
fninf-16-973698 July 28, 2022 Time: 16:41 # 1

TYPE Original Research
PUBLISHED 03 August 2022
DOI 10.3389/fninf.2022.973698

OPEN ACCESS

EDITED BY

Zhenyu Tang,
Beihang University, China

REVIEWED BY

Hui Liu,
Dalian University of Technology, China
Cheng Li,
Shenzhen Institutes of Advanced
Technology (CAS), China

*CORRESPONDENCE

Huijie Fan
fanhuijie@sia.cn
Xiran Jiang
xrjiang@cmu.edu.cn

†These authors have contributed
equally to this work and share first
authorship

RECEIVED 20 June 2022
ACCEPTED 15 July 2022
PUBLISHED 03 August 2022

CITATION

Shi J, Zhao Z, Jiang T, Ai H, Liu J,
Chen X, Luo Y, Fan H and Jiang X
(2022) A deep learning approach with
subregion partition in MRI image
analysis for metastatic brain tumor.
Front. Neuroinform. 16:973698.
doi: 10.3389/fninf.2022.973698

COPYRIGHT

© 2022 Shi, Zhao, Jiang, Ai, Liu, Chen,
Luo, Fan and Jiang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

A deep learning approach with
subregion partition in MRI image
analysis for metastatic brain
tumor
Jiaxin Shi1†, Zilong Zhao2†, Tao Jiang1, Hua Ai1, Jiani Liu3,
Xinpu Chen1, Yahong Luo3, Huijie Fan4* and Xiran Jiang1*
1Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University,
Shenyang, China, 2Department of Neurosurgery, The First Affiliated Hospital of China Medical
University, Shenyang, China, 3Department of Radiology, Cancer Hospital of China Medical
University, Liaoning Cancer Hospital and Institute, Shenyang, China, 4State Key Laboratory
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Purpose: To propose a deep learning network with subregion partition for

predicting metastatic origins and EGFR/HER2 status in patients with brain

metastasis.

Methods: We retrospectively enrolled 140 patients with clinico-pathologically

confirmed brain metastasis originated from primary NSCLC (n = 60), breast

cancer (BC, n = 60) and other tumor types (n = 20). All patients underwent

contrast-enhanced brain MRI scans. The brain metastasis was subdivided into

phenotypically consistent subregions using patient-level and population-level

clustering. A residual network with a global average pooling layer (RN-GAP)

was proposed to calculate deep learning-based features. Features from each

subregion were selected with least absolute shrinkage and selection operator

(LASSO) to build logistic regression models (LRs) for predicting primary tumor

types (LR-NSCLC for the NSCLC origin and LR-BC for the BC origin), EGFR

mutation status (LR-EGFR) and HER2 status (LR-HER2).

Results: The brain metastasis can be partitioned into a marginal subregion

(S1) and an inner subregion (S2) in the MRI image. The developed models

showed good predictive performance in the training (AUCs, LR-NSCLC vs.

LR-BC vs. LR-EGFR vs. LR-HER2, 0.860 vs. 0.909 vs. 0.850 vs. 0.900) and

validation (AUCs, LR-NSCLC vs. LR-BC vs. LR-EGFR vs. LR-HER2, 0.819 vs.

0.872 vs. 0.750 vs. 0.830) set.

Conclusion: Our proposed deep learning network with subregion partitions

can accurately predict metastatic origins and EGFR/HER2 status of brain

metastasis, and hence may have the potential to be non-invasive and

preoperative new markers for guiding personalized treatment plans in patients

with brain metastasis.
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Introduction

Brain metastasis is a common complication in patients
with malignant tumors and represent one of the most frequent
neurological complications of systemic cancer with incidence
rates of 20–50% depending on the type of primary tumor
(Brastianos et al., 2015; Cagney et al., 2017). In clinical practice,
the presence of brain metastasis is much more common than
primary brain tumors, and has been a major cause of morbidity
and mortality (Achrol et al., 2019). In recent years, the incidence
of brain metastasis has increased because of advances in
neuroimaging procedures (Hardesty and Nakaji, 2016). Among
different types of primary tumors, non-small cell lung cancer
(NSCLC, 41–56%) and breast cancer (BC, 15–30%) are the most
common origins of brain metastasis (Bekaert et al., 2017). Early
and accurate identification of the brain metastatic origin before
surgery could change the personal treatment plan, and hence of
great clinical significance (Kniep et al., 2019).

