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Genetic parameters and genomic breeding 
values for digital dermatitis in Holstein Friesian 
dairy cattle: host susceptibility, infectivity 
and the basic reproduction ratio
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Abstract 

Background:  For infectious diseases, the probability that an animal gets infected depends on its own susceptibility, 
and on the number of infectious herd mates and their infectivity. Together with the duration of the infectious period, 
susceptibility and infectivity determine the basic reproduction ratio of the disease ( R0 ). R0 is the average number of 
secondary cases caused by a typical infectious individual in an otherwise uninfected population. An infectious disease 
dies out when R0 is lower than 1. Thus, breeding strategies that aim at reducing disease prevalence should focus on 
reducing R0 , preferably to a value lower than 1. In animal breeding, however, R0 has received little attention. Here, 
we estimate the additive genetic variance in host susceptibility, host infectivity, and R0 for the endemic claw disease 
digital dermatitis (DD) in Holstein Friesian dairy cattle, and estimate genomic breeding values (GEBV) for these traits. 
We recorded DD disease status of both hind claws of 1513 cows from 12 Dutch dairy farms, every 2 weeks, 11 times. 
The genotype data consisted of 75,904 single nucleotide polymorphisms (SNPs) for 1401 of the cows. We modelled 
the probability that a cow got infected between recordings, and compared four generalized linear mixed models. All 
models included a genetic effect for susceptibility; Models 2 and 4 also included a genetic effect for infectivity, while 
Models 1 and 2 included a farm*period interaction. We corrected for variation in exposure to infectious herd mates via 
an offset.

Results:  GEBV for R0 from the model that included genetic effects for susceptibility only had an accuracy of ~ 0.39 
based on cross-validation between farms, which is very high given the limited amount of data and the complexity of 
the trait. Models with a genetic effect for infectivity showed a larger bias, but also a slightly higher accuracy of GEBV. 
Additive genetic standard deviation for R0 was large, i.e. ~ 1.17, while the mean R0 was 2.36.

Conclusions:  GEBV for R0 showed substantial variation. The mean R0 was only about one genetic standard deviation 
greater than 1. These results suggest that lowering DD prevalence by selective breeding is promising.
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(http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Infectious disease transmission in a host population is 
a dynamic process. The probability that an animal is 
infected depends on its own susceptibility, on the num-
ber of infected contact animals (“group mates”), and on 
the infectivity of those group mates. The number and 

composition of the infectious contact animals in a popu-
lation varies over time, since some animals get infected 
while others recover. Whereas state-of-the-art epidemio-
logical models take this variation into account, it should 
probably also be taken into account to make optimal 
genetic inference. However, most genetic studies use lin-
ear mixed models that ignore the dynamics of the trans-
mission process in the population, such as the variation 
in exposure of susceptible individuals to infectious con-
tact individuals. Moreover, studies on host genetic vari-
ability commonly connect an individual’s disease status 
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to its own pedigree or genotype only, and therefore cap-
ture genetic effects related to susceptibility (or resistance) 
only [1, 2]. However, individuals probably also differ in 
infectivity, as suggested for example by the observation 
of superspreaders, which are animals that infect sub-
stantially more contact individuals compared to a typi-
cal infectious animal [3]. Recently, studies on selection 
against disease transmission have started that include the 
infectivity of the herd mates [4–8].

Genetic inference on infectious diseases can probably 
be improved by using quantitative genetic models that 
are founded on epidemiological theory. Moreover, such 
models would give estimates of genetic variation and 
breeding values for fundamental epidemiological param-
eters, such as the basic reproduction number R0 (see also 
below). Such knowledge would also facilitate the predic-
tion of response to selection while accounting for the 
non-linear nature of infectious diseases, including phe-
nomena such as positive feedback and the eradication of 
a disease when R0 falls below 1 [9].

An animals’ infectivity affects the disease status of 
other animals, rather than its own disease status. Thus, if 
the observed variation in infectivity has a genetic compo-
nent, then infectivity is a so-called indirect genetic effect 
(IGE). IGE can have a considerable effect on the rate 
and direction of evolution by natural selection, and on 
response to selective breeding [10–12]. Hence, IGE can 
and should be used for the genetic improvement of popu-
lations whenever they play a role.

Together, susceptibility, infectivity, and the duration 
of the infectious period determine the basic reproduc-
tion ratio ( R0 ), which is the average number of secondary 
cases caused by a typical infectious individual in a fully 
susceptible population [13]. R0 contains information on 
the ability of an infection to transmit and establish itself 
in the population [13], and has a threshold value of 1; if 
R0 is lower than 1, an infectious animal will infect, on 
average, less than one susceptible animal and the disease 
will die out with certainty. If R0 is higher than 1, an epi-
demic disease can affect a substantial proportion of the 
population, while an endemic disease may persist in the 
population. For endemic diseases, the prevalence at the 
equilibrium state depends on R0 , and is (ignoring dif-
ferences in susceptibility between individuals) equal to 
1− 1

R0
 when R0 is higher than 1. Because R0 determines 

the prevalence of a disease in a group of animals (e.g., a 
herd), breeding strategies that aim at reducing the prev-
alence should focus on reducing R0 , ideally to a value 
lower than 1 [4].

In this study, we focused on the endemic infectious 
disease digital dermatitis (DD). DD is a claw disorder 
that affects (mainly) the hind feet of (dairy) cattle [14, 
15]. Typically, affected cattle have a round lesion above 

the interdigital space next to the heel bulbs [16]. These 
lesions can be painful and prone to bleed, and can 
develop filiform papillae or be surrounded by hyperker-
atotic skin with hairs longer than normal [15]. Severely 
affected cows show signs of lameness; they bear their 
weight on the toes of the affected foot, shake the foot as 
if in pain, and show reluctance to move [15, 17, 18]. The 
herd prevalence of DD in 383 dairy herds in the Nether-
lands was estimated at 21.2% in 2003, and within these 
herds cow level prevalence estimates ranged from 0 to 
83.0% [19]. Thus, DD has an impact on the welfare of 
cows and, furthermore, causes economic losses for the 
farmer [20, 21].

