
GigaScience, 6, 2017, 1–7

doi: 10.1093/gigascience/gix048
Advance Access Publication Date: 27 June 2017
Technical Note

TECHNICAL NOTE

Bio-Docklets: virtualization containers for single-step
execution of NGS pipelines
Baekdoo Kim1, Thahmina Ali1, Carlos Lijeron1, Enis Afgan3

and Konstantinos Krampis1,2,4,∗

1Center for Translational and Basic Research and Belfer Research Building, Hunter College of The City
University of New York, 413 E 69th St, New York, NY 10021, 2Department of Biological Sciences, Hunter College
of The City University of New York, 695 Park Av., New York, NY, 10065, 3Johns Hopkins University, Department
of Biology, B3400 N Charles St, Mudd Hall 144, Baltimore MD 21218 and 4Department of Physiology and
Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, 413 E 69th St, New York,
NY 10021
∗Correspondence address: Konstantinos Krampis, Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell
Medical College, 413 E 69th St, New York, NY 10021. Tel/Fax: 001-212-896-0461; E-mail: kk104@hunter.cuny.edu

Abstract

Processing of next-generation sequencing (NGS) data requires significant technical skills, involving installation,
configuration, and execution of bioinformatics data pipelines, in addition to specialized postanalysis visualization and data
mining software. In order to address some of these challenges, developers have leveraged virtualization containers toward
seamless deployment of preconfigured bioinformatics software and pipelines on any computational platform. We present
an approach for abstracting the complex data operations of multistep, bioinformatics pipelines for NGS data analysis.
As examples, we have deployed 2 pipelines for RNA sequencing and chromatin immunoprecipitation sequencing,
preconfigured within Docker virtualization containers we call Bio-Docklets. Each Bio-Docklet exposes a single data input
and output endpoint and from a user perspective, running the pipelines as simply as running a single bioinformatics tool.
This is achieved using a “meta-script” that automatically starts the Bio-Docklets and controls the pipeline execution
through the BioBlend software library and the Galaxy Application Programming Interface. The pipeline output is
postprocessed by integration with the Visual Omics Explorer framework, providing interactive data visualizations that users
can access through a web browser. Our goal is to enable easy access to NGS data analysis pipelines for nonbioinformatics
experts on any computing environment, whether a laboratory workstation, university computer cluster, or a cloud service
provider. Beyond end users, the Bio-Docklets also enables developers to programmatically deploy and run a large number of
pipeline instances for concurrent analysis of multiple datasets.

Keywords: docker; bioinformatics; NGS; RNAseq; CHIPseq

Received: 24 April 2017; Revised: 13 June 2017; Accepted: 14 June 2017

C© The Author 2017. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
mailto:kk104@hunter.cuny.edu
http://creativecommons.org/licenses/by/4.0/


2 Kim et al.

Findings
Background

Analysis of next-generation sequencing (NGS) data involves
multiple technical steps, such as installation of the software
components of bioinformatics pipelines; coordinating format
conversions and data flow between pipeline components; man-
aging software versions and updates; automating execution for
multiple runs; supplying the required computational and data
storage infrastructure; and last but not least, providing an intu-
itive user interface for nonbioinformatics experts. To overcome
these challenges, bioinformatics software developers have lever-
aged technologies such as virtual machines and Docker contain-
ers [1, 2] for distributing preconfigured bioinformatics software
that can run on any computational platform. The use of vir-
tualization saves significant development time and cost as the
software does not need to be set up from scratch at each labo-
ratory. The increased interest for applications of virtualization
for NGS data analysis is evident through many recent studies,
ranging from comparing the performance of virtual machines
to conventional computing [3], bioinformatics-specific Docker
container repositories [4], and extensible, Docker-based bioin-
formatics computing frameworks [5].