For NSCLC patients with brain metastasis, the epidermal
growth factor receptor (EGFR) gene mutation status is essential
for treatment strategies, such as EGFR-tyrosine kinase inhibitors
(EGFR-TKIs) therapy (Guo et al., 2020). For BC patients
with brain metastasis, the HER2 status is crucial for selecting
therapeutic methods (Loibl and Gianni, 2017). This is because
patients with HER2 positive are routinely treated with targeted
antibody therapy (Koboldt et al., 2012; Lam et al., 2014)
and usually have a poor prognosis (Cameron et al., 2017).
Considering tissue acquisition from the primary tumor is not
always clinically possible, the metastases can be an important
alternate to reflect the characteristics and gene status of the
primary tumor (Krawczyk et al., 2014). However, radiologists
can hardly assess metastatic origins or gene status of primary
tumor through visual examination on MRI data due to the
absence of specific markers (Kniep et al., 2019).

Advances in computer-aided diagnosis (CAD) and artificial
intelligence have played an increasingly important role in the
field of medical imaging (Gore, 2020; Barragán-Montero et al.,
2021). Radiomics, as an emerging field refers to systematic
calculate and analysis big amount of quantitative features
from medical imaging (Lambin et al., 2017). However, there
were limited studies reported CAD-based identification of
the metastatic origin of brain metastasis (Ortiz-Ramon et al.,
2017; Béresová et al., 2018). Previous reports both assumed
that the brain metastasis is homogeneous throughout the
tumor volume. However, recent researches demonstrated that
solid tumors are heterogeneous with some tumor regions
are more biologically aggressive and may reflect different
biological processes (Gatenby et al., 2013). This was known
as intratumor heterogeneity (ITH), and was indicated to
have significant implications that represent distinct tumor
progression (O’Connor et al., 2015). Subregion-based radiomics
algorithms were suggested to divide the whole tumor area into
intratumor subregions, and hence allow to capture valuable
information from the subregions (Lin et al., 2021). To data,

subregion radiomics analyses have been conducted in breast
cancer (Fan et al., 2018), lung cancer (Shen et al., 2021) and
esophageal squamous (Xie et al., 2019), and demonstrated to
significantly improve the diagnostic performance of radiomics
methods. To our knowledge, subregion radiomics has not been
investigated in brain metastasis.

In this study, we subdivided the brain metastasis into
phenotypically consistent subregions based on patient- and
population-level clustering, and evaluated handcrafted features
and deep learning-based features from a proposed residual
network with a global average pooling layer (RN-GAP) for
predicting metastatic origins of brain metastasis and assessing
EGFR and HER2 status.

Materials and methods

Patients

We included 140 patients harboring brain metastasis from
January 2017 to September 2020. The patients met the following
criteria (i) with the diagnosis of brain metastasis confirmed
by pathological examination; (ii) 3.0T brain MRI scan before
treatment; and (iii) complete records of the EGFR gene
mutation status by gene sequencing. The exclusion criteria
included: (i) not received any anti-cancer treatment (including
radiotherapy, chemotherapy or biotherapy) before the MRI
examination; (ii) poor image quality or severe motion artifacts;
and (iii) incomplete clinical information. To determine EGFR
mutation status for the patients, genetic sequencing analysis was
performed based puncture biopsy of the primary tumor before
treatment. To determine HER2 status, immunohistochemistry
(IHC) and fluorescence in situ hybridization (FISH) analysis
were used (Ruan et al., 2017; Fehrenbacher et al., 2020).