The prevalence of DD is affected by many factors, such 
as herd management, lactation stage, flooring system, 
climate, and breed [19]. Optimizing management strate-
gies are one way to reduce the DD prevalence on a dairy 
farm [22]. An additional strategy could be to improve 
claw health through genetic selection [23–25]. As we will 
argue, this is best done by selecting for lower R0.

The objective of our work was to quantify the genetic 
variation in host susceptibility, host infectivity, and R0 for 
DD in Holstein Friesian dairy cattle, and to investigate 
our ability to estimate genomic breeding values (GEBV) 
for these traits. In addition, for model validation, models 
with and without genetic variation for infectivity will be 
compared for their ability to predict whether susceptible 
(infection-free) claws of an animal get infected.

Methods
Phenotype data
Phenotypes for DD were collected on 12 dairy cat-
tle farms in the Netherlands, between November 2014 
and April 2015. Two observers (author FB being one of 
them) visited these farms 11 times with a 2-week inter-
val between visits [26]. On each farm, one of the observ-
ers rinsed and scored the hind feet using the method of 
Relun et al. [27], while the other observer recorded cow 
ID and DD status. Six distinct classes were scored: skin 
on which lesions were macroscopically absent (M0), dis-
played a small lesion of 0 to 2 cm (M1), a lesion of more 
than 2 cm (M2), a lesion covered by a scab (M3), altered 
skin with dyskeratotis or surface proliferation (M4), and 
a small lesion in addition to altered skin (M4.1) [28–30]. 
These classes were divided into susceptible (M0) and 
infected (M1, M2, M3, M4, and M4.1). Farmers were not 
informed on the DD status of the cows, but were allowed 
to identify and treat affected cows using their normal 
routine. Phenotypes were collected on 1513 cows, of 
which 1401 were genotyped (see below). On average, a 
cow was scored 8.7 times. Table 1 shows several charac-
teristics of the farms enrolled in the study.
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Genotype data
The cows were genotyped with the Eurogenomics 10  K 
chip. A first round of quality control was performed 
before imputation, following the standard procedure of 
the breeding company CRV. A marker (single nucleo-
tide polymorphism, SNP) was included only when its call 
rate was higher than 0.85, the deviation of the observed 
frequency from the expected Hardy Weinberg equilib-
rium frequency was less than 0.15, and the minor allele 
frequency was higher than 0.025. Furthermore, incon-
sistent genotypes between parents and offspring were 
set to missing. SNPs that passed the quality control were 
imputed to a set of 76,438 SNPs based on the Illumina 
BovineSNP50 chip and a custom chip from the breeding 
company CRV, with a reference population of more than 
1000 animals with genotypes on both chips and the com-
bination of Beagle [31] and PHASEBOOK [32] software. 
A second round of quality control was performed on 
the imputed data. A SNP was included only when there 
was no strong deviation from Hardy Weinberg equilib-
rium (p > 10−15), the missing rate was lower than 0.05, 
and the minor allele frequency was higher than 0.02. In 
total, 75,904 SNPs passed the quality control and were 
included in the analysis.

Models
In this section, we develop a generalized linear mixed 
model (GLMM) founded on epidemiological princi-
ples, to estimate genetic parameters for susceptibility, 

infectivity and R0 . To develop the GLMM, we need to 
find the probability that a susceptible cow gets infected 
between two observations. We present an epidemio-
logical model, derive the infection probability from this 
model, and present the resulting GLMM, building on 
work of Velthuis et  al. [5], Lipschutz-Powell et  al. [6], 
Anacleto et al. [7], Anche et al. [4], and Biemans et al. [8].

DD is an endemic infectious disease with infections 
reoccurring in the same animals. DD is transmitted via the 
environment [33], where the environment is defined as 
any possible pathogen reservoir through which transmis-
sion can occur. Thus, we used a stochastic compartmen-
tal susceptible-infected-susceptible-model (SIS-model) 
with an environmental route (E) see e.g. [34] to model 
disease transmission (Fig. 1). An SIS-model has two cat-
egories of individuals: (1) non-infected individuals who 
can become infected; these are referred to as susceptible; 
and (2) infected individuals that are also infectious, and 
who can recover; these are referred to as infected. Hence, 
the term “susceptible” merely denotes a non-infected indi-
vidual that can, in principle, become infected. It does not 
indicate a high degree of susceptibility. In the SIS-model, 
the infection of a susceptible claw occurs randomly with 
a probability per observation interval, depending on the 
parameters of the model, the number of infected claws 
in the group, and the infection pressure coming from the 
environment.

In the SIS-model with an environmental route ( E ), the 
expected rate with which susceptible claws get infected 

Table 1  Characteristics of the farms enrolled in the study

a  Total number of different cows on a farm
b  Total number farm visits
c  Average number of days between two scorings ( �t)
d  Total number of footbaths given during the study period
e  Average percentage of animals and feet scored as infected, standard deviation (SD) in brackets

Farm Number of cows 
examineda

Number of cows 
genotypeda

Number 
of observationsb

Average �t 
(days)c

Number of foot 
bathsd

Prevalence (SD)e

Cow level Foot level

A 134 116 11 14 7 78.0 (5.4) 69.6 (6.6)

B 105 101 11 14 0 56.3 (7.5) 46.9 (7.9)

C 159 152 11 14 5 49.7 (2.8) 40.2 (1.9)

D 118 116 11 14 7 57.8 (5.0) 49.2 (5.1)

E 102 90 11 13.55 9 62.8 (5.0) 54.6 (5.4)

F 133 112 10 15.56 10 59.2 (10.0) 48.7 (10.4)

G 100 98 11 14 3 65.6 (8.1) 58.2 (7.6)

H 189 180 11 14 7 64.9 (6.2) 56.7 (5.8)

I 104 75 11 14 0 56.4 (5.1) 45.6 (4.9)

J 88 88 11 14 0 65.8 (10.8) 58.1 (10.9)

K 130 116 9 14 13 63.6 (9.6) 52.5 (8.5)

L 151 147 11 13.90 3 70.9 (7.2) 62.0 (7.7)

Total 1513 1401 129 14.07 64 62.6 (7.5) 53.9 (11.0)
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is βS I+E
N  , where I is the number of currently infectious 

claws, S the number of susceptible claws, and S + I = N  
the total number of claws in a group (twice the num-
ber of cows). Here, it is assumed that infected cows are 
immediately infectious to their herd mates. E is the infec-
tion pressure coming from the environmental reservoir, 
expressed as the equivalent number of currently infec-
tious claws (i.e., I and E are on the same scale). β is the 
transmission rate parameter that contains information 
on the contact rate and transmission probability between 
individuals [35].

