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Abstract

Understanding interactions between mobile species distributions and landcover characteristics remains an outstanding
challenge in ecology. Multiple factors could explain species distributions including endogenous evolutionary traits leading
to conspecific clustering and endogenous habitat features that support life history requirements. Birds are a useful taxon for
examining hypotheses about the relative importance of these factors among species in a community. We developed a
hierarchical Bayes approach to model the relationships between bird species occupancy and local landcover variables
accounting for spatial autocorrelation, species similarities, and partial observability. We fit alternative occupancy models to
detections of 90 bird species observed during repeat visits to 316 point-counts forming a 400-m grid throughout the
Patuxent Wildlife Research Refuge in Maryland, USA. Models with landcover variables performed significantly better than
our autologistic and null models, supporting the hypothesis that local landcover heterogeneity is important as an
exogenous driver for species distributions. Conspecific clustering alone was a comparatively poor descriptor of local
community composition, but there was evidence for spatial autocorrelation in all species. Considerable uncertainty remains
whether landcover combined with spatial autocorrelation is most parsimonious for describing bird species distributions at a
local scale. Spatial structuring may be weaker at intermediate scales within which dispersal is less frequent, information
flows are localized, and landcover types become spatially diversified and therefore exhibit little aggregation. Examining
such hypotheses across species assemblages contributes to our understanding of community-level associations with
conspecifics and landscape composition.
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Introduction

Understanding linkages between spatial patterns of biological

communities and environmental characteristics is a central

question in ecology and natural resource conservation [1–3].

Lichstein et al. [4] distinguished ‘endogenous’ and ‘exogenous’

factors as potential drivers of species distributions, and this

typology is useful to articulate hypotheses for interactions between

species settlement patterns and their environment. Endogenous

factors themselves could be classified as behavioral decisions or

evolutionary constraints [4–6]. An important evolutionary con-

straint for species distributions is dispersal limitation, which could

induce spatial aggregation of species [7–9]. Likewise, a critical

behavioral decision for mobile conspecific individuals (henceforth,

conspecifics) is whether to aggregate as a strategy to diversify

genetic transfers, enhance foraging efficiency, or to gain safety

from predators [10,11]. In a heterogeneous environment, these

endogenous factors could interact with exogenous factors, which

would include particular habitat conditions such as landform,

microclimate, and vegetation structure and composition that favor

fitness [4–6]. Distinguishing and accounting for these sources of

variability in predicting species distributions remains a formidable

challenge.

There are at least four hypotheses that can explain the

distribution patterns of species at a given resolution. First, a null

hypothesis is that species are distributed randomly and are

therefore equally likely to occur among patches, i.e., spatial units

at the scale of an individual home range. With such a random

distribution, we would predict that a species occurrence pattern

corresponds with neither the condition of patches (e.g., local land

cover) nor conspecific occupancy of adjacent patches. Although

this null hypothesis contradicts much of modern ecological theory

[12,13], this pattern may be more parsimonious if both

endogenous and exogenous factors under consideration have only

a weak influence. This null hypothesis therefore may serve as a

useful baseline for comparison with hypotheses that assume

nonrandom species distributions. A second hypothesis is that

species are not randomly distributed and that endogenous factors

dominate, where the species aggregates such that it is more likely
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to occur when a patch is surrounded by patches occupied by

conspecifics, giving rise to a patchy or regular distribution [14].

Under this aggregation hypothesis, we would predict a positive

relationship between patch occupancy and the proportion of

adjacent patches that are occupied but a weak or absent

relationship with local landcover. Third, heterogeneity in local

landcover alone drives the spatial distribution of the species. Based

on this land-cover hypothesis, we expect that exogenous local

landcover characteristics override conspecific aggregation in

driving settlement patterns. Certainly, landcover and environ-

mental variables at other scales can influence species distributions,

but here we focus on this local landcover hypothesis. Finally, a

global hypothesis is that conspecifics not only aggregate, but they

do so also in accordance with local landcover characteristics and

their distribution therefore reflects both exogenous and endoge-

nous factors to varying degrees.

As mobile and readily observed animals, breeding birds provide

an excellent opportunity for examining hypotheses about species

distributions [15,16]. Furthermore, birds can be sampled efficient-

ly as an entire community, providing a wealth of information with

which to confront these hypotheses [17]. Here, we consider a case

study on the breeding bird community of the Patuxent Research

Refuge located in the Mid-Atlantic region of the United States.

This region hosts a diversity of avian guilds that occupy upland

forests, lowland forests, wetlands, upland meadows, shrub-scrub,

and developed areas [16]. Land managers in the Mid Atlantic are

interested in predicting bird species distributions with respect to

local conspecific aggregations and land-cover characteristics for

developing conservation plans [18], and understanding the relative

roles of exogenous landscape context and endogenous species

aggregation [19]. This investigation therefore has potential for not

only increasing our basic understanding of drivers for species

distribution patterns but also for broad applicability across

conservation areas in the region.

Our objectives are to 1) ascertain the relative importance of

conspecific-neighborhood effects reflecting endogenous drivers vs.