MRI scans and tumor segmentation

For each patient, the T1CE MR were obtained with a
3.0T MRI scanner (Siemens Magnetom Verioio, Erlangen,
Germany). The GA-DTPA was used as contrast agent when
performing the T1CE MRI scanning. The parameters of the
T1CE MRI sequence were shown inTable 1. To obtain the whole
tumor region, a radiologist with 4 years of experience manually
outlined edges of the whole tumor region layer by layer. The
segmented region of interest (ROI) was stored in a.NII format
and used for computer-aided analyses.

Intratumor partition

We used a three-step approach for intratumor partition of
the brain metastasis. Firstly, MRI local entropy was calculated
for each patient’s slice using a 9 × 9 neighborhood. Secondly,
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TABLE 1 Parameters of the brain MRI screenings.

Parameters MRI

Repetition time/echo time (TR/TE) (ms) 120/2.48

Slice thickness (mm) 5

Spacing between slices (mm) 6.5

Acquisition matrix 320× 240

Pixel spacing (mm) 0.359× 0.359

Field of view (mm) 600× 640

Patient-level clustering was then applied to partition the
tumor regions into many superpixels based on the calculated
local entropy maps and MRI pixel intensity to represent the
spatial heterogeneity (Wu et al., 2016). K-means clustering
(Kanungo et al., 2002) was performed using the Euclidean
distance between pixel intensity and entropy intensity as
a distance metric. In each ROI, pixels with similar pixel
intensities and entropy intensities were clustered into many
superpixels by patient-level clustering based on the principle
of K-means clustering. Finally, superpixels from all patients
were gathered to perform the population-level clustering
via exploring the similarity of inter- and intra-patients
using hierarchical clustering (Johnson, 1967). The number of
partitioned subregions (clusters k) was set from 2 to 10 as
suggested (Pham et al., 2005). To determine the optimal number
of partitioned subregions, the Calinski-Harabasz (CH) index
was used as a criterion according to a previous work (Caliński
and Harabasz, 1974). Differences in pixel intensity and entropy
intensity of metastatic origins and gene status were evaluated
with t-test.

Deep learning network development

We proposed a RN-GAP to extract deep learning-based
radiomics features from the partitioned subregions of brain

metastasis in MRI images. The network architecture of
ResNet50 was shown in Supplementary Table 1 (Brito et al.,
2019). Figure 1 showed the architecture of the RN-GAP
network. We used 14 million natural images from ImageNet
database (Deng et al., 2009) to pre-train the ResNet50 network
as Subnet 1. The Subnet 2 was composed of a GAP layer (Lin
et al., 2013), a fully connected layer and a softmax output layer.
Global averaging pooling (GAP) layer calculated the average
value of each feature map as an output node and forms all output
nodes into a feature vector, reducing number of parameters.
To avoid overfitting, the GAP layer was used before the fully
connected layer with 512 neurons, which was followed by a
softmax output layer. To fit the RN-GAP’s architecture, MRI
images of the largest ROIs in the partitioned subregions were
resized to 224 × 224, and the unnecessary background was
removed. The proposed RN-GAP network was constructed
based on the Python v3.6 platform.

Radiomics handcrafted and deep
learning-based feature calculation

Before extraction of radiomics features, pre-processing of
MR images were performed with detailed descriptions can be
found in Supplementary Table 2. We applied the open source
package Pyradiomics1 based on the Python 3.6 platform to
calculate handcrafted radiomics features from brain MRI images
according to reported protocols (van Griethuysen et al., 2017).

To obtain deep learning-based radiomics features, MRI
images of the largest ROIs in the segmented subregions of brain
metastasis were used to feed the RN-GAP. Values of the 512
neurons from the fully connected layer were recorded and used
as deep learning-based features for further analysis.

1 https://pypi.org/project/pyradiomics/

FIGURE 1

Our deep learning network architecture: adding a global average pooling layer based on the residual network.
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FIGURE 2

The flowchart of radiomics analyses.