The Galaxy server [6] provides an innovative approach for de-
ployment of command-line software through an online Graphi-
cal User Interface (GUI), and it has had a great impact onmaking
NGS data analysis tools and pipelines easily accessible to non-
bioinformatics experts. In addition, the Galaxy ecosystem pro-
vides the Toolshed [7] for downloading and installing a range of
commonly used bioinformatics software, with a workflow com-
position canvas on the GUI and a high-performance pipeline
execution engine in the back end. While Galaxy workflow de-
scriptions are standardized in eXtensibleMarkup Language files,
allowing transfer of NGS analysis pipelines across installations
at different laboratories, the bioinformatics software used in the
pipelines needs to be reinstalled at each location manually or
through the ToolShed. A number of different virtual machines
with the Galaxy server [8] are currently available, but only 2
entries from the list include pipelines. While the virtual ma-
chines can be easily accessed with VirtualBox [9], unless users
knowhow to set up shared folders and connect the data libraries
through the Galaxy administration interface, they will have to
resort to uploading large-scale datasets through the web inter-
face, which is slow andwill duplicate datawithin the virtualma-
chine. Furthermore, the available Galaxy Docker containers [8]
presume a level of software expertise since users need to start
and log in to the containers through the command line on a local
server or on the cloud.

Simpler versions of the NGS data analysis pipeline imple-
mented in the present study have been previously published as
Galaxy workflows [10, 11]. Furthermore, researchers are able to
perform approximately 2 or 3 complete runs of these workflows
under a single account on the public Galaxy server, given the
computing time limit and storage quota of 250 GB [12], in addi-
tion to the size of NGS datasets and the amount of output gen-
erated by the bioinformatics tools composing these pipelines.
Alternatively, CloudMan [13] enables users to start their own
Galaxy server backed by a compute cluster on theAmazon cloud,
but a number of setup steps are required [14]. In this case, re-
searchers might be reluctant to repeatedly pay for leasing com-
puting time and for costs associated with maintaining data on
the cloud, vs a one-time investment for buying a physical com-
puter server for their laboratory.

Besides appropriating the required compute capacity, a
significant bottleneck for nonbioinformatics experts is that

pipeline outputs require additional postprocessing, filtering, and
visualization in order to generate scientific insights. With this
in mind, our target audience is research teams that do not have
any bioinformatics expertise but are generating NGS data using
sequencing technology such as Illumina MiSeq or MiniSeq [15].
The Bio-Docklets approach aims to help these groups perform
a basic analysis and interpretation of their datasets with mini-
mal effort. Laboratory computers with at least 4 CPU cores and
500 GB disk storage capacity can provide enough computational
capacity to run the containers with the NGS pipelines for pro-
cessing the approximately 30 million reads generated per run
by these instruments [16].While theMiSeq instrument produces
approximately 35 million reads, in the present study we tested
our pipelines with data sets of up to 200million reads using pub-
lic datasets, and given the minimal overhead of the Docker con-
tainers by simply using a larger capacity compute server, users
should be able to analyze multiples of that data size.

Performance and testing

In order to test the computational performance and function-
ality of the Bio-Docklet containers, we used publicly available
NGS data from the European Bioinformatics Institute archive
(EBI). First, we tested the chromatin immunoprecipitation se-
quencing (CHIPseq) Bio-Docklet for processing a dataset with
approximately 190 million acute myeloid leukemia single-end
reads and a file size of 31 GB (EBI reference ERR411994) (Table 1).
The RNA sequencing (RNAseq) Bio-Docklet was tested with a 43
GB input data file (EBI reference SRR1797219 and SRR1797228)
that contained a total of 188 million reads (47 million × 4, with
2 paired-end read files, for cancer and healthy tissue samples)
(Table 1).We ran each Bio-Docklet in turn on our laboratory com-
puter server (32GB RAM, 4 CPU Intel Xeon) and measured a total
running time of 20 hours and 10 minutes for RNAseq to com-
plete, while for CHIPseq the time was significantly lower, at 7
hours and 16 minutes (Table 1). This was expected, given the re-
duced computational capacity required for alignment of single-
end reads in the CHIPseq dataset. In addition, we analyzed
the same datasets with Bio-Docklets on a compute server with
larger computational capacity that we rented from the Amazon
Web Services cloud, and we observed a reduction of the overall
compute time (Table 1). In both cases, the CHIPseq output con-
tained the same peaks (P < 0.001) on chromosomes 1, 4, 5, 7,
8, 11, 16, and 19, which harbor histone interactions with an ac-
tive role in tumor genesis, found in earlier studies [17], similar
to RNAseq regarding the differentially expressed genes that are
active regulators in cancer progression [18].

