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14-3-3z: A numbers game in adipocyte function?
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ABSTRACT
Molecular scaffolds are often viewed as passive signaling molecules that facilitate protein-protein
interactions. However, new evidence gained from the use of loss-of-function or gain-of-function
models is dispelling this notion. Our own recent discovery of 14-3-3z as an essential regulator of
adipogenesis highlights the complex roles of this member of the 14-3-3 protein family. Depletion of
the 14-3-3z isoform affected parallel pathways that drive adipocyte development, including
pathways controlling the stability of key adipogenic transcription factors and cell cycle progression.
Going beyond adipocyte differentiation, this study opens new avenues of research in the context of
metabolism, as 14-3-3z binds to a variety of well-established metabolic proteins that harbor its
canonical phosphorylation binding motifs. This suggests that 14-3-3z may contribute to key
metabolic signaling pathways, such as those that facilitate glucose uptake and fatty acid
metabolism. Herein, we discuss these novel areas of research, which will undoubtedly shed light
onto novel roles of 14-3-3z, and perhaps its related family members, on glucose homeostasis.
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Introduction

Adipocytes, residing in white fat or brown fat depots,
have essential roles in regulating glucose and lipid
homeostasis. The primary role of white adipocytes is
to function as lipid stores for energy; however, the
identification of secreted adipokines, such as leptin
and adiponectin, has led to the classification of adipo-
cytes as endocrine cells.1,2 Brown adipocytes primarily
oxidize fatty acids through non-shivering thermogene-
sis, but secreted factors specific to brown adipocytes
have been recently discovered which expands on its
physiological role.3,4 Multiple signal transduction
pathways and effector molecules are required in either
adipocyte type to facilitate their physiological func-
tions; impairments in the function or expression of
signaling effectors may promote the development of
abnormal conditions, such as insulin resistance,
hyperlipidemia, and obesity.5 Despite the importance
of these signaling effectors, it is not fully understood
how their activation or localization are spatially or
temporally coordinated within a cell, nor is it known

what are the endogenous molecules present within
the cell to ensure the accurate transduction of down-
stream signals.

Physiological roles of molecular scaffolds

Molecular scaffolds are well suited to coordinate complex
signaling networks due to their ability to promote inter-
actions between signaling effectors and to control the
subcellular localization of transcription factors and kin-
ases.6 Despite these critical functions, the requirement of
scaffolds in physiology, and more specifically in the regu-
lation of glucose homeostasis and lipid metabolism, has
not been investigated in great detail. This is partly due to
the paucity of adequate genetic knockout or transgenic
models or the assumption that such proteins have only
minor roles in the physiological pathways governing
glucose homeostasis and metabolism. Scaffolds that
have been examined for roles in glucose homeostasis
include Akap150, b-arrestin-1, and NLRP,7-9 but there
are still numerous unexplored families of scaffolds, such
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as 14-3-3 proteins, that may contribute to key events that
control metabolism.

14-3-3z is a critical regulator of adipocyte
differentiation

Since their discovery from brain extracts, all seven 14-3-3
proteins, which are encoded by distinct genes, have been
examined as potential biomarkers for various neurologi-
cal diseases and some forms of cancer.10-12 The scaffold-
ing function of 14-3-3 proteins stems from their unique
ability to bind to phosphorylated proteins harboring
canonical phosphorylated serine or threonine motifs.13

This permits their interaction with receptors, kinases,
transcription factors, and ion channels to regulate their
activity, stability, and localization within a cell.10,14

When taken together, these pleiotropic functions empha-
size that 14-3-3 proteins go beyond being ‘simple’ scaf-
folds within cells. Loss-of-function and gain-of-function
studies have also identified critical roles of 14-3-3 pro-
teins in cell survival and the regulation of autophagy in
numerous cell types.15-17 Prior to our study, it was not
known if 14-3-3 proteins were involved in metabolic sig-
naling pathways in vivo.

Our efforts to understand the role of 14-3-3 proteins
in metabolism started with our report that 14-3-3z was
essential for pancreatic b-cell survival in vitro16 and we
hypothesized that deletion of this isoform in vivo would
lead to profound b-cell death and frank diabetes. Instead,
the primary defect in vivo was decreased visceral adipos-
ity and the presence of poorly differentiated adipocytes.18

This was due in part to the aberrant expression of the
hedgehog signaling effector, Gli3, and the cyclin-depen-
dent kinase inhibitor, p27Kip1, in mesenchymal adipose
precursor cells and also from the increase in autophagy-
mediated degradation of C/ebpd, a key transcription fac-
tor that promotes Pparg expression.18,19 The ability of
14-3-3z to control differentiation was not surprising
given the ability of 14-3-3 proteins to control differentia-
tion in other cell types,20-22 but prior to our study, the
role of 14-3-3z in the adipocyte had not been examined.