Feature selection and logistic
regression model construction

Inter and intra-observer reproducibilities of all features was
assessed by inter-class and intar-class correlation coefficient
(ICC) analyses (Leijenaar et al., 2013). Then, the Mann-
Whitney U-test was performed to further select features
with P < 0.05 as predictors with significant differences.
Finally, the least absolute shrinkage and selection operator
(LASSO) algorithm was used for dimensionality reduction
of the calculated features with 10-fold cross-validation. The
features were substituted into multivariate logistic regression
analysis using the stepwise regression method to obtain
the respective regression coefficients of the most predictive
features. The feature selecting method was applied to both
handcrafted features and deep learning-based features.
Coefficients of the selected features were weighted to construct
logistic regression models (LRs) for predicting metastatic
origins (LR-NSCLC and LR-BC), EGFR mutation status (LR-
EGFR) and HER2 status (LR-HER2). Figure 2 showed the
flowchart of this study.

Results

Patient characteristics

We finally included 140 patients in the study, 41 males and
99 females, aged 29–77 years. There were 60, 60, and 20 patients
harboring brain metastases from primary NSCLC, breast cancer
and other types of malignant tumors, respectively. The clinical
characteristics of the enrolled patients were shown in Table 2.

Intratumor partition

Figure 3 shows results of intratumoral partitions in the MRI
images of brain metastasis using a patient- and population-level
clustering approach. The brain metastasis can be divided into
two subregions, which were denoted as S1 (marginal subregion)
and S2 (inner subregion). There were obvious differences
between S1 and S2. Supplementary Figure 1 showed different
CH values when the clusters k was set from 2 to 10. The
optimal CH index was calculated to decide the number of
intratumoral subregions when k equals to 2. Figure 4 indicated
that the distribution of MRI pixel intensity and local entropy of
the S1 and S2 were significantly different. Compared with S1
and S2, S1 was more associated with both MRI pixel intensity
and local entropy. This indicates a higher degree of tumor
heterogeneity in S1.

TABLE 2 Clinical characteristics of the enrolled patients.

Tumor type Gene status Gender Age (Mean ± SD)

Female Male

NSCLC 30 30 57.82± 7.26

EGFR mutant 20 10 56.67± 7.20

EGFR wild-type 10 20 58.97± 7.13

Breast cancer 60 0 53.63± 10.53

HER2 positive 30 0 54.03± 10.82

HER2 negative 30 0 53.23± 10.21

Other 9 11 53.23± 10.21

Total 99 41 58.80± 13.45

NCSLC, Non-small-cell lung cancer.
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FIGURE 3

Intratumoral partitions in the MRI images of patients with brain metastasis. The third column represents ROIs in the MRI image. The fourth
column represents local entropy maps within the tumor. The fifth column represents the results of patient-level clustering. The sixth column
represents the results of population-level clustering.

FIGURE 4

Boxplots showed MRI pixcel intensity (A) and local entropy (B) between the partitioned S1 and S2 in all patients. P-values were obtained using
the t-test.
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Development and evaluation of logistic
regression models

All handcrafted and deep learning-based features were
extracted from the partationed subregions and selected
to develop logistic regression models for predicting brain
metastasis originated from primary NSCLC (LR-NSCLC) and
breast cancer (LR-BC), and for predicting the EGFR mutation
(LR-EGFR) status and HER2 (LR-HER2) status. Formulas for
each model were shown below:

LR-NSCLC = – 1.1569 + 0.2105 × wavelet-
HLH_glrlm_LongRunEmphasis – 1.4567 × wavelet-
LHL_glszm_SmallAreaHighGrayLevelEmphasis – 1.2819 ×
wavelet-HHH_firstorder_RootMeanSquared + 0.2768 ×

wavelet-HHH_glrlm_LongRunLowGrayLevelEmphasis +

0.9681 × lbp-3D-k_firstorder_Mean – 0.5264 × DL_215 –
0.8798× DL_400

LR-BC = – 1.5412 + 1.9088 × wavelet-HHL_
glcm_InverseVariance + 1.9784 × wavelet-HHH_
firstorder_InterquartileRange – 0.9107 × DL_317 – 1.0072
× DL_144 – 0.6121× DL_122

LR-EGFR = 0.03461 + 1.8998 × squareroot_glszm_Small
AreaHighGrayLevelEmphasi –0.8220 × log-sigma-5-mm-
3D_ngtdm_Contrast + 1.6274 × wavelet-LHL_
firstorder_Skewness + 0.9110 × lbp-3D-k_firstorder_
MeanAbsoluteDeviation + 1.1375 × lbp-3D-m2_glszm_
GrayLevelVariance+ 0.0129× DL_336

LR-HER2 = – 0.2327 + 0.5867 × wavelet-LLH_
firstorder_10Percentile – 5.5909 × square_ngtdm_Busyness –
1.5990 × DL_317 + 2.4984 × wavelet-HHL_
glcm_Imc1 – 0.2158 × log-sigma-3-mm-3D_glszm
_LargeAreaHighGrayLevelEmphasis.