We have also integrated Bio-Docklets with the Galaxy Cloud-
Launch platform [19, 20], enabling users to acquire necessary
resources from a variety of cloud providers in a few simple
steps. CloudLaunch is a web portal for discovering and launch-
ing cloud-enabled applications, and it uniformly supports mul-
tiple cloud providers and multiple applications, where each ap-
plication can have its user interface and launch logic tailored for
the given application. For the case of Bio-Docklets, we launched
aDocker-enabled virtualmachine (Suppl.) that, as part of the op-
erating systemboot process, fetches the appropriate Bio-Docklet
image. Thewide range of instance types available from the cloud
providers supported by CloudLaunch offers flexibility for users
to access computational capacity at the cloud platform where
they already have an account or that best fits the cost/capacity
requirements, which are unique for each research group. Fur-
thermore, Bio-Dockets can be executed by running the meta-
script on any computing platform, such as the Linux servers on
Amazon and Google compute clouds or a local compute server



Bio-Docklets 3

Table 1: Benchmark run times of the Bio-Docklet pipeline containers with the CHIPseq and RNAseq pipelines, using as input large-scale NGS
data downloaded from public databases

CHIP-seq (total: 31 GB) RNAseq (total: 43 GB)

Dataset location � http://www.ebi.ac.uk/ena/data/view/ERR411994 � http://www.ebi.ac.uk/ena/data/view/SRR1797219 (cancer cells)
� http://www.ebi.ac.uk/ena/data/view/SRR1797228 (healthy cells)

Dataset details � ERR411994.fastq 192 465 714 single-end reads � SRR1797219 1.fastq - 47 209 075 forward reads, cancer cells
� SRR1797219 2.fastq - 47 209 075 reverse reads, cancer cells
� SRR1797228 1.fastq - 47 697 722 forward reads, healthy cells
� SRR1797228 2.fastq - 47 697 722 reverse reads, healthy cells

Running times (HH:MM:SS)
Lab server 7:16:34 20:10:38
AWS 6:09:16 16:50:11

that has Docker pre-installed or that can install it during the first
run of the script by providing the administrative password.

Methods

In this study, we implemented the Bio-Docklets virtualization
containers by combining Docker, Galaxy, and a “meta-script”
(Fig. 1a), that enables users to run complex, multistep data
analysis pipelines as simply as running a single bioinformat-

ics script. In addition, we have included Python code (Fig. 1b)
that leverages the BioBlend software library [21] to access the
Galaxy Application Programming Interface (API), and we have
automated pipeline execution using the Galaxy workflow en-
gine running inside the container. Additional scripts imple-
mented inside the Bio-Docklets containers (Fig. 1c, d, and e) au-
tomate retrieval of required datasets such as reference genomes,
initialize environment parameters within the containers, and
start and monitor the pipeline execution, in addition to saving

Figure 1: The Bio-Docklets environment with an (a) interactive meta-script that enables users to start the pipelines (b), select analysis parameters (c), and set input
(d) and output (e) directories. Shell scripts and Python code were used for connecting to the Galaxy API, retrieving required data such as reference genomes, initializing

environment variables in the containers, starting andmonitoring the pipeline execution (f). Postprocessing and loading of the pipeline output on Visual Omics Explorer
interactive visualizations are saved as output in HTML/Javascript files, which can be opened on a web browser at any time after pipeline completion and container
shutdown; using the visualization, the output can be mined for clusters of differentially expressed genes or histone interaction peaks, and users can export the

graphics in vectorized SVG format for use in manuscripts.

http://www.ebi.ac.uk/ena/data/view/ERR411994
http://www.ebi.ac.uk/ena/data/view/SRR1797219
http://www.ebi.ac.uk/ena/data/view/SRR1797228