Because our interest is in genetic variation in suscepti-
bility and infectivity among cows, we consider the pair-
wise β between a susceptible cow and her infected herd 
mate. This pairwise β depends on the susceptibility of the 
cow and the infectivity of the herd mate. Thus, the trans-
mission rate parameter βij from an infected claw of herd 
mate j , with infectivity ϕj , to a susceptible claw of cow i , 
with susceptibility γi , is:

In Eq.  1, the overall contact rate c serves as a scaling 
parameter, so that mean susceptibility and infectivity are 
approximately 1, γ = ϕ = 1 , and mean logarithms are 0, 
log (γ ) ≈ log (ϕ) ≈ 0. The latter is relevant for the inclu-
sion of random effects in mixed models, which are com-
monly assumed to have a mean of 0.

Thus, the expected (i.e., average) rate with which a sin-
gle susceptible claw of cow i gets infected when exposed 
to all infected claws in the group depends on the suscep-
tibility of cow i , on the number of infected claws in the 
group, and on their average infectivity:

where cγi
(∑

j ϕj

Ig

)
 is the pairwise transmission rate param-

eter averaged over the genotyped infected herd mates j of 
susceptible cow i , Ig is the number of infected claws of 
herd mates that had genotype records, and Itot is the total 
number of infected claws at the start of the observation 
interval. We distinguished between Ig and Itot because 

(1)βij = cγiϕj .

(2)Infection ratei = cγi

(∑
j ϕj

Ig

)
Itot + E

N
,

some of the cows were not genotyped. While we esti-
mated infectivity for the genotyped cows only, the non-
genotyped infected cows also contributed to 
transmission. To account for all infected claws, we 
assumed that the claws of the non-genotyped cows 
( n = 112) had the same infectivity as their infected geno-
typed herd mates ( 

∑
j ϕj/Ig).

In the 
∑

j ϕj

Ig
 term (Eq.  2), we should ideally average the 

infectivity over all claws that contribute to the current 
infection pressure. This also includes the infection pressure 
via the environment of the claws that were infected at an 
earlier time. However, in the statistical software we did not 
manage to keep track of all the weighted genotypes of claws 
that were infected at earlier times. Therefore, we only 
included claws that were infected at the start of the obser-
vation interval in the 

∑
j ϕj

Ig
 term. In contrast, the E-term 

included infection pressure of the full number of previously 
infected claws, but these were not weighted according to 
their infectivity. Thus, our estimates of genetic variation in 
infectivity use only part of the variation in the infection 
pressure. This issue is further addressed in the “Discussion” 
section.

The probability that a susceptible claw becomes infected 
in an observation interval varies among observation inter-
vals, because it depends on the number of infected herd 
mates, the infectivity of those herd mates, and on the infec-
tion pressure coming from the environment. To estimate 
this probability, we assumed that the transmission rate 
(probability per unit of time) is constant within the inter-
val, which is the default assumption in disease transmis-
sion models. With this assumption, transmission follows a 
so-called Poisson process, where the number of transmis-
sions within the interval has a Poisson distribution with 
a mean equal to the product of the rate and the length of 
the interval; µ = rate ×�t . A claw becomes a case when 
it is infected at least once within the interval. Hence, the 
probability of becoming a case is the complement of the 
probability of no infection, P = 1− e−µ , where e−µ is the 
probability of a zero outcome from a Poisson distribution. 
Using Eq. 2:

where, Pi(t) is the probability that a susceptible claw of 
i is a case (becomes infected) in interval �t , given the 
number of infected herd mates, the infectivity of those 
herd mates, and on the infection pressure coming from 
the environment at the start of the interval.

The number of cases for each interval (counting pro-
cess in discrete time) follows a binomial distribution with 
a probability that follows from a Poisson process within 
the interval (counting process in continuous time). 

(3)
Pi(t) = 1− e

−cγi

(∑
j ϕj

Ig (t)

)
Itot (t)+E(t)

N (t) �t
,

Fig. 1  Susceptible-infected-susceptible model with environmental 
route
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Therefore, the complementary log–log is the appropriate 
link function to connect the explanatory variables to the 
expected value of the observed variable [36]. Thus, the 
GLMM follows from applying the complementary log–
log transformation to Eq. 3:

where log (c) is an intercept, log (γi) is the logarithm of 
susceptibility of the focal individual, log

(∑
j ϕj

Ig (t)

)
 the log of 

the mean infectivity of infected (genotyped) herd mates, 
and log

(
Itot (t)+E(t)

N (t) �t
)
 is an offset, i.e., a known “explana-

tory variable”. The offset accounts for the infectious pres-
sure coming from the infected cows (both genotyped and 
non-genotyped) at time t : ( Itot(t)/N (t)) and from the 
environment at t : ( E(t)/N (t) ), and for the length of the 
interval ( �t ). Note that the dependent variable for Eq. 4 
is the number of cases for a cow with at least one suscep-
tible claw. For cows with one susceptible claw, the bino-
mial total equals 1 and the number of cases takes values 
C = 0 or 1. For cows with two susceptible claws, the bino-
mial total equals 2 and the number of cases takes values 
C = 0, 1 or 2.