Figure 1. Map of 100-m radius buffers surrounding a grid of point-count stations throughout the Patuxent Research Refuge in
Laurel, Maryland. Landcover is modified from the 1992 National Landcover Data set [24].
doi:10.1371/journal.pone.0055097.g001
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landcover variables reflecting exogenous drivers of bird species

distributions, and 2) improve understanding about how accounting

for conspecific-neighborhood effects impacts inferences about

landcover drivers of bird species and community distribution

within a forested landscape. We consider an avian point-count

dataset from the Patuxent Research Refuge as a case study to

analyze patterns in species occupancy while accounting for

heterogeneity in detectability among species using a hierarchical

Bayes approach. In doing so, we account for possible species-

specific associations with particular landcover metrics and spatial

autocorrelation. We also account for similarities among species in

the community by sampling species-specific parameters from a

common hyper-distribution while accounting for detectability

[20]. Ignoring heterogeneity in detectability among species and

habitats can greatly confound inferences about drivers of species

distributions [21,22]. We then compare our findings with existing

literature on species distributions to shed light about the

independent and combined strengths of landcover and spatial

autocorrelation as sources of heterogeneity for explaining individ-

ual species distributions for the entire avian community.

Methods

1. Study Area
The Patuxent Research Refuge is located in Prince Georges

County, Maryland in the Mid Atlantic Piedmont USA. The

52 km2 area of the refuge is primarily deciduous forest, with

interspersed meadows, wetlands, and shrub-scrub areas that are

managed to provide wildlife habitat. The refuge is gridded at 400-

m intervals with permanent markers, and we selected a systematic

sample of 316 grid points as locations for point counts (Fig. 1).

Points that could not be accessed or were adjacent to a major

highway on the western park boundary were not surveyed.

2. Field Data Collection
Counts were conducted between 31 May to 4 July 2008 by

experienced surveyors. A consistent protocol was followed in

counting and recording, in which the observer stood at the point

and recorded all birds seen or heard within a 100-m radius for a 5-

min count interval. Sites were surveyed 1–7 times (mean = 2.54).

Additional details on the avian sampling methods have been

published elsewhere [23].

3. Landscape Metrics
The 1992 National Land Cover Data set (NLCD) [24] was used

to describe the land cover classes on the refuge at a 30-m

resolution. The NLCD habitat information was updated based on

aerial photographs taken in 2007 [25] and polygons of meadows

and wetlands obtained from refuge staff. We defined the following

six landcover classes that likely influence bird species’ distributions

on the refuge: deciduous, evergreen, and mixed forest (‘‘upland

forest’’); deciduous and mixed forested wetlands (‘‘lowland forest’’);

shrub-scrub; meadows; freshwater impoundments and herbaceous

wetlands (‘‘wetlands’’); and developed areas (Fig. 1). We calculated

the proportion of area of each land cover class within 100 m of

each point-count location (Table 1).

4. Model Construction
We used a state-space approach to model species distributions,

which included an occupancy process model and an observation

model of detections [3,20,26]. The process model consists of the

latent binary occupancy state zij (where zij = 1 if species i is present

at site j and zero otherwise) for each of N species at S sites:

zij*Bernoulli yij

� �
fori~1,2, . . . Nand j~1,2, . . . S

where yij is the probability of occupancy for species i in site j.

The observation model, which is conditional on the corresponding

occupancy state, is described as follows:

yijkjzij~1*Bernoulli pijk

� �
where yijk~

0 with probability 1 if zij~0, fork~1,2, . . . M

and pijk is the probability of detection for species i in site j

(conditional on presence) during k of M .1 visits across which we

assume closure [22]. To account for spatial autocorrelation, we

included an autologistic variable [27] that is specified as follows:

Aij~

P
r

zir

Rj

where Aij is the proportion of sites, neighboring j, that are

occupied by species i estimated by dividing the total number of

presences (in each of the r neighboring cells) of species i, denotedP
r

zir, byRj , the total number of sites that neighborj. Thus all

neighboring sites are given equal weight. We defined the

neighborhood using survey sites within 600 m of one another.

Using this radius there were 164 sites with 8 neighbors, and all

sites, except for two, had three or more neighbors. Eight sites had

9 neighbors due to one irregular sampling location within the grid.

For our global occupancy model, we incorporated six species-

specific random effects (avi; where v§2 indexes regression

parameters); including an intercept term for species (a1i) in

addition to the autologistic variable followed by five land-cover

variables that accounted for variation among species regarding

their effects on occupancy:

logit yij

� �
~a1iza2iAijza3ix1z . . . za7ix5

Specifically, we included the following landcover variables:

percentage of habitat within a 100 meter radius of lowland forest,

developed, wetland, meadow, and shrub-scrub. We excluded

upland forest from the set of predictors to avoid multicollinearity,

and as such upland forest influence was captured in the intercept

term. We confirmed that the remaining land-cover variables had

pairwise correlations with absolute values ,0.25. We specified

vague Bayesian priors for the species-specific logit-scale random

effects in the global occupancy model as follows:

avi*Normal mav,tavð Þ for v~1,2, . . . 7

mav~log
m0av

1{m0av

� �

m0av*Uniform(0,1)
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tav*Gamma(0:1,0:1)

where v indexes regression parameters for the global occupancy

model, ma and ta are the logit-scale priors for the mean and

precision (i.e., inverse of the variance) of the normal distribution

for the random effect, m0av is the prior mean on the probability

scale based on a uniform distribution. We assumed a gamma

distribution as a prior for tav with shape parameters both equal to

0.1.