4 Kim et al.

Figure 2: (a) Galaxy workflow canvas running inside the Bio-Docklets, with the composed RNAseq and CHIPseq pipelines, respectively (b). User interface of the “meta-
script” interactively guides the users to select which pipeline to run, input and output file directories, and reference genome indices (c, d). Postprocessed pipeline

output, loaded on interactive HTML/Javascript-D3 visualizations using the Visual Omics Explorer framework, can be opened in a web browser and also exported as
high-resolution, manuscript-ready graphics.

all outputs to the directory specified by the user. Furthermore,
we have integrated the pipelines with the Visual Omics Explorer
framework (VOE) [22] through custom Python code (Fig. 1f). This
code postprocesses the raw pipeline output and generates inter-
active HyperText Markup Language (HTML)/Javascript data visu-
alizations that users can load on a web browser, use to perform
data mining for patterns such as concentrated CHIPseq peaks or
clusters of differentially expressed genes, and use to export the
visualizations as publication-ready graphics. Finally, the meta-
script provides details of the web address and port where the
full Galaxy interface running inside the Bio-Docklets can be ac-
cessed, allowing users to use the Galaxyworkflow canvas should
they choose to edit the pipelines structure.

For the Bio-Docklets implementation, we started froma stan-
dard Ubuntu Linux Docker container, where we installed Galaxy
and then created 2 distinct commits on DockerHub [23]. The first
commit was used for implementing the RNAseq [24], and the
second for the CHIPseq [25] pipeline, by first installing the bioin-
formatics tools used for each pipeline step from the Galaxy Tool-

shed if available, or manually otherwise. We then composed the
pipelines through the Galaxy workflow canvas (Fig. 2a and b),
and following testing, the containers were published on Docker-
Hub. Next, we implemented a “meta-script” that automatically
downloads and runs the Bio-Docklet containers from the repos-
itory, while also interactively guiding the users (Fig. 2c) to select
input and output data directories and which pipeline to run, in
addition to verifying the file formats and retrieving supporting
data such as reference genomes. Furthermore, given adminis-
trative permissions, the script will install the Docker virtualiza-
tion layer if not present on the host computing system (Suppl.).
All data generated from the pipelines are saved to the output
directory specified by the user, in addition to VOE visualization
files in HTML5/D3.js [26] format. These files are standalone and
preloadedwith the pipeline output, allowing users to open them
in a web browser independently of the Bio-Docklets contain-
ers and providing easy to use, interactive visualizations for data
mining that can also be exported as high-resolution SVG graph-
ics for publication.



Bio-Docklets 5

Discussion

Currently, a number of other bioinformatics software devel-
opment projects are utilizing Docker virtualization, including,
e.g., BioShaDock [4], which provides a curated repository of pre-
built bioinformatics containers, BioContainers/BioDocker [27],
which implements an aggregator and search engine across
Docker repositories, bioboxes [5], which defines a standard-
ized interface for running bioinformatics tools pre-installed in
containers, and Common Workflow Language (CWL) [28], which
allows command line tools to be connected into portable
workflows. Using the search terms “Galaxy” and “pipeline” re-
turned 4 and 34 entries for BioShaDock and 8 and 30 for BioCon-
tainers, respectively, while bioboxes, at the time of our study,
included a total of 8 containers. The BioShaDock and BioCon-
tainers repositories provide a great solution for bioinformatics
developers to distribute tools and pipelines pre-installed within
Docker containers and to reach the right audience, given that
DockerHub is a large repository and bioinformatics containers
might be missed during searches. Nonetheless, these reposito-
ries provide “Automatic Build” containers from Dockerfiles, and
to the best of our efforts, we found no citations or other informa-
tion on how to run the pipelines on these sites, having to resort
to performing a web search to find documentation for using the
tools included in the containers. Along the same lines, bioboxes
provide a standardized interface where users can run bioinfor-
matics tools and specify data directorieswith a single command,
in addition to a novel framework for standardizing bioinformat-
ics tool deployment in containers. While there is no user inter-
action or options for a workflow engine or multistep pipeline
capabilities, the author of a biobox empirically preselects the
appropriate parameters during implementation and, similar to
Bio-Docklets abstracts, all the details from the users in order to
standardize and streamline bioinformatics analysis. The CWL
offers a flexible solution for composing and sharing data anal-
ysis workflows, but, for the time being at least, it is focused on
the bioinformaticians composing workflows as text files—a task
not aimed at biology researchers and nontechnical experts. Cur-
rently, there is no official repository of existing CWL workflows,
although several instances of developedworkflows can be found
at online source code repositories. Importantly, those reposito-
ries are not vetted or based on pipelines published after peer
review, which is the case for the pipelines made available via
Bio-Docklets. Finally, executing a CWL workflow requires a CWL
runtime environment on the user’s system, whose setup may,
again, represent a challenge for a biologist.