Equation  4 is linear in the logarithm of susceptibility, 
but not in the logarithm of infectivity. To allow the fitting 
of a linear model, we linearized the model term for infec-
tivity following [37] in the models in which the infectiv-
ity of the group mates was included (Models 2 and 4, see 
below):

Equation  5 follows from approximating the 
(∑

j ϕj

Ig (t)

)
 , 

which is an arithmetic mean, by the corresponding geo-
metric mean (see [37] for details). The errors caused by 
this approximation are less than 5% for infectivity effects 
up to a factor of 3 (i.e., ϕj between 0.33 and 3.0). However, 
this error estimation is based on a model with SNP 
effects rather than polygenic breeding values. The size of 
the error is not known for a trait determined by many 
genes each with a small effect. The method will anyway 
take the real differences in exposure for different obser-
vation periods on the different farms into account. We 
acknowledge that this is a relevant issue that requires fur-
ther investigation.

(4)

cloglog(Pi(t)) = log (c)+ log (γi)+ log

(∑
j ϕj

Ig (t)

)

+ log

(
Itot(t)+ E(t)

N (t)
�t

)
,

(5)

cloglog(Pi(t)) ≈ log (c)+ log (γi)+
1

Ig (t)

∑

j

log
(
ϕj

)

+ log

(
Itot(t)+ E(t)

N (t)
�t

)
.

We calculated the infectious pressure coming from 
the environment ( E(t) ) as described in detail in Biemans 
et al. [26]. In short, claws that were infected at an earlier 
time could still contribute partly to the environmental 
reservoir at the moment of observation. Their contribu-
tion was assumed to decrease each interval �t by a fac-
tor � , which may be interpreted as a survival rate of the 
pathogen. The estimate for this survival rate is 0.9 [26]. 
Thus, the number of pathogens in the environment com-
ing from a claw that was infected at t , is a fraction 0.9 at 
t + 1 , a fraction 0.92 = 0.81 at t + 2 , a fraction 0.93 = 0.729 
at t + 3 , etc. Therefore, the values for E(t) were calcu-
lated as:

where Itot(t − 1) is the total number of infected claws at 
t − 1 , and E(t − 1) is the infectious pressure coming from 
the environmental reservoir at t − 1.

Because we did not observe the number of infected 
claws in the period before the first observation ( Itot(t0) ), 
we estimated this number with a linear model. For each 
farm, we fitted the model to the number of infected claws 
over the observation period. The intercept of the model, 
Itot(t = 0) , was used as the average number of infected 
claws on that particular farm in the periods before obser-
vations started ( Itot(t0) ). Thereafter, the value for the 
environmental reservoir at the first observation was esti-
mated as, E(t = 0) = 0.9

1−0.9 Itot(t ≤ 0) , and was used in 
Eq. 6.

Implementation of the model
With the GLMM, we modelled the expectation of the num-
ber of cases over the number of susceptible feet (claws) of 
cow i within the interval �t , Pi(t) = E

(
Ci(t)

/
Fi(t)

)
 . Only 

the hind feet of the cows were scored, so a susceptible cow 
could have one or two susceptible feet ( F ) at the start of an 
interval, which were zero, one, or two cases by the end of 
the interval. Thus, the number of cases C (0, 1 or 2) for each 
susceptible cow followed a binomial distribution with bino-
mial total F (1 or 2).

We tested four models (Table  2). Model 1 included a 
genetic effect for susceptibility only:

where c0 is the intercept. The fixed effects were farm 
( Farmk with k = A to L), period ( Periodτ with τ = 1 to 10), 
parity ( Parityl with l = 1, 2, or > 2), and months in milk 
( MIMm , a continuous covariate with m = 1 to 12). Ran-
dom effects included an interaction between farm and 

(6)E(t) = 0.9[Itot(t − 1)+ E(t − 1)],

cloglog(Piklmτ (t)) = c0 + Farmk + Periodτ

+ Parityl + c1MIMm + Farmk .Periodτ

+ Animali + log(γi)+ log

(
Itot(t)+ E(t)

N (t)
�t

)
, (Model 1)
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period ( Farmk .Periodτ with k = A to L and τ = 1 to 10), 
a non-genetic permanent animal effect for the suscep-
tible animal i ( Animali ) to account for repeated obser-
vations on the same animal in different periods, and 
an additive genetic effect for susceptibility of animal i 
( log(γ ) ∼ N

(
0,Gσ 2

a

)
 , where G is the genomic relation-

ships matrix among animals).
Model 2 included genetic effects for both susceptibility 

and infectivity:

where 
∑

j log(ϕj) are the random genetic effects for 
infectivity of the infected group mates j of animal i , with 
( log (ϕ) ∼ N

(
0,Gσ 2

a

)
).

We expected that the interaction between farm and 
period could be partly confounded with the genetic effect 
for infectivity, because previous IGE studies showed that 
omitting group-effects may substantially inflate estimated 
genetic parameters for infectivity [38]. To investigate this 
issue, we dropped the farm by period interaction from 
Models 1 and 2, resulting in Models 3 and 4, respectively.

Data analyses
The G-matrix was computed using method 1 of Van-
Raden [39], with the calc_grm software [40]. We fitted 
the four models with ASReml v4.1.0 [41]. Model fit was 
assessed with Akaike information criterion (AIC). The 
susceptibility and infectivity estimates from ASReml 
were on the log scale because of the complementary 
log–log link function (Eq.  5). These random effects are 
zero on average. By taking the exponent of the estimates, 

cloglog(Pijklmτ (t)) = c0 + Farmk + Periodτ

+ Parityl + c1MIMm + Farmk .Periodτ

+ Animali + log(γi)+
1

Ig (t)

∑

j

log
(
ϕj

)

+ log

(
Itot(t)+ E(t)

N (t)
�t

)
, (Model 2)

we obtained the genomic estimated breeding values 
(GEBV) for susceptibility and infectivity, relative to a 
typical (average) individual that has a GEBV of 1 (thus 
log (γ ) = log (ϕ) = 0 , therefore γ ≈ ϕ ≈ 1).