Given its ability to interact with multiple phosphory-
lated proteins harboring its canonical target motifs, a 14-
3-3z may also coordinate other parallel pathways that
drive the development of a mature adipocyte. For exam-
ple, TAZ (transcriptional coactivator with PDZ-binding
motif) is a 14-3-3 binding protein that is known to mod-
ulate mesenchymal stem cell differentiation by compet-
ing with Pparg, the canonical adipogenic transcription
factor (Fig. 1).19,23 Binding of TAZ to 14-3-3 proteins
induces its sequestration and permits Pparg to initiate
the adipogenic program. Deletion of 14-3-3z may pro-
mote the anti-adipogenic actions of TAZ in adipose

precursor cells, but how the activity of TAZ relates to
those of Gli3 and p27Kip1 is not known. Thus, further
work is required to identify the interactome of 14-3-3z
during adipogenesis, and this will define which pathways
are regulated by 14-3-3z and potentially lead to the iden-
tification of new targets to affect adipocyte
differentiation.

The idea that distinct pools of adipose precursor cells
exist in various adipose depots has been confirmed by ele-
gant studies using in vivo lineage tracing or fluorescence-
activated cell sorting approaches.24,25 Remarkably, we found
that the requirement for 14-3-3z was specific to visceral adi-
pose tissue depots, while having no apparent effect on the
sub-cutaneous fat we examined. Our study demonstrated
that 14-3-3z regulates one distinct group of precursor cells
(or all precursor cells in a partial manner) because systemic
deletion of 14-3-3z did not fully ablate all visceral adipose
tissue in vivo.18 Progenitor cell heterogeneity in visceral adi-
pose tissue depots has been recently reported by Chau and
colleagues, whereby they identified a subset of progenitors
that express Wt1.26 In our study, knockout of 14-3-3z pro-
moted the aberrant expression of Gli3 and p27Kip1 in adi-
pose precursor cells, but the fact that adipogenesis still
occurred suggests that not all adipocytes rely on 143–3z for

Figure 1. Potential involvement of 14-3-3z in alternative path-
ways controlling adipogenesis. Although we reported the
upstream actions of 14-3-3z on C/ebpd stability and Gli3-regu-
lated p27Kip1 activity during adipogenesis, the ability of 14-3-3z
to primarily bind to phosphorylated proteins harboring its canon-
ical motifs, and to a lesser extent non-phoshorylated proteins,
suggest that it may regulate the activity of known and unknown
adipogenic factors. For example, TAZ, which competes with
Pparg occupancy during adipocyte differentiation, is one such
14-3-3 protein binding partner. Discovery of the 14-3-3z interac-
tome during adipogenesis may aid in the discovery of novel
effects of adipocyte differentiation.
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differentiation. This apparent heterogeneity is further rein-
forced by a recent finding from the Scherer lab, where they
identified distinct transcriptional programs that control
embryonic versus adult adipocyte maturation.27 Although
both Pparg and C/ebpa have long been postulated to be
critical for adipogenesis during embryogenesis or adult-
hood, mice deficient in C/ebpa displayed essential functions
for this transcription factor only in compensatory adipocyte
hypertrophy or hyperplasia in adulthood, and not in termi-
nal adipocyte differentiation during embryogenesis.27 The
observation that 14-3-3 proteins found to complex with C/
ebpb prior to binding to the Pparg promoter18,28 suggests a
bias of 14-3-3 proteins in the embryonic development of
adipocytes. Our study reinforces this notion because the
expansion of fat mass following high-fat diet feeding was
normal in 14-3-3z knockout mice, which indicates normal
function of residual adult adipocytes.18 Nonetheless, further
work is required to determine the identity of precursors that
are dependent on 14-3-3z activity.

Indirect role in browning of white adipose tissue?

Factors and mechanisms controlling the conversion of
subcutaneous white adipocytes to brown-like, or beige,
adipocytes have been an area of great research in adipo-
cyte biology,3 but it is still not fully understood what are
the endogenous processes that regulate this event.
Reduced circulating insulin, intermittent cold exposure
and circulating FGF21 are known to promote browning
of white adipocytes,3,4,29 and it has recently been shown
that FTO may also have critical roles in mediating this
process in human adipocytes.30 Elegant work from Qiu
and colleagues described the contributions of the innate
immune system on the development of beige fat.31 They
identified the importance to catecholamine production
from macrophages on browning of subcutaneous fat
through the use of mice with macrophages that lack tyro-
sine-hydroxylase, a key enzyme in catecholamine pro-
duction.31 Interestingly, one of the earliest established
functions of 14-3-3 proteins is their ability to modulate
the activity of tyrosine hydroxylase.32 14-3-3z knockout
mice did not display differences in energy expenditure;
however, this observation was obtained at 23�C.18 Fur-
ther studies performed with intermittent or prolonged
cold exposure are required to examine the requirement
of 14-3-3z on tyrosine-hydroxylase-dependent browning
of white adipocytes.