The NGSeasy [29] project follows a modular approach where
a “master” container coordinates the pipeline run based on a
workflow specification file, running “worker” containers for dif-
ferent bioinformatics tools for each step of the pipeline. While
NGSeasy abstracts the pipeline run and coordination among the
different containers, users are still required to manually install
Docker and set up the required data directories, while there
is no option for providing parameters for the algorithms used
in the pipeline. Additional examples include GUIDock [30] and
BioDepot-workflow-Builder (BwB) [31], which leverage Docker in
combination with a graphical user interface. The former pro-
vides preconfigured containers for CytoScape [32], but in order
to access the graphical interface, users are required to install
Xquartz [33] and other specialized components, which can be
challenging for nontechnical users. The BwB suite provides a
pipeline composition canvas, similar to an open-source alter-
native to the Seven Bridges platform [34]; however, significant
software development expertise is required for implementing

graphical widgets and installing bioinformatics tools in separate
containers. In contrast, with our approach, a researcher can eas-
ily access the rich, user-friendly interface of the Galaxyworkflow
canvas to easily modify or extend our pipelines through substi-
tuting the existing tools or adding new ones from the Galaxy
ToolShed.

The Galaxy platform provides an option to execute con-
tainerized tools as computational jobs [35] on a local cluster or
the cloud, allowing developers and system administrators to tap
on the plethora of containers with preconfigured tools in order
to customize and enhance the functionality of a Galaxy installa-
tion. However, this requiresmodifying Galaxy configuration files
in addition to setting up Docker [36] on each installation sep-
arately. Our approach instead is targeted at users without the
technical expertise to administer Galaxy or configure Docker,
by automating the setup of both components using a single
meta-script. Furthermore, our goal is to provide an integrated
solution with preconfigured data analysis pipelines that can be
deployed across systems ranging from single compute servers
used in a laboratory to a cluster or the cloud. We realize that
with the availability of Galaxy instances in Docker containers
and VirtualBox machines [8], Galaxy community developers can
implement solutions that provide automated deployment of all
components with a similar approach to our meta-script. For ex-
ample, code could be implemented that would first deploy a vir-
tualized Galaxy server that is customized to use Docker as its
job execution environment, and this code could additionally re-
trieve containers with bioinformatics tools from DockerHub or
other repositories. This would provide a broader infrastructure
deployment approach compared to ours, but would still require
that developers provide a “wrapper” for new tools in order to be-
come accessible for users through the Galaxy interface.

A significant advantage of Galaxy is scalability through the
option for integration with a computer cluster in the back end
[37], enabling high-throughput data analysis within a produc-
tion environment. Since Bio-Docklets also include a fully fea-
tured Galaxy instance, by editing the same configuration files
they can also connect to a cluster. Furthermore, on a computer
server that has ample computational capacity, users can simply
run the meta-script more than 1 time in order to start multi-
ple instances of Bio-Docklets and process input datasets from
different experiments in parallel. This is similar to multiple job
submissions on the cluster of a typical high-throughput Galaxy
installation, and despite the fact that a new Galaxy instance is
started within each BioDocklet, there is minimal computational
overhead since the instance runs only 1 pipeline under a sin-
gle user. The Docker containers have also very little overhead,
and tools such as the read aligner or transcript assembler that
process millions of reads in our bioinformatics pipelines essen-
tially consume all the computational resources. An improve-
ment for the future would be to add to our script an option
for advanced cluster integration and, through including DRMAA
software libraries [38] in our containers, for the script to auto-
configure these libraries for computational job submission on a
specific cluster. Another approach, given that there is no limit
on the resources that a Docker container utilizes, is to paral-
lelize the pipelines internally assuming that the user has access
to a powerful server to run the Bio-Docklets. While this would
be feasible for tools performing independent tasks such as read
alignment using, e.g., the file split options in Galaxy pipeline
composition, other tools such as genome assemblers are mono-
lithic, and the only option for scalability is if they offer the op-
tion for multithreaded execution in the implementation of the
algorithm.