For our observation model, we included a random effect for

species:

logit pijk

� �
~bi

As with the global model, we specified vague Bayesian priors for

the species-specific logit-scale random effect in the observation

model using a similar approach:

bi*Normal mb,tb

� �

mb~log
m0b

1{m0b

 !

m0b*Uniform(0,1)

tb*Gamma(0:1,0:1)

This random-effects modeling approach allows for a large

number of species to be analyzed simultaneously rather than in

separate models. Using this multi-species modeling approach,

precision of occupancy estimates and covariates is improved

especially for species that have low detection probability [3].

Predicted occupancy parameters for rarely observed species

gravitate toward the means of parameters across the entire

assemblage based on an assumption that these difficult-to-detect

species follow similar patterns as other species in the community.

In addition to this global model, we constructed three subset

models of occupancy to evaluate alternative hypotheses about the

relative contributions of spatial autocorrelation and landscape

heterogeneity for species distributions. The subset models differed

based on inclusion or exclusion of the landcover and autologistic

variables for predicting occupancy. The full candidate set of

models was as follows: null (neither landcover nor autologistic),

landcover (i.e., exogenous landcover only), autologisic (endogenous

spatial autocorrelation only), and global (exogenous landcover and

endogenous spatial autocorrelation).

5. Model Fitting and Analysis
We used WinBUGS version 1.4.3 [28] to fit the four alternative

state-space models to the bird detection data, which uses Markov

chain Monte Carlo (MCMC) methods. We obtained three

independent chains of 20,000 MCMC iterations for each model,

from which we discarded the initial 10,000 iterations as ‘‘burn-in’’

and then thinned the remainder by 10 to render 1000 iterations

for each parameter’s posterior distribution (e.g., the posterior

distribution consisted of a total of 3000 estimates for each

parameter). We confirmed convergence using the Gelman-Rubin

diagnostic where all parameters had an autocorrelation indicator

below 1.1 [29]. This large number of iterations was required due

to a high level of autocorrelation among MCMC iterations under

the global model, which included effects for spatial autocorrelation

and landcover variables in addition to species-level random effects

for occupancy and detectability. We also calculated Moran’s I for

each of the covariates in the landcover model to determine if they

were spatially autocorrelated. We used the same neighborhood

structure as that used in the auto-logistic model to maintain the

same spatial scale.

6. Model Evaluation
We evaluated model performance by computing the area under

the curve of the receiver operating characteristic (AUC) [30,31].

When applied to the dataset used during model construction,

AUC measures a model’s goodness-of-fit by estimating the

probability that a randomly chosen occupied sampling point

(where zij = 1) has a higher probability of occupancy than a

randomly chosen unoccupied sampling point (where zij = 0). If a

model fits well, then it consistently predicts a higher probability of

occupancy for occupied sites yielding an AUC closer to 1.0.

Conversely, if a model fits poorly, it will perform the same as

chance yielding an AUC closer to 0.5.

We utilized AUC for evaluating our models in two ways. First,

we calculated mean and 95% Bayesian credibility interval (BCI)

AUC values reflecting goodness-of-fit for each of the four models

based on the vector of AUC values across MCMC iterations

(henceforth, consolidated AUC values) for all species combined.

Second, we calculated AUC values reflecting model goodness-of-

Table 1. Landcover proportions within 100 m of 316 point-count locations throughout the Patuxent Research Refuge, Laurel,
Maryland, USA.

Landcover class Descriptiona Proportionb

Shrub-scrub Early-successional, transitional, and shrubland habitat 0.03060.109 (021.00)

Meadow Meadows, pasture/hay, urban/recreational grasses, row crops, and developed open space 0.07360.192 (020.98)

Wetland Emergent herbaceous wetlands and ponds 0.03460.123 (020.87)

Upland forest Deciduous, evergreen, or mixed upland forest 0.67560.366 (021.00)

Lowland forest Seasonally flooded, deciduous or mixed woody wetlands 0.16060.306 (021.00)

Developed Medium intensity developed areas and roads 0.02860.066 (020.67)

aModified from the 1992 National Landcover Data set classifications [24].
bMean +/2 standard deviation (range).
doi:10.1371/journal.pone.0055097.t001
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fit for each species under each model rendering a mean and 95%

BCI AUC value for each species-model combination (henceforth,

species-specific AUC values) [32]. Calculating AUCs for each

species in each model is made possible by examining the species-

specific binary occupancy predictions along with predicted

occupancy probabilities for each sampling point across the

respective vectors of MCMC iterations. We concluded a

statistically significant difference between posterior distributions

when the 95% BCI (2.5th to 97.5th percentile of the posterior

distribution) for one posterior excluded the BCI of the opposing

posterior. When making inferences about the strength of spatial

autocorrelation at the individual species level, we examined the

log-odds ratio from the autologistic parameter for each species

calculated as:exp (a2i). For this analysis, we interpret an odds ratio

as the proportional increase in local occupancy probability for

each additional neighboring sampling location that is occupied by

a conspecific.

Results

Our analysis considered 90 species of breeding birds that were

observed on the refuge (Table 2). Details of the occupancy,

detectability, and habitat associations of the species are presented

elsewhere [23]. In general, habitat associations of species followed

predictable patterns based on the life history and known habitat

preferences of the species; i.e., scrub and grassland birds had

negative associations with forest habitats, and woodland birds had

positive associations with forest habitats (Table 2). All of the

landcover covariates exhibited spatial autocorrelation at a local

scale (p,0.001 using a Moran’s I calculation for each covariate).