Table 3 compared prediction performance of the established
LRs. Among the models, the LR-EGFR generated the lowest
AUCs in both training and validation cohorts. Figure 5 showed
ROC curves of the LR-NSCLC, LR-BC, LR-EGFR and LR-HER2.

Radiomics feature analysis

The optimal radiomics features were identified from
both handcrafted and deep learning-based features from
brain metastasis subregions. For predicting brain metastasis
originated from primary NSCLC, seven features were selected,
five were handcrafted features and two were deep learning-based
features. For predicting the breast cancer origin, five features
were selected, two were handcrafted features and three were
deep learning-based features. For predicting the EGFR mutation
status, six features were selected, five were handcrafted features
and one was deep learning feature. For predicting the HER2
status, five features were selected, four were handcrafted features
and one was deep learning feature. As shown in Table 4, all
features were obtained from S1. Figure 6 depicted results of

the unsupervised cluster analysis of the selected features for all
patients, which indicated similarities and differences of features
across patients.

Discussion

The development of brain metastasis is a major limitation of
life expectancy and quality of life for patients with malignant
tumor due to neurological impairments (Quigley et al.,
2013). Although early identification of the metastatic origin
of brain metastasis is essential to make timely personalized
treatment, it is still impossible for clinicians to make the
decision by visual inspection of imaging data because there
is no specific biomarker. Previous works have explored CAD-
based techniques for predicting the primary tumor types
(Ortiz-Ramon et al., 2017; Béresová et al., 2018), but both
simply performed analysis across the whole tumor area and
ignored variations of tumor cell distributions, which was
pathobiologically learned as complex heterogeneity of brain
metastasis (Siam et al., 2015).

In the present study, we explored a patient- and population-
level clustering approach to partition the brain metastasis into
two phenotypically consistent subregions, a marginal subregion
(S1) and an inner subregion (S2), according to the combination
of MRI pixel intensities and local entropy. The S1 has higher
MRI pixel intensity and local entropy compared to S2. This was
partially consistent with pathological findings that suggested the
brain metastasis usually consists of a tumor active area and
a necrotic area (Achrol et al., 2019). Before our study, there
have been commonly used traditional intratumoral partition
techniques, such as Otsu (Farhidzadeh et al., 2015) and k-means
(Shang et al., 2021), which are based on the distribution of
pixel intensities in the single slice of the tumor image, without
considering variations and correlations between different tumor
slices and individuals. The clustering approach explored in
this study was better at reflecting tumor heterogeneity: (i) the
patient-level clustering was applied slice by slice based on the
integration of MRI pixel intensities and local entropy, which
can better reflect the heterogeneity between different tumor
slices; (ii) The population-level clustering was applied based
on superpixels gathered from all patients, which can reflect
variations and correlations between different individuals.

To reduce overfitting caused by the relatively small sample
size, we proposed a RN-GAP net that used GAP to replace
the traditional full-connect layers of the ResNet50 net. In
the proposed RN-GAP, the Subnet 1 based on ResNet50 can
effectively deal with the problem of gradient disappearance
and degradation. Besides, the introduced GAP helps reduce
the entire height and weight to a single vector by calculating
the average of each feature map as an output point, and
hence leads to dimensionality reduction without parameter
optimization (Lin et al., 2013). Therefore, one advantage of the
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TABLE 3 Prediction performance of the established logistic regression models.