6 Kim et al.

In our study, we have abstracted complex bioinformatics
data analysis workflows in a format that is fully portable across
computational platforms by encapsulating preconfigured NGS
pipelines within virtualization containers we call Bio-Docklets.
We leverage Galaxy as the workflow engine for coordinating ex-
ecution of the software components in our pipelines and Docker
as the medium for cross-platform delivery, with a focus on a
specific set of pipelines that are easily accessible to users in
a plug-and-play, ready-to-execute interfacing meta-script. Our
goal is to enable researchers to run multistep data pipelines as
simply as running as a single bioinformatics tool and perform
advanced genomic data analysis without any prior technical ex-
pertise. Through the use of virtualization and the Galaxy work-
flow engine, the Bio-Docklets implementation essentially pro-
vides bioinformatics “black boxes” that expose a single input
and output endpointwhile internally performing complex bioin-
formatics data analysis operations. Furthermore, the BioBlend
API in combination with the code included in the Bio-Docklets
enables developers to programmatically manage data inputs
and outputs and control the Galaxy workflow engine that runs
the pipelines, in order to build bioinformatics solutions with
multiple container instances for large-scale data analysis. As an
alternative, we have also considered lightweight workflow en-
gines such as NextFlow [39], but settled on Galaxy given that the
ToolShed allows us to perform easy installations for some of the
tools we included in the pipelines. Furthermore, access to the
Galaxy server and workflow canvas running in the Bio-Docklets
allows users to view and edit the pipelines from their web
browser without any programming expertise. For a future up-
date, we are working toward implementing a software platform
where users can author Bio-Docklets, by composing pipelines
through the Galaxy interface, and then automatically commit
and publish on container repositories such as DockerHub for
broad access by the community.

Abbreviations

API: Application Programming Interface; CHIPseq: chromatin
immunoprecipitation sequencing; GUI: Graphical User Interface;
HTML: HyperText Markup Language; NGS: next-generation se-
quencing; RNAseq: RNA sequencing; VOE: Visual Omics Explorer.

Acknowledgements

The authors would like to thank all members of the Bioinfor-
matics Core Infrastructures and Krampis Lab for their feedback
during manuscript preparation.

Funding

Supported by the Center for Translational and Basic Research
(CTBR) and Research Center for Minority Institutions (RCMI)
grant from National Institute for Minority Health Dispari-
ties (NIMHD) (G12 MD007599) and Weill Cornell Medical Col-
lege (WCMC)-Clinical and Translational Science Center (CTSC)
(2UL1TR000457–06).

Availability of data and materials

Snapshots of the supporting code are available from the Giga-
Science repository, GigaDB [40].

Availability of supporting source code and
requirements

Project name: Bio-Docklets
Project home page: https://github.com/BCIL/BioDocklets
DockerHub: https://hub.docker.com/r/bcil/biodocklets/tags/
Operating systems: Ubuntu and MacOS
Programming language: python, shell
Other requirements: Docker virtualization layer needs to be

installed for Linux or Mac
License: MIT

Author contributions

B.K. developed all automated script and constructed method
architecture. T.A. implemented method pipelines and per-
formed data analysis and method validation. C.L. assisted with
method validation and manuscript preparation. K.K. wrote the
manuscript and supervised all the work from conception to
manuscript preparation and review.

References

1. Krampis K, Booth T, Chapman B et al. Cloud BioLinux:
pre-configured and on-demand bioinformatics computing
for the genomics community. BMC Bioinformatics 2012;
13(1):1–8.

2. Hosny A, Vera-Licona P, Laubenbacher R et al. AlgoRun: a
Docker-based packaging system for platform-agnostic im-
plemented algorithms. Bioinformatics 2016;32(15):2396–8.