Our results focus on relative importance of local landcover and

spatial autocorrelation for predicting bird species distributions.

1. Model Evaluation
Based on the consolidated community-level AUC values, the

landcover model (mean: 0.942; BCI: 0.934–0.950) and global

model (0.945; 0.935–0.954) performed similarly and had signifi-

cantly better fits than the null (0.882; 0.865–0.899) and autologistic

models (0.887; 0.873–0.901), which were themselves quite similar.

We refer to the landcover model as the top model because of its

parsimony (i.e., fewer parameters but nearly identical fit to the

global model). Species-specific AUC values revealed comparable

patterns, with the landcover model having similar AUC values to

the global model and the spatial model having similar AUC values

to the null model (Fig. 2 Every species had higher mean AUCs in

the models that contained the landcover covariates as compared to

the null and autologistic models (Fig. 2), though most of these

differences were not statistically significant. For 5 of the 90 species

the landcover model had significantly better fit than the null

model. Model fit was very good across species and models, as the

means of the AUC posteriors ranged from 0.776 to 0.977 and the

BCIs spanned 0.712 20.997.

2. Landcover Effects
With the exception of percent developed, there were few cases

where the landcover model revealed a significant association and

the global model did not for a given landcover type (Table 3).

There was perfect agreement between the landcover and global

models regarding species associations with meadow and wetland

when the effect was positive, with a single exception of gray

catbird. For cases where the models agreed about positive

associations, the most frequent significant associations across the

community were for the natural open landcover types (28% of

species, n = 25 each) followed by scrub-shrub (18%, n = 16),

lowland forest (13%, n = 12), and developed (4%, n = 4). A few

species showed negative associations under both models (2–3%,

n = 2 to 3): Acadian flycatcher, downy woodpecker, eastern

towhee, ovenbird, pine warbler, red-bellied woodpecker, red-eyed

vireo, and wood thrush (Table 2). Most species that showed

significant association with percent developed in the landcover

model did not show this association in the global model. Similarly,

the global model showed no significant association for most species

that had exhibited a negative association with lowland forest,

meadow, or wetland in the landcover model. Throughout the

avian community, there were no cases where the global model

showed a significant association but the landcover model did not.

Likewise when there was a significant association under both the

landcover and global models, they always agreed on the direction

of the effect.

3. Spatial Effects
All species exhibited statistically significant positive spatial

autocorrelation in both the global and spatial-only models (i.e.,

a2i.0). Effect sizes of the autologistic parameter were high and

statistically indistinguishable among species in the spatial-only

model (range of means as log-odds ratios: 228 to 281; range of

their BCI widths: 170 to 219; Fig. 3). When compared to the

spatial-only model, means of the autologistic parameter from the

global model yielded greater variation among species with respect

to the autologistic parameter (range of means as log-odds ratios:

16.4 to 259; range of their BCI widths: 88.3 to 2236). None of the

species-specific differences between models with respect to the

relative magnitude of the autologistic parameter were significant in

that the BCIs overlapped. Based on the BCIs of this autologistic

parameter that excluded means of opposing species in the global

model, hooded warbler and white-eyed vireo tended to have the

strongest spatial autocorrelation whereas species tending to have

the weakest spatial autocorrelation included orchard oriole,

Carolina wren, gray catbird, blue grosbeak, northern cardinal,

eastern bluebird, eastern towhee and common yellowthroat.

Discussion

We found that landcover heterogeneity was more important for

understanding local-scale species distributions than was spatial

autocorrelation alone or a null model that assumed a homoge-

neous distribution of species for an entire avian community. When

focusing on the distribution of individual species, accounting for

spatial autocorrelation alone had lower AUC values (and thus a

poor fit to the data) than when accounting for landcover

heterogeneity alone. This may in part be due to the fact that all

of the landcover covariates were spatially correlated and thus

might also explain spatial correlation in the species distributions.

This notion is supported by our unpublished findings that the

residuals for most species in the landcover model were not spatially

autocorrelated. The landcover hypothesis therefore, was more

consistent with our results than was the aggregation hypothesis for

explaining local-scale individual species distributions.

In our study there were numerous significant associations

between specific landcover variables and patterns of individual

species occupancy that were in agreement between models with

and without the spatial component. We found that in both the

landcover and global models, species distributions were often

driven by associations with undeveloped openings (i.e., meadows

and wetlands). The global and landcover-only models disagreed

more frequently when predicting relationships between species

distribution and the amount of developed land. There was

considerable uncertainty whether landscape heterogeneity alone

Explaining Local-Scale Species Distributions
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Table 2. Landcover associations and spatial autocorrelation under alternative models for distributions of bird species observed
during point counts on the Patuxent Wildlife Research Refuge, Maryland.