LRmodel Feature size Cohort AUC (95%CI) ACC SPE SEN

LR-NSCLC 7 Training 0.860 (0.775–0.944) 0.796 0.925 0.725

Validation 0.819 (0.665–0.972) 0.809 0.889 0.800

LR-BC 5 Training 0.909 (0.850–0.969) 0.839 0.925 0.825

Validation 0.872 (0.771–0.973) 0.787 0.852 0.800

LR-EGFR 6 Training 0.850 (0.735–0.965) 0.700 0.550 1.000

Validation 0.750 (0.514–0.987) 0.700 0.800 0.800

LR-HER2 5 Training 0.900 (0.800–1.000) 0.850 0.850 0.900

Validation 0.830 (0.645–1.000) 0.750 0.800 0.800

FIGURE 5

Receiver operating characteristic (ROC) curves of the models for predicting metastatic origins (A,B) in the training (A) and validation (B) cohort,
and for predicting the EGFR mutation and HER2 status (C,D) in the training (C) and validation (D) cohort.

GAP is to avoid overfitting at this layer, and thus improving
generalization abilities of the network. Another advantage is
that the GAP strengthens the correspondence between feature
maps and categories.

By combining both handcrafted and deep learning-based
features, the proposed LR-NSCLC, LR-BC, LR-EGFR, and
LR-HER2 achieved good prediction performance for predicting

metastatic origins and EGFR/HER2 status, respectively. A total
of twenty-three features were identified as the most predictive
features to develop the four predictive models, sixteen were
handcrafted features and seven were deep learning-based
features. For predicting NSCLC and Breast cancer originated
brain metastasis, our developed LR-NSCLC and LR-BC
generated AUCs of 0.819–0.909, which were much higher than
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TABLE 4 Prediction performance of the selected features.

Feature Mean ± SD AUC P ICC(inter–) ICC(intra–)

NSCLC BC EGFR HER2

Wavelet-HLH_glrlm_LongRunEmphasis (F1) –0.003± 0.670 – – – 0.594 0.175 0.875 0.864

Wavelet-
LHL_glszm_SmallAreaHighGrayLevel
Emphasis (F2)

–0.004± 0.658 – – – 0.753 < 0.001 0.896 0.881

Wavelet-HHH_firstorder_RootMeanSquared
(F3)

–0.344± 0.642 – – – 0767 < 0.001 0.877 0.869

Wavelet-HHH_glrlm_LongRunLowGrayLevel
Emphasis (F4)

0.302± 0.817 – – – 0.617 < 0.134 0.884 0.873

Lbp-3D-k_firstorder_Mean (F5) 0.145± 0.689 – – – 0.658 0.007 0.868 0.882

DL_215 (F6) 0.035± 0.789 – – – 0.571 0.106 0.899 0.895

DL_400 (F7) –0.050± 0.896 – – – 0.628 0.001 0.852 0.868

Wavelet-HHL_glcm_InverseVariance (F1) – 0.202± 0.987 – – 0.725 < 0.001 0.872 0.856

Wavelet-HHH_firstorder_InterquartileRange
(F2)

– 0.214± 0.972 – – 0.718 < 0.001 0.861 0.858

DL_317 (F3) – 0.111± 1.114 – – 0.625 0.004 0.863 0.870

DL_144 (F4) – 0.073± 1.079 – – 0.661 0.017 0.860 0889

DL_122 (F5) – 0.080± 1.001 – – 0.636 0.010 0.869 0.898

Squareroot_glszm_SmallAreaHighGrayLevel
Emphasis (F1)

– –0.102± 0.617 – 0.648 0.008 0.855 0.874

Log-sigma-5-mm.3D_ngtdm_Contrast (F2) – – 0.038± 0.838 – 0.623 0.110 0.873 0.894

Wavelet-LHL_firstorder_Skewness (F3) – – –0.059± 0.869 – 0.580 0.140 0.902 0.862

Lbp-3D-k_firstorder_MeanAbsoluteDeviation
(F4)

– – 0.180± 0.977 – 0.602 0.119 0.883 0.896

Lbp-3D-m2_glszm_GrayLevelVariance (F5) – – –0.051± 0.879 – 0.655 0.008 0.866 0.907