Cross‑validation
We validated the GEBV to investigate their bias and accu-
racy with a 12-fold cross-validation on all four models. In 
each analysis, all the cases ( C ) of one of the 12 farms were 
censored from the dataset. For each susceptible claw of 
cow i at interval t at the censored farm, we predicted the 
dependent variable of the GLMM, Ci(t)/Fi(t) , based on 
the information of the other 11 farms. In the following, 
we refer to this prediction as the predicted probability 
P̂i(t).

However, as the fixed effects were nonlinear on the 
normal scale because they were estimated with a comple-
mentary log–log link function, correction of the observed 
records for fixed effects was not straightforward. To 
solve this issue, we translated both the predicted prob-
abilities and the observed records to a standard (i.e., 
average) farm. Subsequently, we validated the models 
using a weighted correlation and a regression of observed 
records on predicted probabilities (see “Appendix” for 
detailed methods). To calculate the correlation and 
regression coefficients, we used observations and predic-
tions averaged over the number of times an animal was 
susceptible at the start of an interval, and this number 
was used as the weight.

Genetic variance and breeding values for the basic 
reproduction ratio
For the best fitting model (lowest bias, highest accuracy), 
we calculated the genetic variance and GEBV ( ̂AR0,i ) for 
the basic reproduction ratio.

The additive genetic variance of R0 was calculated as 
[4]:

where the approximation follows from γ̄ ≈ ϕ̄ ≈ 1.

The GEBV for the basic reproduction ratio is the prod-
uct of the GEBV for susceptibility ( ̂γi ), the GEBV for 
infectivity ( ϕ̂i) , the contact rate ( c ), and the average dura-
tion of the infectious period ( 1/α ) [4]:

σ
2
AR0

=
(
γ
2
σ
2
ϕ
+ ϕ

2
σ
2
γ
+ σ

2
γ
σ
2
ϕ

)( c

α

)2

≈
(
σ
2
γ
+ σ

2
ϕ
+ σ

2
γ
σ
2
ϕ

)( c

α

)2
,

(7)ÂR0,i =
γ̂iϕ̂ic

α
= β̂i

α
.

Table 2  Overview of  the  fixed and  random effects 
included in the four models

All models contained fixed effects for farm, period, parity, and months in milk; 
and a non-genetic random animal effect for the susceptible animal

Model Random effects

1 Genetic susceptibility 
focal individual

– Farm*period

2 Genetic susceptibility 
focal individual

Genetic infectivity 
herd mates

Farm*period

3 Genetic susceptibility 
focal individual

– –

4 Genetic susceptibility 
focal individual

Genetic infectivity 
herd mates

–
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With a previously estimated R0 for DD of 2.36 on these 
farms [26] and the average product of the estimated rela-
tive susceptibility and relative infectivity, the value for 
c/α was calculated as c/α = 2.36

γ̂iϕ̂i
 . The breeding value for 

R0 in Eq. 7 is on the absolute scale, and thus has an aver-
age equal to R0 , rather than zero. This is convenient, 
because absolute breeding values for R0 can be inter-
preted relative to a value of 1, which is the threshold for 
eradication of a disease. Note that, in Models 1 and 3, 
variation in infectivity is not estimated. Hence, for these 
models we used ϕ̂i = 1 for all individuals.

GEBV are prone to overestimation, as illustrated by 
regression coefficients of validation phenotypes on pre-
dicted GEBV, which are often less than 1 e.g. [42]. To 
avoid overestimation of the variation in breeding values 
for R0 , we shrunk the estimates for the transmission rate 
parameter

where b is the regression coefficient of the observed C/F  
on the predicted probability, averaged over cross-valida-
tion sets. The corrected individual breeding values for the 
basic reproduction ratio were:

After this correction, the regression coefficient of the 
observed C/F on the predicted probability in cross-valida-
tion was 1, implying that the GEBV have the correct vari-
ance. Moreover, when the regression coefficient of 
phenotypes on predicted breeding values equals 1, and 
observations and predictions follow an approximate nor-
mal distribution, then the accuracy of EBV equals the ratio 
of the standard deviations, cor

(
ÂR0 ,AR0

)
= σ

ÂR0
/σAR0

 
[43]. We used this result to obtain the approximate accu-
racy of the GEBV for R0.

Results
Fixed effects
The farm effect was significant (P < 0.05) in Models 1 and 
3, but not in Models 2 and 4. For all models, there was a 
significant effect for period, parity, and months in milk. 
The probability of becoming infected during an interval 
increased during the first six periods and stabilized there-
after. The transmission rate parameter increased with 
increasing parity; it was 21% higher for parity 2 com-
pared to parity 1, and 69% higher for parities greater than 
2 compared to parity 1. For months in milk, the transmis-
sion rate parameter decreased by 4% with every month in 
milk. A table of fixed effect estimates and standard errors 
on the log scale from Model 1 is presented in Additional 
file 1.

β̂i,corrected = b
(
βi − β̄

)
+ β̄ ,

ÂR0,i,corrected = β̂i,corrected

α
.

Estimated variance components
Table 3 shows the estimated variance components and 
their standard errors (SE) on the log scale. The esti-
mated variance components are similar on the normal 
scale, because var(ln (x)) ≈

([
d ln (x)
dx

]

x=1

)2
var(x) = 

([
1

x

]

x=1

)2
var(x) = var(x) around ln (x) = 0 ( x = 1) [44]. 

For Models 1, 2, and 4, the estimated genetic variance for 
susceptibility was about 0.55, and was strongly signifi-
cant. These models had a genetic effect for infectivity 
and/or the interaction term between farm and period. 
For Model 3, the estimated genetic variance for suscepti-
bility was smaller (0.49); this model had neither a genetic 
effect for infectivity, nor a term for the interaction 
between farm and period. Similarly, the variance of the 
non-genetic random animal effect was about 0.95 for 
Models 1, 2, and 4; and was smaller, ~ 0.92, for Model 3. 
The estimated variance for infectivity was large, and not 
significant for Model 2. The interpretation of the magni-
tude of these variance components is discussed below, in 
the section on R0.