Common name Code Scientific name
Num.
detections Developed

Lowland
forest Meadow Wetland

Scrub-
shrub Spatial

Canada Goose CANG Branta canadensis 18 0,0 0,0 0,0 0,0 0,0 18

Wood Duck WODU Aix sponsa 6 / / / / / 6

American Black Duck ABDU Anas rubripes 1 / / / / / 1

Mallard MALL Anas platyrhynchos 1 / / / / / 1

Northern Bobwhitea NOBO Colinus virginianus 3 / / / / / 3

Wild Turkey WITU Meleagris gallopavo 5 / / / / / 5

Double-crested Cormorant DCCO Phalacrocorax auritus 1 / / / / / 1

Great Blue Heron GBHE Ardea herodias 10 0,0 +,+ 0,0 0,0 0,0 10

Great Egret GREG Ardea alba 1 / / / / / 1

Green Heron GRHE Butorides virescens 5 / / / / / 5

Black Vulture BLVU Coragyps atratus 1 / / / / / 1

Turkey Vulture TUVU Cathartes aura 1 / / / / / 1

Cooper’s Hawk COHA Accipiter cooperii 3 / / / / / 3

Red-shouldered Hawk RSHA Buteo lineatus 12 0,0 0,0 0,0 0,0 0,0 12

Red-tailed Hawk RTHA Buteo jamaicensis 7 / / / / / 7

King Rail KIRA Rallus elegans 1 / / / / / 1

Killdeer KILL Charadrius vociferus 8 / / / / / 8

Rock Pigeon ROPI Columba livia 1 / / / / / 1

Mourning Dove MODO Zenaida macroura 134 0,0 2,0 0,0 0,0 0,0 134

Yellow-billed Cuckoo YBCU Coccyzus americanus 79 0,0 0,0 0,0 0,0 0,0 79

Barred Owl BADO Strix varia 1 / / / / / 1

Chimney Swifta CHSW Chaetura pelagica 9 / / / / / 9

Ruby-throated Hummingbird RTHU Archilochus colubris 10 0,0 0,0 0,0 0,0 0,0 10

Belted Kingfisher BEKI Megaceryle alcyon 1 / / / / / 1

Red-bellied Woodpecker RBWO Melanerpes carolinus 181 0,0 +,+ 0,0 0,0 2,2 181

Downy Woodpecker DOWO Picoides pubescens 122 0,0 0,0 0,0 0,0 0,0 122

Hairy Woodpecker HAWO Picoides villosus 39 0,0 0,0 0,0 0,0 0,0 39

Yellow-shafted Flicker YSFL Colaptes a. auratus 29 0,0 0,0 0,0 0,0 0,0 29

Pileated Woodpecker PIWO Dryocopus pileatus 85 0,0 0,0 0,0 0,0 0,0 85

Eastern Wood-Pewee EAWP Contopus virens 223 0,0 +,0 0,0 0,0 0,0 223

Acadian Flycatcher ACFL Empidonax virescens 357 2,2 +,+ 2,2 2,2 0,0 357

Eastern Phoebe EAPH Sayornis phoebe 16 0,0 0,0 +,+ +,+ 0,0 16

Great Crested Flycatcher GCFL Myiarchus crinitus 76 0,0 0,0 0,0 0,0 0,0 76

Eastern Kingbird EAKI Tyrannus tyrannus 21 +,0 0,0 +,+ +,+ +,+ 21

White-eyed Vireo WEVI Vireo griseus 74 0,0 0,0 +,+ +,+ +,+ 74

Yellow-throated Vireo YTVI Vireo flavifrons 97 0,0 +,+ 0,0 0,0 0,0 97

Warbling Vireo WAVI Vireo gilvus 1 / / / / / 1

Red-eyed Vireo REVI Vireo olivaceus 549 0,0 +,+ 2,2 2,2 0,0 549

Blue Jay BLJA Cyanocitta cristata 205 0,0 2,0 0,0 0,0 +,0 205

American Crow AMCR Corvus brachyrhynchos 113 0,0 +,0 0,0 0,0 +,0 113

Fish Crow FICR Corvus ossifragus 4 / / / / / 4

Purple Martin PUMA Progne subis 1 / / / / / 1

Tree Swallow TRES Tachycineta bicolor 30 0,0 0,0 +,+ +,+ 0,0 30

Northern Rough-winged Swallow NRWS Stelgidopteryx serripennis 2 / / / / / 2

Barn Swallow BARS Hirundo rustica 8 / / / / / 8

Carolina Chickadee CACH Poecile carolinensis 296 0,0 0,0 0,0 0,0 0,0 296

Tufted Titmouse TUTI Baeolophus bicolor 491 0,0 0,0 0,0 0,0 0,0 491

White-breasted Nuthatch WBNU Sitta carolinensis 189 0,0 +,+ 0,0 0,0 0,0 189
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Table 2. Cont.