3. Di Tommaso P, Palumbo E, Chatzou M et al. The impact of
Docker containers on the performance of genomic pipelines.
Peer J 2015;3:e1273.

4. Moreews F, Sallou O,Ménager H et al. BioShaDock: a commu-
nity driven bioinformatics shared Docker-based tools reg-
istry. F1000Research 2015;4:1–9.

5. Belmann P, Dröge J, Bremges A et al. Bioboxes: standard-
ised containers for interchangeable bioinformatics software.
Gigascience 2015;4(1):47.

6. Afgan E, Baker D, Van den Beek M et al. The Galaxy plat-
form for accessible, reproducible and collaborative biomedi-
cal analyses: 2016 update. Nucleic Acids Res 2016;2:343.

7. Blankenberg D, Von Kuster G, Bouvier E et al. Dissemination
of scientific software with Galaxy ToolShed. Genome Biol
2014;15(2):403.

8. List of Galaxy Virtual Appliances. https://wiki.galaxyproject.
org/VirtualAppliances.

9. VirtualBox software. http://www.virtualbox.org.
10. Galaxy RNAseq published workflow. https://usegalaxy.org/

u/fluidigmngs/w/rnaseq-workflow.
11. Galaxy CHIPseq published workflow. https://usegalaxy.org/

u/chip-seq-helin-group/w/mmusculus-mm10-create-bam-
bigwig-and-peakcalling-for-chip-seq.

12. Public Galaxy server quotas. https://wiki.galaxyproject.
org/Main#User Account Quotas.

13. Afgan E, Chapman B, Taylor J. CloudMan as a platform for
tool, data, and analysis distribution. BMC Bioinformatics
2012;13(1):315.

14. Starting a Galaxy cluster on the AmazonWeb Services (AWS)
with CloudMan. https://wiki.galaxyproject.org/CloudMan/
AWS/GettingStarted.

15. Illumina MiniSeq sequencing technology. http://www.
illumina.com/systems/miniseq.html.

https://github.com/BCIL/BioDocklets
https://hub.docker.com/r/bcil/biodocklets/tags/
https://wiki.galaxyproject.org/VirtualAppliances
https://wiki.galaxyproject.org/VirtualAppliances
http://www.virtualbox.org
https://usegalaxy.org/u/fluidigmngs/w/rnaseq-workflow
https://usegalaxy.org/u/fluidigmngs/w/rnaseq-workflow
https://usegalaxy.org/u/chip-seq-helin-group/w/mmusculus-mm10-create-bam-bigwig-and-peakcalling-for-chip-seq
https://usegalaxy.org/u/chip-seq-helin-group/w/mmusculus-mm10-create-bam-bigwig-and-peakcalling-for-chip-seq
https://usegalaxy.org/u/chip-seq-helin-group/w/mmusculus-mm10-create-bam-bigwig-and-peakcalling-for-chip-seq
https://wiki.galaxyproject.org/Main#User_Accountprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Quotas
https://wiki.galaxyproject.org/Main#User_Accountprotect unhbox voidb@x kern .06emvbox {hrule width.3em}Quotas
https://wiki.galaxyproject.org/CloudMan/AWS/GettingStarted
https://wiki.galaxyproject.org/CloudMan/AWS/GettingStarted
http://www.illumina.com/systems/miniseq.html
http://www.illumina.com/systems/miniseq.html


Bio-Docklets 7

16. Illumina MiniSeq sequencing output. https://www.illumina.
com/systems/miseq/kits.html.html.

17. Zhang KQ, Salzman SA, Reding DJ et al. Genetics of prostate
cancer. Clin Med Res 2003;1:21–28.

18. Huang KH, Chow KC, Chang HW et al. ATPase family AAA
domain containing 3A is an anti-apoptotic factor and a se-
cretion regulator of PSA in prostate cancer. Int J Mol Med
2011;28:9–15.

19. Galaxy CloudLaunch. http://launch.usegalaxy.org. Accessed
25 June 2017.

20. Afgan E, Krampis K, Goonasekera N et al. Building and pro-
visioning bioinformatics environments on public and pri-
vate clouds. Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2015 38th Inter-
national Convention; 2015:223–8. http://ieeexplore.ieee.org/
document/7160269/.

