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Abstract: Many researchers have used machine learning models to control artificial hands, walking
aids, assistance suits, etc., using the biological signal of electromyography (EMG). The use of such de-
vices requires high classification accuracy. One method for improving the classification performance
of machine learning models is normalization, such as z-score. However, normalization is not used in
most EMG-based motion prediction studies because of the need for calibration and fluctuation of
reference value for calibration (cannot re-use). Therefore, in this study, we proposed a normaliza-
tion method that combines sliding-window and z-score normalization that can be implemented in
real-time processing without need for calibration. The effectiveness of this normalization method
was confirmed by conducting a single-joint movement experiment of the elbow and predicting its
rest, flexion, and extension movements from the EMG signal. The proposed method achieved 77.7%
accuracy, an improvement of 21.5% compared to the non-normalization (56.2%). Furthermore, when
using a model trained by other people’s data for application without calibration, the proposed method
achieved 63.1% accuracy, an improvement of 8.8% compared to the z-score (54.4%). These results
showed the effectiveness of the simple and easy-to-implement method, and that the classification
performance of the machine learning model could be improved.

Keywords: electromyography; EMG; z-score; signal normalization; machine learning; classification model

1. Introduction

Electromyography (EMG) is a biological signal whose amplitude fluctuates when exercis-
ing or contracting muscles. Many researchers have used this property to research and develop
devices that are aimed at expanding and recovering human motor function [1–5]. Due to
its easy design, which does not need a dynamics model and any physical parameters and
only uses data, machine learning models have been used in many studies including motion
control for artificial hands and gesture recognition using classifiers, and control of walking
aids and assistance suits by predicting joint angles, joint angular velocities, or joint torque
using regressors [2–5]. Linear models such as logistic regression and support-vector machines
were first used around 2000, with an emphasis on improving classification performance by
the feature extraction method such as mean absolute value, waveform length, and short-time
Fourier transform [5–8]. However, as classification performance significantly improved with
the development of deep learning [9] that occurred in 2012, research was also conducted to
improve classification performance by changing the configuration of the deep neural net-
work [10–12]. However, improving classification performance it is limited by the study of the
feature and machine learning model alone. Therefore, methods other than feature-extraction
and machine learning models are required to improve classification performance.
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Data normalization is one of the methods for improving the classification performance
of machine learning models and is used in fields such as imaging and biometrics [13–15].
Methods that are often used include min–max normalization [15,16], which normalizes
the value range of the dataset from 0 to 1; and z-score, which normalizes the dataset
mean to 0 and standard deviation to 1 [15,17]. Even in the field of EMG, the classification
performance of models is improved by normalizing signals and features with z-score
and min–max normalization [16–20]. Although the EMG fields use normalization such as
maximum voluntary contraction (MVC) [21] or maximum voluntary isometric contraction
(MVIC) [22] to enable motor analysis and motor performance evaluation between muscles
and subjects, normalization is hardly used in EMG-based motion prediction research.
Normalization is thought to be rarely used in motion prediction research for two possible
reasons. The first reason is the need to measure the reference value (e.g., min, max, mean, or
standard deviation of each EMG channel) to carry out the calibration. It can take 30 s–3 min
to use the application, depending on the measurement method. The second reason is
that reference values such as the max and mean of each EMG channel fluctuate that are
due to various factors such as muscle fatigue, electrode position, and fluctuations in skin
impedance [23–27]. Therefore, a reference value, once measured, cannot be re-used. This
reduces the practical applications of normalization and makes it unsuitable for real-time
processing (i.e., online processing). Therefore, we aimed to devise a normalization method
that does not require calibration (i.e., measurement of reference values) and that is suited
for real-time processing to enable normalization to be used as a means of improving the
prediction performance of machine learning models.

