaced for the successful treatment of hypokalemia [93].

In summary, exposure to toxins, diuretic treatment, stress-induced cat-
echolamines, and hypovolemic stimulation of secondary aldosteronism are 
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major reasons for hypokalemia in hospitalized patients. Hypokalemia causes 
cardiac arrhythmia and is associated with a higher death rate in patients 
with asthma, diabetes, and cardiovascular disease. Systematic evaluation of 
incidental hypokalemia may unravel covert disorders including renal tubular 
acidosis, primary aldosteronism, and Gitelman syndrome.
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