21. Leo S, Pireddu L, Cuccuru G et al. BioBlend.objects:
metacomputing with Galaxy. Bioinformatics 2014;30(19):
2816–7.

22. Kim B, Ali T, Hosmer S et al. Visual omics explorer (VOE):
a cross-platform portal for interactive data visualization.
Bioinformatics 2016;32(13):2050.

23. Bio-Docklets container repository on DockerHub. https://
hub.docker.com/r/bcil/biodocklets/.

24. Trapnell C, Roberts A, Goff L et al. Differential gene
and transcript expression analysis of RNA-seq experi-
ments with TopHat and Cufflinks. Nat Protoc 2012;7(3):
562–78.

25. Zhang Y, Liu T, Meyer CA et al. Model-based analysis of ChIP-
Seq (MACS). Genome Biol 2008;9(9):R137.

26. The D3.js programming library. https://github.com/d3/
d3/wiki.

27. Felipe DVL. BioDocker: an open-source and community-
driven framework for software standardization. Research-
Gate 2017; in press.

28. Common Workflow Language (CWL) project website and
code repository. https://github.com/common-workflow-
language.

29. Folarin AA, Dobson RJ, Newhouse SJ et al. NGSeasy: a
next generation sequencing pipeline in Docker containers.
F1000Research 2015;5:4.

30. Hung L, Kristiyanto D, Lee SB et al. GUIdock: using docker
containers with a common graphics user interface to ad-
dress the reproducibility of research. PLoS One 2016;11(4).

31. Hung LH, Meiss T, Keswani J et al. Building containerized
workflows for RNA-seq data using the BioDepot-workflow-
Builder (BwB). BioRxiv 2017;1:e0152686.

32. Shannon P. Cytoscape: a software environment for in-
tegrated models of biomolecular interaction networks.
Genome Res 2003;13(11):2498–504.

33. Xquarz graphics engine. http://www.xquartz.org.
34. Seven Bridges cloud platform. https://www.sevenbridges.

com/platform/.
35. Galaxy Docker integration. https://galaxyproject.org/admin

/tools/docker/.
36. Modifying Galaxy configuration files to enable Docker

integration. https://github.com/apetkau/galaxy-hackathon-
2014/tree/master/smalt.

37. Integration of Galaxy with a computational cluster for
computation job execution in the back-end. https://
galaxyproject.org/admin/config/performance/cluster/.

38. DRMAA cluster integration software libraries. http://
drmaa.org.

39. Di Tommaso P, Chatzou M, Floden EW et al. Nextflow en-
ables reproducible computational workflows. Nat Biotechnol
2017;35(4):316–9.

40. Kim B, Ali T, Lijeron C et al. Supporting data for “Bio-
Docklets: virtualization containers for single-step exe-
cution of NGS pipelines.” Gigascience Database 2017.
http://dx.doi.org/10.5524/100323.

https://www.illumina.com/systems/miseq/kits.html.html
https://www.illumina.com/systems/miseq/kits.html.html
http://launch.usegalaxy.org
http://ieeexplore.ieee.org/document/7160269/
http://ieeexplore.ieee.org/document/7160269/
https://hub.docker.com/r/bcil/biodocklets/
https://hub.docker.com/r/bcil/biodocklets/
https://github.com/d3/d3/wiki
https://github.com/d3/d3/wiki
https://github.com/common-workflow-language
https://github.com/common-workflow-language
http://www.xquartz.org
https://www.sevenbridges.com/platform/
https://www.sevenbridges.com/platform/
https://galaxyproject.org/admin/tools/docker/
https://galaxyproject.org/admin/tools/docker/
https://github.com/apetkau/galaxy-hackathon-2014/tree/master/smalt
https://github.com/apetkau/galaxy-hackathon-2014/tree/master/smalt
https://galaxyproject.org/admin/config/performance/cluster/
https://galaxyproject.org/admin/config/performance/cluster/
http://drmaa.org
http://drmaa.org
http://dx.doi.org/10.5524/100323