DL_336 (F6) – – 0.213± 0.656 – 0.594 0.415 0.911 0.920

Wavelet-LLH_firstorder_10Percentile (F1) – – –0.056± 0.891 0.647 0.040 0.857 0.863

Square_ngtdm_Busyness (F2) – – – –0.028± 0.555 0.687 0.006 0.881 0.897

DL_317 (F3) – – – 0.082± 0.728 0.668 0.032 0.906 0.913

Wavelet-HHL_glcm_Imc1 (F4) – – – 0.031± 0.662 0.664 0.024 0.923 0.927

Log-sigma-3-mm-
3D_glszm_LargeAreaHighGrayLevel
Emphasis (F5)

– – – 0.187± 0.837 0.653 0.154 0.893 0.8

a previous study yielded AUCs of 0.63 and 0.61 (Kniep et al.,
2019). This may be explainable since the previous study ignored
intratumoral heterogeneity of the brain metastasis and lack of
introducing deep learning techniques.

For predicting EGFR mutations, our proposed
brain metastasis-based LR-EGFR (AUCs of 0.750–0.850)
outperformed previously proposed traditional radiomics
models based on primary lung cancer (AUCs ranged from
0.575 to 0.762) (Liu et al., 2016; Gevaert et al., 2017; Yuan et al.,
2017; Zhang et al., 2018; Digumarthy et al., 2019; Pinheiro
et al., 2020) and brain metastasis (AUCs ranged from 0.675
to 0.733) (Wang et al., 2021). This may be because previous
studies only applied traditional handcrafted features to develop
models. Our results suggested that the RN-GAP net is helpful
to identify predictive deep learning-based features that provide
complementary information to handcrafted features. For

predicting HER2 status, our LR-HER2 generated AUCs of
0.803–0.900, which were much higher than previous studies
based on primary breast cancer and generated AUCs ranging
from 0.700 to 0.860 (Li et al., 2021; Niu et al., 2021; Zhou
et al., 2021). Our findings suggested information correlated to
the HER2 status can also be captured from brain metastasis.
The identified most predictive features related to EGFR and
HER2 status filtered handcrafted features and deep-learned
features, which were hidden in high-dimensional spaces
and cannot be identified by radiologists with naked eyes. In
clinical practice, many patients whose primary tumors were
surgically removed develop brain metastasis, for which cases,
a non-invasive method using brain metastasis to early assess
the metastatic origins and reflect EGFR or HER2 status is an
important alternative for guiding personalized treatment plan
(Witzel et al., 2016).
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FIGURE 6

Unsupervised cluster analysis of the selected features for predicting the NSCLC originated metastasis (A), breast cancer originated metastasis
(B), EGFR mutation status (C) and HER2 status (D). The x-axis represents the selected features with the highest predictive values. The y-axis
represents all patients with brain metastasis.

This study has several limitations. First, this is a
retrospective study with a relatively small population. Validation
of our findings with a larger multi-center sample is needed in
our future work. Second, although our intratumoral partition
method can effectively divide brain metastasis into various
habitats and exhibited good predictive performance, our results
can hardly be verified at the pathological level. Besides, there are
still no uniform standards for intratumoral partition algorithms,
for capturing tumor heterogeneity. Correlations between brain
MRI-based morphological differences and corresponding
histological microenvironment is warranted, for guiding the
improvement of our intratumoral partition method. Third,
considering different subtypes of lung cancer and breast cancer
have different likelihoods of metastasizing to the brain (Soni
et al., 2015), which were not studied in our work. Last, we
included only the most common metastatic tumor types of

NSCLC and breast cancer (incidence rates of 56–86% for brain
metastasis). Some other metastatic tumor type (e.g., melanoma,
incidence rates of 6–11% for brain metastasis) was not included
due to the data collection challenge in our hospital, which
should be investigated in our future studies.

Conclusion

Our work indicated that subregional radiomics is of
significant to predict metastatic origins and assess gene status
based on brain metastasis. Our proposed handcrafted and
deep learning feature combined logistic regression model
may be clinically valuable to assist in early personalized
treatment plan decisions.
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