Figure  2 shows the infectivity estimates from Model 
4 plotted against the infectivity estimates from Model 
2. The estimates varied from − 3.20 to 3.80 for Model 2 
and from − 8.76 to 9.04 for Model 4. Thus, the GEBV for 
infectivity from Model 2 showed less variation compared 
to the GEBV from Model 4; part of the variation that is 
attributed to the interaction between farm and period in 
Model 2, is attributed to the genetic infectivity effect in 
Model 4. This suggests that the GEBV for infectivity from 
Model 4 include both a genetic and a non-genetic com-
ponent, and may therefore be inflated.

Cross‑validation
Figure  3 shows the weighted linear regression of the 
average observed number of cases over the number of 
susceptible feet ( C/F  ) on the average predicted prob-
ability, and their correlation. Bias was smallest for models 

Table 3  Estimated variance components and  their 
standard errors (SE) for the genetic effect of susceptibility 
and  infectivity, the  interaction between  farm and  period, 
and the animal effect for the four models

Model Estimated variance (SE) of the random terms

Susceptibility Infectivity Farm*period Animal

1 0.555 (0.142) – 0.262 (0.050) 0.949 (0.130)

2 0.558 (0.142) 25.43 (16.41) 0.144 (0.067) 0.952 (0.130)

3 0.490 (0.131) – – 0.922 (0.123)

4 0.556 (0.142) 68.27 (14.13) – 0.952 (0.130)
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without the infectivity effect (Models 1 and 3), since 
regression coefficients of these models were closest to 
1. The weighted correlations coefficients were higher for 
models with the infectivity effect (Models 2 and 4). Thus, 
models without an infectivity effect showed significantly 
lower bias, while models with an infectivity effect had 
a slightly higher accuracy. The higher bias for Model 4 
compared to Model 2 agrees with results in Fig.  2, and 
confirms that omitting the random farm-by-period inter-
action inflates the variation in GEBV for infectivity.

Basic reproduction ratio
The genomic estimated breeding values (GEBV) for sus-
ceptibility corrected for bias were approximately the 
same for Models 1, 2 and 4, and ranged from 0.49 to 2.81; 
the GEBV from Model 3 ranged from 0.50 to 2.53. A cow 
with a susceptibility GEBV of 0.50 is genetically about 
two times less susceptible than an average cow, whereas 
a cow with a susceptibility GEBV of 2.50 is genetically 
about 2.5 times more susceptible than an average cow. 
The GEBV for infectivity showed substantially more vari-
ation than the GEBV for susceptibility.

We chose to illustrate the variation in GEBV for R0 using 
results from Model 3, which is the most conservative 
model as judged by the estimated genetic variance in sus-
ceptibility (smallest value) and the bias. For this model, we 
calculated individual breeding values for the basic repro-
duction ratio ( ÂR0,i ) corrected for the bias that we found 
from the cross-validation. The average GEBV for suscepti-
bility was 1.081, which is slightly higher than 1 because of 
the transformation from the log scale to the normal scale. 
In Model 3, there was no infectivity effect, thus infectivity 

was 1.00 for all individuals. With an average R0 for DD of 
2.36 on our farms [26], c/α was estimated at 2.18. GEBV 
for R0 ranged from 1.089 to 5.515 (Fig. 4) (the GEBV not 
corrected for bias ranged from 0.62 to 6.68). This result 
indicates very substantial genetic variation in R0 . The 
expected prevalence in a population of individuals simi-
lar to the genetically best individual equals approximately 
1− 1

R0
= 1− 1

1.089 = 8.2% [45], while the corresponding 
value for the genetically worst individual equals 81.9%.

The estimated additive genetic standard deviation for R0 
was 1.17 (this value is corrected for bias). This result shows 
that the current R0 of 2.36 [26] is only about one genetic 
standard deviation greater than 1. Hence, this suggests that 
a genetic improvement of R0 by a bit more than one genetic 
standard deviation would be sufficient to eradicate DD.

The approximate accuracy of ÂR0,i follows from the 
ratio of the standard deviation of GEBV for R0 over the 
additive genetic standard deviation of the true breeding 
values for R0 ; ρÂR0

=
σ
ÂR0

σAR0

 . This accuracy equals ~ 39%. To 

be conservative, we did not correct (i.e., shrink) the σAR0
 

in the denominator of this expression, while we did cor-
rect the numerator for the bias. Note that this accuracy is 
based on validation within a generation, rather than on 
validation forward in time. The accuracy based on valida-
tion forward in time is relevant for response to selection, 
and may be somewhat lower because genetic relation-
ships may be a little weaker.

Discussion
We estimated the additive genetic variation in host suscep-
tibility, infectivity, and the basic reproduction ratio ( R0 ) for 
DD in dairy cattle. Furthermore, we calculated GEBV for 
susceptibility, infectivity, and R0 for each animal. Four mod-
els were compared for their ability to predict whether a sus-
ceptible animal becomes infected. All four models included 
a genetic effect for susceptibility; Models 2 and 4 also 
included a genetic effect for infectivity, while Models 1 and 
2 included an interaction term between farm and period. 
In all models, the estimates are corrected for the variation 
in exposure of the susceptible individuals to infected group 
mates via the offset of the model. The estimated additive 
genetic standard deviation for R0 was large, ~ 1.17, and the 
mean R0 (2.36) was only about one genetic standard devia-
tion greater than the important threshold value of 1. Fur-
thermore, GEBV for R0 (corrected for bias) showed large 
variation, ranging from 1.089 to 5.515, and the approximate 
accuracy of GEBV for R0 was ~ 0.39. These results show 
that genetic selection against DD is very promising; there 
is substantial heritable variation and a meaningful accuracy 
can be obtained from a limited amount of data.