We propose a normalization method that uses the sliding-window [28] and z-score
normalization [15,17] shown in Section 2.1. The z-score is a simple normalization method
that sets the dataset mean to 0 and standard deviation to 1. Compared to min-max normal-
ization, which uses the minimum and maximum values in the entire dataset, the z-score
uses the mean and standard deviation of the entire data, making it less susceptible to
outliers. However, the z-score is usually not suitable for real-time processing because the
entire dataset needs to be used for normalization, which incurs a time delay. Therefore, we
considered combining the sliding-window analysis (SWA) that is used for signal analysis
with time-varying parameter analysis. SWA involves analyses that use the signal within a
specified window length. It is thought that using a signal of a sufficient length can achieve
the same effect as the z-score that uses the entire dataset.

In recent years, research has focused toward enabling other people’s machine learning
models to exhibit the same classification performance as machine learning models trained
from their own data (i.e., improving generalizability) [29]. Studies that solve the problem of
requiring individually specialized machine learning models by measuring a large amount
of data for each user because of individual differences in myoelectric amplitudes have
been reported. Methods have been proposed to reduce the required amount of own data
by using other people’s data with domain adaptation, which technology enables the use
of models that were trained in different datasets, even in datasets with different data
attributes [29–31]. Such methods include geodesic flow kernel (GFK) [32], correlation
alignment (CORAL) [33], and transfer component analysis (TCA) [34], which conducts
motion prediction using a machine learning model trained from a different dataset after
projecting one’s own data onto the data space, and domain adversarial neural networks
(DANN) [35], which is a kind of deep learning method that trains the model to extract
common features across different datasets.

The proposed method normalizes the standard deviation of myoelectric amplitude
with individual differences, so it is thought that the influence of individual differences in
myoelectric amplitude can be reduced, and the classification performance in the model
learned from a different subject’s dataset can be improved. Compared to previous research
such as DANN, the proposed method trains machine learning models using data other than
one’s own data, so it is superior in that the models do not need to be trained for each user.
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2. Methods
2.1. Proposed Sliding-Window Normalization

We propose a normalization method using sliding-window analysis (SWA) and z-score
to improve the classification performance of the machine learning model and generalizabil-
ity (i.e., exhibiting the same classification performance as the own machine learning model
in the other’s machine learning model). SWA is used for signal analysis and time-varying
parameter analysis using the signal within a specified window length [28]. SWA enables
time series analysis by sliding the window so that when a new sample is obtained, the
sliding window replaces the oldest sample with the new sample. The z-score is a kind of
normalization method that is used to improve the classification performance of models in
machine learning. The features are normalized by setting the feature mean to 0 and the
standard deviation to 1 [15,17].

The proposed method is a combination of these two concepts and is called sliding-
window normalization (SWN). As shown in Equation (1), the mean and standard deviation
of the samples in the sliding window are set to 0 and 1, respectively.

SWN EMGt, n−t+Lnorm = (EMGn −mt)/st (t− Lnorm < n ≤ t) (1)

where t is the current discrete time, Lnorm is the sliding window length, n is the discrete
time number in the sliding window, EMGi is the ith processed EMG, SWN EMGt, n-t+Lnorm
is the myoelectric signal to which the n-t+Lnormth proposed method (SWN) is applied at
the tth, and mt and st are the myoelectric mean and standard deviation on the tth sliding
window, respectively. We used the “mean” and “std” functions in numpy in Python.

2.2. Comparison Methods

As comparison methods to SWN, applying z-score and none (without normalization).

2.2.1. Z-Score

Z-score sets mean to 0 and standard deviation to 1 on a dataset [15,17]. Here, normal-
izing train and test dataset are based on train data like Equation (2).

Z− Scored EMGt, d,s = (EMGt, d, s − µtrain, s)/σtrain, s (2)

where t is the current discrete time, d means the train data or test data, s is the subject num-
ber, EMGt,d,s is the tth processed EMG on sth subject, Z-Scored EMGt,d,s is the myoelectric
signal to which tth z-score is applied at the tth processed EMG on sth subject, and µtrain, s
and σtrain, s are the myoelectric mean and standard deviation on sth subject’s training data.

2.2.2. None (Without Normalization)

None apply nothing in the normalization process (Section 2.4).