Common name Code Scientific name
Num.
detections Developed

Lowland
forest Meadow Wetland

Scrub-
shrub Spatial

Carolina Wren CARW Thryothorus ludovicianus 223 +,0 +,+ +,+ +,+ 0,0 223

House Wren HOWR Troglodytes aedon 15 0,0 0,0 +,+ +,+ +,0 15

Blue-gray Gnatcatcher BGGN Polioptila caerulea 177 0,0 +,0 0,0 0,0 0,0 177

Eastern Bluebird EABL Sialia sialis 62 0,0 0,0 +,+ +,+ 0,0 62

Wood Thrushb WOTH Hylocichla mustelina 347 2,2 0,0 2,0 2,0 0,0 347

American Robin AMRO Turdus migratorius 152 0,0 0,0 +,+ +,+ +,+ 152

Gray Catbird GRCA Dumetella carolinensis 36 +,+ 0,0 +,0 +,0 +,+ 36

Northern Mockingbird NOMO Mimus polyglottos 52 0,0 0,0 +,+ +,+ +,+ 52

Brown Thrasher BRTH Toxostoma rufum 16 0,0 0,0 0,0 0,0 +,+ 16

European Starling EUST Sturnus vulgaris 20 +,0 0,0 +,+ +,+ +,+ 20

Cedar Waxwing CEDW Bombycilla cedrorum 23 0,0 0,0 +,+ +,+ 0,0 23

Northern Parula NOPA Parula americana 88 0,0 +,+ +,+ +,+ 0,0 88

Pine Warbler PIWA Dendroica pinus 141 0,0 2,2 2,0 2,0 2,2 141

Prairie Warblerb PRAW Dendroica discolor 48 0,0 0,0 +,+ +,+ +,+ 48

Black-and-white Warbler BAWW Mniotilta varia 9 / / / / / 9

American Redstart AMRE Setophaga ruticilla 54 0,0 +,+ 0,0 0,0 0,0 54

Prothonotary Warblerb PROW Protonotaria citrea 16 0,0 +,+ 0,0 0,0 0,0 16

Worm-eating Warblerb WEWA Helmitheros vermivorum 13 0,0 0,0 0,0 0,0 0,0 13

Ovenbird OVEN Seiurus aurocapilla 407 2,0 2,2 2,2 2,2 2,2 407

Louisiana Waterthrush LOWA Parkesia motacilla 18 0,0 +,+ 0,0 0,0 0,0 18

Kentucky Warbler KEWA Oporornis formosus 29 0,0 0,0 0,0 0,0 0,0 29

Common Yellowthroat COYE Geothlypis trichas 88 0,0 +,+ +,+ +,+ +,+ 88

Hooded Warbler HOWA Wilsonia citrina 102 2,0 0,0 2,0 2,0 0,0 102

Yellow-breasted Chat YBCH Icteria virens 57 0,0 0,0 +,+ +,+ +,+ 57

Eastern Towheea EATO Pipilo erythrophthalmus 129 +,+ 2,2 +,+ +,+ +,+ 129

Chipping Sparrow CHSP Spizella passerina 49 +,0 0,0 +,+ +,+ +,0 49

Field Sparrow FISP Spizella pusilla 76 0,0 0,0 +,+ +,+ +,+ 76

Grasshopper Sparrow GRSP Ammodramus savannarum 4 / / / / / 4

Song Sparrow SOSP Melospiza melodia 9 / / / / / 9

Summer Tanager SUTA Piranga rubra 35 0,0 0,0 0,0 0,0 +,+ 35

Scarlet Tanager SCTA Piranga olivacea 232 0,0 0,0 2,0 2,0 0,0 232

Northern Cardinal NOCA Cardinalis cardinalis 236 +,0 +,0 +,+ +,+ +,+ 236

Blue Grosbeak BLGR Passerina caerulea 47 0,0 0,0 +,+ +,+ +,+ 47

Indigo Bunting INBU Passerina cyanea 137 +,+ 0,0 +,+ +,+ +,+ 137

Red-winged Blackbird RWBL Agelaius phoeniceus 59 +,+ 0,0 +,+ +,+ 0,0 59

Eastern Meadowlark EAME Sturnella magna 6 / / / / / 6

Common Grackle COGR Quiscalus quiscula 53 +,0 0,0 +,+ +,+ 0,0 53

Brown-headed Cowbird BHCO Molothrus ater 96 0,0 0,0 0,0 0,0 0,0 96

Orchard Oriole OROR Icterus spurius 37 +,0 0,0 +,+ +,+ 0,0 37

Baltimore Oriole BAOR Icterus galbula 6 / / / / / 6

House Finch HOFI Carpodacus mexicanus 2 / / / / / 2

American Goldfinch AMGO Spinus tristis 164 0,0 0,0 +,+ +,+ 0,0 164

aSpecies of high regional conservation concern [18].
bSpecies of high continental conservation concern [18].
Associations for species with fewer than 10 detections are not shown and instead indicated by slashes (/); effects for these species are potentially misleading due to the
lack of information. Effects reported for the landcover variables are from one model with only land cover variables, followed by another model that also includes spatial
autocorrelation (the global model). Effects reported for the spatial autocorrelation (autologistic) variable are from one model with only spatial autocorrelation, followed
by another model that also includes land cover variables (the global model). Directions of effects based 95% BCIs:+ = above zero, 2 = below zero, 0 = includes zero. See
Table 1 for descriptions of landcover variables.
doi:10.1371/journal.pone.0055097.t002
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or combined with spatial autocorrelation better reflected species

distributions. Although we found consistent evidence for particular

species associations with vegetated landcover (i.e., meadow,

wetland, scrub-shrub, and lowland forest) between landcover

models with and without spatial autocorrelation, the apparent

strong and consistent evidence for conspecific aggregation across

the bird community weakened for all but very few species after

accounting for landcover effects (Fig. 3). Throughout the analysis,

we accounted for potential confounding factors of heterogeneity

among individual species occupancy and detection, which enabled

robust inferences about the relative value of alternative sources of

spatial heterogeneity for predicting the distribution of species

across a community. To our knowledge, this represents the first

attempt to reconcile the relative and combined influence of

Figure 2. Fit of alternative models describing distributions of bird species sampled on the Patuxent Wildlife Research Refuge.
Models included the following: null = species-specific occupancy, assumed to be constant across all sampling locations, landcovs = six landcover
covariates for species-specific occupancy, spatial = autologistic covariate for species-specific occupancy, and global = landcovs and spatial combined.
All models account for imperfect detection of species. Symbols represent the mean AUC values and whiskers represent the 95% Bayesian credibility
intervals (BCIs) of the AUC estimates. An asterisk (*) following the species code indicates that the landcover model had significantly better fit than the
null model.
doi:10.1371/journal.pone.0055097.g002

Table 3. Numbers of species with significant associations between occupancy and landcover variables under two alternative
models (landcover only and global models) based on point count surveys throughout the Patuxent Wildlife Research Refuge,
Maryland, USA.