Regulation of insulin-stimulated glucose uptake by
14-3-3z

Given the ability of 14-3-3 proteins to bind to various
components of the insulin signaling network

Figure 2. Potential actions of 14-3-3z in the mature adipocyte. (A)
14-3-3z is known to interact with various insulin signaling effec-
tors that facilitate glucose uptake. Biochemical studies have
shown that 14-3-3z and other isoforms can regulate the stability
of insulin receptor substrate molecules (IRS)-1 or -2, which are key
proximal effectors. Following their phosphorylation by Akt, 14-3-3
proteins have been shown to control the transcriptional activities
of Foxo1, by promoting its retention in the cytosol. 14-3-3 proteins
have also been shown to control the inhibitory actions of the Rab-
GAP As160/TBD1C4, which regulates the translocation of Glut4-
containing vesicles to the plasma membrane for glucose uptake.
(B) By recognizing phosphorylated forms hormone sensitive lipase
(Hsl) or adipose triglyceride lipase (Atgl), 14-3-3z may directly reg-
ulate lipolysis of stored triglycerides. The expression of Atgl is reg-
ulated in part by Foxo1, whose transcriptional activity is
controlled by 14-3-3z. Thus, 14-3-3z may regulate lipolysis
through direct actions on key lipolytic enzymes and by influencing
their protein abundance. Further studies are required to directly
assess whether 14-3-3z has such roles in a mature adipocyte.
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(Fig. 2A),33-38 14-3-3 proteins could have important roles
in various insulin-mediated metabolic effects in adipo-
cytes. This was apparent in 14-3-3zKO mice, as they dis-
played decreased insulin sensitivity following
administration of peripheral exogenous insulin,18 and
likely indicates defects in GLUT4-mediated glucose
uptake in skeletal muscle or fat. It is uncertain as to
whether of deletion of 14-3-3z in vivo affects proximal or
distal events in the insulin signaling pathway that control
glucose uptake, but 14-3-3 proteins are known to bind to
and promote the stability of insulin receptor substrate
(IRS) molecules, which are key proximal effectors in this
pathway.33,34 Deletion of 14-3-3z in adipocytes may also
impact distal events controlling in the translocation of
GLUT4 to the plasma membrane for glucose uptake.
The Rab GAP AS160/TBC1D4 controls the activity of
Rab molecules involved in transport of GLUT4 contain-
ing vesicles to the plasma membrane, following its phos-
phorylation by Akt, its inhibitory activity is attenuated
by interacting with 14-3-3 proteins. Mutations of key
residues on AS160/TBC1D4 that mediate 14-3-3 binding
promotes reduced insulin sensitivity and glucose
uptake.35,36 Thus, deletion of 14-3-3z in adipocytes and
muscle may promote the inhibitory actions of AS160/
TBC1D4 on insulin-stimulated glucose uptake.

Does 14-3-3z have a role in lipolysis?

One of the key functions of adipose tissue is to store lip-
ids. Gonadal adipocytes in 14-3-3zKO mice were still
able to expand in size following high-fat diet feeding,18

which demonstrates that processes underlying lipid stor-
age were not affected by deletion of 14-3-3z. In contrast,
14-3-3b has been implicated in lipid droplet formation
in 3T3-L1 adipocytes by regulating actin remodeling.39

Mobilization of fatty acids from adipocytes following
exposure to adrenergic stimuli requires the activities of
lipases such as lipoprotein lipase (Lpl), adipose triglycer-
ide lipase (Atgl), and hormone sensitive lipase (Hsl), and
although we did not test this directly in our study, the
presence of 14-3-3 binding sites on both Atgl and Hsl
suggest the ability of 14-3-3z, and other isoforms, to reg-
ulate lipolysis (Fig. 2B).40,41 The phosphorylation of
ATGL by AMPK generates phosphorylation sites specific
to 14-3-3 proteins,40 and in C. Elegans, this interaction
has been shown to control the localization of Atgl from
lipid droplets.42 Following its phosphorylation by Akt,
Foxo1 has been shown to interact with various 14-3-3
protein isoforms where it gets retained in the cyto-
plasm.37 While it has been shown that Foxo1 is required
for adipocyte differentiation,38 our study demonstrates
that the pro-adipogenic roles of 14-3-3z lie upstream of
Foxo1 and 14-3-3z controls Foxo1 expression.18 This

does not exclude the possibility that 14-3-3z may regu-
late the function of Foxo1 in mature adipocytes. Gonadal
adipose tissue from mice lacking 14-3-3z had signifi-
cantly decreased Atgl mRNA levels.18 Although we spec-
ulated that this could be due to residual gonadal white
adipocytes being in a poorly differentiated state, it is pos-
sible that altered Foxo1 activity stemming from defi-
ciency of 14-3-3z could be responsible for this observed
decrease in Atgl mRNA. Foxo1 has been found to
directly regulate Atgl transcription.43

Conclusion

The discovery of novel physiological roles of 14-3-3z has
opened exciting, new avenues of metabolic research. Our
studies have dispelled the notion that 14-3-3z is a casual
signaling bystander and instead revealed its critical func-
tion in adipogenesis. More work is clearly warranted to
better understand which processes are regulated by 14-3-
3z in the adipocyte and whether other related isoforms
may have over-lapping or unique roles. In the end, a bet-
ter understanding of how these integral signaling pro-
teins coordinate signal transduction networks may aid in
the development of highly specific therapeutics to treat
various aspects of the metabolic syndrome.
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