2.3. Evaluation Method

This paper evaluates three types of items. The first is the improvement of the clas-
sification performance of machine learning models when the proposed method (SWN)
is applied (Section 2.3.1), the second is the improvement of generalizability of machine
learning models when the proposed method (SWN) is applied (Section 2.3.2), and the third
is the improvement of the classification performance of the machine learning model when
the number of subjects of the model that was trained with different data is increased by
applying the proposed method (SWN) (Section 2.3.3).

Two types of machine learning models need to be trained. The first is the model
trained with one’s own data (model type of OWN). The second is the model trained with
another person’s data (model type of OTHER). Sections 2.3.1 and 2.3.2 used models OWN
and OTHER. Section 2.3.3 used only OTHER. Performance (OWN) involved dividing the
data into training and testing datasets and calculating the performance using the model
trained with one’s own training data and own test data. Performance (OTHER) involved
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calculating the performance using the model trained with another person’s training data
and one’s own test data. The training data and test data was created by randomly dividing
them into a 1:1 ratio every 10 consecutive trials.

2.3.1. Normalization Evaluation

The evaluation of model classification performance improvement by the proposed
method (SWN) was conducted by comparing the “classification performance in the model
with SWN (OWN or OTHER)” and “classification performance of the model with z-score
or None (OWN or OTHER)”.

Improvements in model classification performance that were due to the proposed
model will be indicated by higher performance and lower standard deviation in perfor-
mance. We consider the model classification performance improved and the research
objective achieved when the performance (OWN or OTHER) with SWN applied is equal to
or greater than the performance (OWN or OTHER) with z-score or None (no normalization).

2.3.2. Generalizability Evaluation

The evaluation of generalizability was conducted by comparing the “classification
performance in the model trained with one’s own data (OWN)” with the “classification
performance in the model trained with another person’s data (OTHER)”.

Better generalizability is indicated by higher performance and lower standard devia-
tion. Generalizability is considered improved and the research objective achieved when
the performance (OTHER) with SWN applied is equal to or greater than the performance
(OWN) without normalization (None) applied, and the performance (OTHER) with SWN
applied is equal to or greater than the performance (OWN) with SWN applied.

2.3.3. Evaluation on SWN Increased Number of Subject to Train Model

We investigated whether the classification performance of the model could be im-
proved by increasing the number of subjects used for learning the model. We compared a
model trained with nine subjects (OTHER) with a model trained with one subject (OTHER).
The model trained with nine subjects (OTHER) was considered better if its performance
was higher and its performance had a lower standard deviation.

2.3.4. Evaluation Index

The accuracy shown in Equation (3) was used as the evaluation index for the classifi-
cation performance of the machine learning model. Accuracy is an evaluation index that
can simply compare results with multiple targets.

Accuracy =
Success Predictions

Success Predictions + Failure Predictions
(3)

The Wilcoxon rank-sum test was used for significance tests. The significance level was
set for the p-value less than 0.05. The “ranksums” function in scipy.states in Python was used
for implementation. The “multipletests” function in statemodels.sandbox.stats.multicomp
in Python was used for multiple comparisons. We used the Bonferroni correction as the
correction method for the p-value.2.3.5. Machine Learning Model

We chose multi-class logistic regression for the machine learning model, which allows
multi-class classification and short training time, to easily confirm the improvement by the
proposed SWN. The “LogisticRegression” function in scikit-learn in Python was used for
implementation. The parameters were as follows: penalty = “none”, class_weight = “balanced”,
and max_iter = 6000. This model transforms the feature that is extracted from EMG (Session 2.4)
to elbow-joint movement: rest, flexion, or extension (Session 2.6). The number of models trained
was calculated by number of subjectCnumber of subject to train.
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2.4. EMG Processing

Before training the machine learning model, the measured EMG underwent prepro-
cessing, normalization, feature extraction, and decimation.