Criteriona Developed Lowland forest Meadow Wetland Scrub-shrub

Both models positive 4 12 25 25 16

Both models negative 2 3 3 3 3

Only reduced model positive 7 4 1 1 4

Only reduced model negative 2 2 4 4 0

aGlobal model included both landcover and spatial covariates; reduced model included only landcover covariates.
doi:10.1371/journal.pone.0055097.t003
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endogenous and exogenous drivers at a local scale for individual

species across an entire bird community.

An emphasis of our study was to better understand interactions

between individual bird species distributions and various types of

openings within a landscape dominated by contiguous forest. Across

the bird community on the refuge, meadows and wetlands were

important drivers for a number of species regardless of whether we

accounted for spatial autocorrelation. Although the landcover model

revealed a significant negative relationship between developed

landcover and occupancy of several species, this effect dissipated

whenaccounting forspatialautocorrelation.Apossibleexplanation is

that the sparse but highly aggregated distribution of developed lands

on the refuge induces spatial autocorrelation in the associated bird

species rather than endogenous factors alone. In contrast, species

associations with vegetated cover types were relatively consistent

whether or not spatial autocorrelation was included in the model. We

hypothesize that at a local scale, intrinsic andextrinsic factors interact

to generate distributions of species associated with vegetated cover

types whereas aggregation of synanthropic species is largely driven by

exogenous factors. Such hypotheses about interactions between

spatial arrangements of habitat and mobile species, though concep-

tually familiar [12,33], have rarely been examined rigorously [4].

To our knowledge, few studies investigating distributions of

multiple forest bird species have accounted for spatial autocorre-

lation [4,6,34,35]. Investigating 50–400 km neighborhoods sur-

rounding focal observations of over 100 bird species across North

America, Bahn et al. [6] found strong evidence for spatial

autocorrelation with respect to the proportion of years a

conspecific was observed within the neighborhood during a 10-

year period based on conditional autoregression. When analyzing

counts for three breeding passerine species in the Appalachian

Mountains, Lichstein et al. [4] found evidence of decreasing

spatial autocorrelation from distances ranging from 150 m to

1500 m at 150-m intervals even after incorporating broad-scale

spatial trend and environmental covariates. They found that much

of the spatial autocorrelation in bird counts was attributed to

spatial autocorrelation in landcover variables. Likewise, Betts et al.

[34] found evidence of spatial autocorrelation between 350 and

700 m and then diminishing out to 3500 m across the 23 species

examined in New Brunswick. Clearly, birds exhibit evidence of

conspecific aggregation at multiple spatial scales. Finally, Thog-

martin and Knutson [36] reported spatial dependence at 800 m

for counts of three forest species in north-central US despite

inclusion of landscape metrics at multiple scales ranging from 0.1

to 10-km.

Across these studies and our own, we hypothesize that bird

species breeding in forested landscapes exhibit spatial aggregation

within fine (100–800 m) and coarse (.104 m) neighborhoods but

Figure 3. Strength of autocorrelation for individual species across the bird community at Patuxent National Wildlife Refuge. Gray
bars represent a reduced model with only spatial effects included; unfilled bars represent a global model with landcover and spatial effects included.
Bar heights represent means from the posterior distribution of a Bayesian analysis based on three independent MCMC chains (n = 20,000). All of the
Bayesian credibility intervals overlapped and are not shown for clarity.
doi:10.1371/journal.pone.0055097.g003

Explaining Local-Scale Species Distributions

PLOS ONE | www.plosone.org 9 February 2013 | Volume 8 | Issue 2 | e55097



less so within an intermediate (103–104 m) neighborhood. This

hypothesis is supported by some of our own unpublished analyses,

which indicate that the strength and consistency of spatial

autocorrelation across the avian community declines when

considering a 103 neighborhood. We suggest that mechanisms

giving rise to aggregation of conspecific mobile species at fine

scales likely contrast with those at coarse scales. At a fine scale,

aggregation of landcover characteristics to which species are

adapted in addition to opportunities for exchange of genetic

material and information about local food resources are likely

powerful drivers of conspecific clustering, and certain life history

strategies emerge from the particular mechanisms for this fine-

scaled clustering. At coarser scales, geomorphic landforms and

climatic envelopes likely drive neighborhood associations that

dictate the geographic ranges of species. As highly mobile

organisms, bird species may fail to exhibit spatial structuring at

intermediate scales within which dispersal is less frequent,

information flows are localized, and landcover types become

spatially diversified and therefore exhibit little aggregation. This

diminished clustering at intermediate scales has been observed in

plant species [8], but to our knowledge a comprehensive cross-

scale analysis has yet to be conducted for mobile species. A multi-

scale investigation would be necessary to evaluate this intermedi-

ate-scale spatial-structure hypothesis.