Farm, parity, period, and months in milk of the focal 
cow were included in the models as fixed effects. The 

Fig. 2  Estimated infectivity effect from Model 2 versus Model 4. Each 
point represents one cow. The line shows y = x
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transmission rate parameter was 21% higher for par-
ity 2 compared to parity 1, and 69% higher for parity 
greater than 2 compared to parity 1. The prevalence 
also increased with parity. This is in contrast with 
most previous studies where DD was most prevalent 
in first and second parity cows [15, 46]. For months in 
milk, the transmission rate parameter decreased by 4% 
per month in milk. This is in agreement with Argáez-
Rodríguez et  al. [46] who found that cows had the 

highest risk of getting DD in the first and third months 
of lactation, after which the risk decreased. The poten-
tial effect of parity and months in milk on the infectiv-
ity of a cow was not considered, because incorporating 
these factors in the summed effects of the infected 
group mates of a focal cow was methodologically too 
challenging.

We managed, only partly, to account for genetic effects 
on infectivity. For technical reasons, we included only the 

Fig. 3  Weighted linear regression and correlation coefficients between the average observed number of cases over the number of susceptible feet 
( C/F ) and the average predicted probability for the observations. Regression coefficients smaller than 1 indicate over prediction
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genetic effects of claws that were infected at the start of 
the observation interval ( t ) in the statistical model. How-
ever, the majority of the infection pressure originated 
from earlier infected claws that still contribute to trans-
mission via the environment. We estimated a survival 
rate (λ) of the pathogen of 0.9 [26], meaning that 90% of 
the total infectious pressure originates from infectivity 
present in the environment from claws that were infected 
before the start of the observation interval. This suggests 
that we missed a large part of the potential heritable vari-
ation in infectivity. Hence, the relevance of genetic varia-
tion in infectivity for DD may be larger than suggested by 
the estimates presented here (Table 3). Unfortunately, in 
the statistical software we did not manage to keep track 
of all the weighted genotypes (i.e., weighing the geno-
types of the infected individuals for their contribution 
to the environment). Nevertheless, the accuracy of pre-
dicting the phenotype from the cross-validation for the 
model with genetic effects of infectivity (Model 2) was 
9% higher than the accuracy for the corresponding model 
without these effects (Model 1). Thus, even including a 
small proportion of the apparent variation in infectivity 
in the model appears to increase the accuracy of GEBV.

Estimates of infectivity show relatively larger standard 
errors because variation in infectivity must be estimated 
indirectly, unlike variation in susceptibility. Infectivity 
estimates are based on the number of susceptible group 
mates of an infectious individual that become infected, 

and on differences in genotype among the infected group 
mates at different time points. When there are multi-
ple infected group mates, the accuracy of the infectiv-
ity estimates decreases [7]. Especially in large groups, as 
in this study (~ 100 cows), more records and groups are 
needed to estimate genetic variation in infectivity accu-
rately [47]. This issue is very similar to the estimation of 
indirect genetic effects from large groups. In addition, we 
observed DD transmission for a relatively short period 
of time. More accurate estimation of genetic variation 
in infectivity requires data that are recorded over longer 
time periods (i.e., to be able to observe the entire infec-
tious period for the majority of the cows), more groups 
(herds), a better statistical model (i.e., inclusion of the 
genetic effects from earlier infected cows of which the 
pathogens are still present in the environment), and the 
inclusion of infectivity effects of cows without genotypes. 
The latter could be done using single-step GBLUP [48].

In the first two models, we included an interaction 
between farm and period to account for non-genetic effects 
of infectivity. This interaction serves to avoid overestima-
tion of the genetic variance in infectivity [49], similar to the 
inclusion of a random group effect in the analysis of indirect 
genetic effects [38, 50]. The genetic effect for infectivity and 
the interaction term were partly confounded, because both 
terms have an effect on the number of susceptible animals 
that become a case within a certain period on a certain farm. 
However, confounding is not complete because of genetic 
relationships between the infected animals across farms and 
periods. Our results also suggest that inclusion of a random 
farm-by-period effect is essential to avoid overestimation of 
the genetic variation due to infectivity.

The estimated variances for susceptibility (genetic 
and non-genetic) were lower for Model 3 that included 
neither a genetic effect for infectivity nor an interaction 
between farm and period. Anacleto et  al. [7] showed 
that estimates for susceptibility are less accurate when 
genetic variation in infectivity is not accounted for. 
Indeed, we also found a slightly higher correlation in 
the cross-validation when infectivity was included in the 
model, although this was accompanied by an inflation 
of the GEBV, as shown by the regression coefficients in 
Fig.  3. However, inflation of GEBV can be remedied by 
shrinking them based on the results of cross-validation, 
whereas a reduction in correlation cannot. Therefore, 
even when genetic variation in infectivity is small, it 
might be beneficial to include infectivity in the model to 
more accurately estimate susceptibility GEBV [7].

In the cross-validation, we estimated a weighted corre-
lation of about 0.2 between the observed and predicted 
number of cases over the number of susceptible feet. This 
value can be used to approximate the accuracy of the 
GEBV ( rg ,ĝ  ) [51],

Fig. 4  Histogram of the individual GEBV for the basic reproduction 
ratio corrected for bias for all genotyped cows, based on results from 
Model 3
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where, rp,ĝ  is the correlation between the observations 
and the predictions, and h2 is the heritability of the trait. 
Heritability estimates for digital dermatitis from previous 
studies range from 0.05 to 0.29, depending on the model 
used [52]. Assuming a heritability of 0.28 for DD [53], the 
accuracy of the predicted number of cases is 0.37.

In general, studies on genetic variability of infectious 
diseases commonly focus on individual differences in sus-
ceptibility only, and those differences are estimated with 
linear models that ignore variation in exposure between 
individuals. In this study, we used a GLMM founded on 
epidemiological theory to estimate genetic variability in 
susceptibility and infectivity. An important advantage of 
models founded on epidemiological theory is that they 
provide estimates for epidemiological parameters, such 
as R0 , that are interpretable in the context of infectious 
disease dynamics. Our results, for example, show that R0 
is only slightly more than one genetic standard deviation 
away from the threshold value of 1, which suggests that 
eradication of DD by genetic improvement is in princi-
ple feasible. Further work is needed to quantify the ben-
efits of GLMM based on epidemiological theory over 
simpler linear models, to better account for the potential 
genetic variation in infectivity via the environment, and 
to include genetic variation in the duration of the infec-
tious period.