Spatial resolution is a critical consideration when examining

patterns of species distributions [8,9]. Unless the resolution (i.e.,

distance between sample units) exceeds the home range size of a

mobile species, aggregations of occurrences may simply represent

individual movements rather than actual aggregation of individ-

uals among adjacent patches (i.e., sample units). For example, a

wide-ranging species may occur across multiple sample units,

whereas individual territories held by this species may be diffusely

distributed themselves. Therefore, the resolution is an integral

component when making inferences about patterns of species

occurrences. The 400-m (16-ha) grid sampling design in our study

encompasses typical home range sizes for non-raptorial breeding

bird species [37,38], with the exception of larger-bodied wood-

peckers and crows [39–42]. Evidence of spatial aggregation of

these wide-ranging species at a local scale could therefore be

explained by within season dispersal of individuals.

In addition to spatial resolution, we must also take into account

other scopes of inference when interpreting results from our study.

First, we investigated the bird community within the Patuxent

Research Refuge, which should be representative of the more

natural areas of the Mid Atlantic Piedmont but some care must be

taken when applying these findings beyond the Refuge. Much of

the original forest and wetlands in this ecoregion has been

converted to agricultural and residential land uses [18], and bird

community composition and distribution will of course differ in

more fragmented landscapes [43] with conspecific aggregation

perhaps becoming more pronounced. Conducting a validation of

this model with a similar dataset outside the refuge would reveal its

ability to predict outside of this system. Second, our study took

place during a single breeding season and therefore provides only

a snapshot of the bird community. A multi-season sample would

offer the opportunity to investigate temporal dynamics in species

occupancy and perhaps a more comprehensive representation of

bird-habitat associations and aggregations [3,21]. Third, we tried

fitting a conditional autoregressive (CAR) model [44] to our

dataset, but unfortunately the model failed to converge for many

of the species despite several attempts to adjust and restrict the

prior distributions. The CAR model incorporates spatial depen-

dence as a random effect for each sampling location as opposed to

the autologistic which assumes that the spatial effect is fixed. It is

possible that a greater number of detections for some species and/

or sampling points than was available in our study could enable

convergence of the CAR model. The CAR model is more flexible

than the autologistic, and practitioners should consider this

approach as it will allow for examination of residual spatial

autocorrelation providing additional information about the

relative influence of endogenous and exogenous factors [6].

Fourth, we examined associations between bird species occu-

pancy and local landcover percentages but not measures of

landscape configuration like edges, core areas, or patch size, which

have long been recognized as important drivers of bird species

distributions [45,46]. Furthermore, we investigated only linear

effects of landcover, whereas the effects may indeed be curvilinear

in some cases. We therefore cannot make any conclusions about

the linearity of landcover associations nor the relative influence of

these broader-scale landscape patterns. A larger set of grid points,

however, would offer sufficient sample space to explore a broader

suite of landscape metrics in addition to conspecific aggregation

and their interactions, therefore providing greater insights into

associations between land cover characteristics and bird species

distributions.

Finally we used AUC to evaluate and compare model fit rather

than one of the information-theoretic model-selection criteria

[47,48], which would allow us to make inference about the relative

parsimony and weights of evidence among our alternative

occupancy models. Standard model selection criteria (such as

AIC) unfortunately have inherent biases that confound inferences

about hierarchical models, such as our multi-species occupancy

model [49,50], whereas AUC can provide a more straightforward

estimate of model fit [30]. Applying robust and computing-

intensive model-selection approaches, such as reversible-jump

MCMC [49], to compare spatial community models is an area of

future research.

Birds are not only a useful taxon for studying species

distributions, but they also present opportunities to account for

imperfect detection within a community-level analysis. With

regard to imperfect detection, there are at least two reasons why

a bird species may be present but not detected [51]. First, as

mobile species, they may be available for detection at a given

location during some times but not during others. Second, they

may be available for detection but go unseen and unheard by an

observer. Imperfect detection is therefore a potentially important

source of bias to consider when investigating drivers of bird species

distributions. On the other hand, breeding bird species assem-

blages offer an opportunity to conduct community-wide analyses

that enable us to examine species-specific occupancy and

detectability by sharing detection information across species

through hierarchical, random-effects modeling [3].

In this paper we have addressed hypotheses about interactions

between bird species distributions and landcover characteristics at

a local scale while accounting for potentially confounding factors

of partial observability, spatial autocorrelation, and shared traits

among species in the community. We have also proposed an

intermediate-spacing hypothesis by placing our findings within the

context of similar investigations that spanned a broad set of spatial

scales. Furthermore, we developed a modeling approach for

investigating spatial autocorrelation of conspecific distribution

patterns simultaneously for multiple species while accounting for

partial observability and allowing for incorporation of habitat

covariates. Our approach is an extension of the hierarchical Bayes

multi-species occupancy modeling framework by Dorazio et al.

[20], which itself is an extension of a single-species modeling

approach [22]. Likewise, our hierarchical Bayes spatial commu-

nity modeling framework can be readily extended to account for
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interspecific interactions [52], misidentification of species [53], and

community dynamics [3]. Such an extensible framework is a

powerful tool for examining the complex sets of hypotheses

surrounding interactions between species distributions and their

environment.
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