Conclusions
Genetic variance components for susceptibility and 
infectivity for digital dermatitis were estimated with four 
generalized linear mixed models. We managed, only 
partly, to account for genetic effects on infectivity. We 
estimated GEBV for the basic reproduction ratio from 
a (conservative) model including genetic effects for sus-
ceptibility only. GEBV for R0 were corrected for bias, 
and showed substantial variation, ranging from 1.089 to 
5.515. The mean R0 (2.36) was only about one genetic 
standard deviation greater than 1. Based on cross-valida-
tion between farms, the approximate accuracy of GEBV 
for R0 was 0.39, in spite of the relatively small dataset 
of only 12 genotyped herds. These results suggest that 
lowering prevalence of DD by selective breeding is very 
promising.
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Appendix
Cross‑validation
In the 12-fold cross-validation, we censored the num-
ber of cases in each period and predicted for each sus-
ceptible animal the number of cases over the number of 
susceptible feet ( Ci/Fi ) based on information of the 11 
other farms. In general, the predicted probability for the 
number of cases over the number of susceptible feet can 
be calculated with the estimated effects. Because of the 
complementary log–log link function, these effects need 
to be back-calculated to the original scale:

when the genetic effect for infectivity was not included 
(Models 1 and 3), and

when the genetic effect for infectivity was included 
(Models 2 and 4).

In Eqs. (9) and (10), P̂i(t) is the predicted probabil-
ity for the number of cases over the number of suscep-
tible feet for animal i in the time from t to t + 1 , 

∑
FE 

is the sum of the estimates for the fixed effects, i.e., the 

(9)
P̂i(t) = 1− e−e

∑
F̂E+l̂og(γi)+log

(
Itot (t)+E(t)

N (t)
�t

)

,

(10)
P̂i(t) = 1− e−e

∑
F̂E+lôg(γi)+ 1

Ig (t)

∑

j
l
̂
og

(
ϕj

)
+log

(
Itot (t)+E(t)

N (t)
�t

)

,
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estimates for the intercept, farm k , period τ , parity l , and 
months in milk. The ̂log(γi) is the estimated genetic effect 

for susceptibility on the log scale and 
∑

j
̂log
(
ϕj

)
 is the 

sum of the estimated genetic effects for infectivity of the 
infected group mates of the susceptible individual on the 
log scale. The last term in Eqs. (9) and (10) is the offset. In 
the 12-fold cross-validation, the cases ( C ) of one entire 
farm were censored from the dataset, therefore, the ran-
dom effects for the interaction between farm and period, 
and non-genetic animal effect for animal i could not be 
estimated for this farm. Thus, these random effects did 
not contribute to the predicted probabilities, and they are 
not included in Eqs. (9) and (10).

To validate the estimated genetic effects, we wanted to 
estimate the probability that an animal would be a case 
during an interval independent of the fixed effects in the 
model. We achieved this independence by standardizing 
both P̂i(t) and Ci(t)/Fi(t) . We obtained the regression 
coefficients for the fixed effects for each of the four mod-
els that were applied to the full dataset where no data was 
censored. With these regression coefficients, we calcu-
lated the average value of summed fixed effects 

(∑
FE

)
 . 

The 
∑

FE can be interpreted as a standard/average farm 
and a standard/average cow. This 

∑
FE was used in Eqs. 

(9) and (10) instead of the estimated fixed effects:

for Models 1 and 3, and

for Models 2 and 4.
Here, P̂i(t)∗ is the predicted probability for the number 

of cases over the number of susceptible feet for animal i 
in a period, as if it were an average cow with an average 
parity and months in milk, during a standard period, on 
a standard farm. Note that the genetic susceptibility and 
infectivity did differ between cows, and thus had an effect 
on the predictions.

Similarly, we wanted to standardize the observed cases 
over the number of susceptible claws (Ci(t)/Fi(t)) , so 
that they would be independent of the fixed effects that 
contributed to that observation. The observations were 
transformed to the complementary log–log scale so that 
they were linear in the effects:

(11)
P̂i(t)

∗ = 1− e−e

∑
FE+lôg(γi)+log

(
Itot (t)+E(t)

N (t)
�t

)

,

(12)
P̂i(t)

∗ = 1− e−e

∑
FE+lôg(γi)+ 1

Ig (t)

∑

j

̂
log

(
ϕj

)
+log

(
Itot (t)+E(t)

N (t)
�t

)

,

(13)

log(− log
(
1− Ci(t)

/
Fi(t)

)

=
∑

FE + log (γi)+ log

(
Itot(t)+ E(t)

N (t)
�t

)

for Models 1 and 3, and,

for Models 2 and 4.
Next, the summed fixed effects 

∑
FE in Eqs. (13) and 

(14) were replaced with the average value of the summed 
fixed effects 

(
FE

)
 , and back-calculated to the original 

scale to obtain the observed number of cases over the 
number of susceptible feet independent of the fixed 
effects ((Ci(t)/Fi(t))

∗
) , for all models:

Here, (Ci(t)/Fi(t))
∗ is the observed number of cases 

over the number of susceptible feet for animal i in a 
period, as if observed on an average cow with an average 
parity and months in milk, on a standard farm. Again, the 
genetic susceptibility and infectivity did differ between 
cows (see Eqs. (13) and (14)), and affected the dependent 
variable.

We calculated weighted correlation coefficients between 
the “corrected” observed number of cases over the num-
ber of susceptible feet ( (Ci(t)/Fi(t))

∗ ) and the “corrected” 
predicted probabilities ( P̂i(t)∗ ), averaged over the number 
of times an animal was susceptible at the start of an inter-
val, and this number was used as the weight.
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