Preprocessing involved the application of a low-pass Butterworth filter (3rd order,
500 Hz), decimation (2000→ 500 Hz), and a high-pass Butterworth filter (3rd order, 30 Hz).
We used the scipy.signal “butter” function and “sosfilt” in Python for implementation. Nor-
malization involved the application of either SWN, z-score, or no normalization (i.e., None).
The window length for SWN was set at between 100 and 500 ms, with 100 ms intervals,
because too long a window length decreases the amount of data. To adjust the amount
of data, the data near the beginning of the trial are reduced based on the longest window
length. In the case of “z-score and None”, the obtained features did not change even when
the normalization window length was changed.

Feature extraction involved the calculation of the following six features to investigate
window length for normalization and feature-extraction, for which high classification per-
formance was obtained in previous studies: mean absolute value: MAV (Equation (4)) [6],
mean waveform length: MWL (Equation (5)) [7], and difference root mean square: DRMS
(Equation (6)) [7] as time-dimension features, short-time Fourier transform: STFT [5], and
stationary wavelet transform: SWT [8] as frequency-dimension features, and combination of
all five features: ALL. STFT involved averaging in the 1–70 Hz (low component), 60–100 Hz
(middle component), and 100–250 Hz (high component) ranges and concatenating them
(Equation (7)). SWT involved time-frequency conversion using Daubechies wavelet 2 (db2)
as the mother wavelet and taking the absolute mean of the wavelet coefficient of level
3 frequency (cD3) as the feature.

MAVt = 1/Lfeature ∑Lfeature−1
n=0 |EMGt−n| (4)

MWLt =
1

Lfeature − 1 ∑Lfeature−2
n=0 |EMGt−n − EMGt−n−1| (5)

DRMSt =

√
1

Lfeature − 1 ∑Lfeature−2
n=0 (EMGt−n − EMGt−n−1)

2 (6)

STFTt = cat(Low, Mid, Hig)

Low = 1
binlow

70
∑

f req=1
MeanSpec f req

(
EMG(t−L+1)−t

)
Mid = 1

binmid

100
∑

f req=60
MeanSpec f req

(
EMG(t−L+1)−t

)
Hig = 1

binhig

250
∑

f req=100
MeanSpec f req

(
EMG(t−L+1)−t

)
(7)

where t is the current discrete time, Lfeature is the window length of feature extraction,
cat(·) is the concatenation function, freq is the frequency, MeanSpec is the function that
outputs the spectrogram averaged in the time direction, and bin is the number of discrete
frequencies in each of the low/middle/high frequencies. A Hanning window with a
window length of 64 samples was used for the STFT window function. The functions in
scipy.signal in Python were used for implementation. SWT is a method that improves
the position invariance, which was a problem of wavelet transforms (WT), and the same
mother wavelet as in WT can be used. The “swt” function in the pywt module in Python
was used for implementation. The window length of feature extraction was set between
100 and 500 ms, with 100 ms intervals, because too long a window length decreases the
amount of data.

Finally, decimation involved reducing the sampling rate of the features from 500 Hz
to 20 Hz to reduce the amount of data and shorten the training time of the machine
learning model.
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2.5. Data Acquisition
2.5.1. Subjects

The ethics board of the Nagaoka University of Technology approved this study accord-
ing to the Declaration of Helsinki. The subjects were 10 right-handed 22- to 23-year-old men.
The subjects were informed about the experiment in advance and consented to participate
in the experiment.

2.5.2. Experiment

The positions of the hands, elbows, and shoulders, and the EMG of the forearm
and upper arm muscles, were measured as in the experimental environment shown in
Figure 1A. Subjects performed 12 types of elbow single-joint movements with four different
start points and end points as tasks (Figure 1B). A task involves moving from one of the
four points (start point) to one of the other three points (end point). Each trial consisted of
pre-rest (2 s), task (2.5 s), and post-rest (0.1 s); 36 trials (12 movements × 3) were conducted
in one session, for a total of 10 sessions (i.e., 360 trials). The tasks were randomly selected for
each session. The following four rules were also set as the success conditions for the asks.

(1) No exercise during the rest period. Elbow joint angular velocity does not exceed
2 deg./s during the rest period.

(2) End the task during the task period. End the task between 0–2.5 s.
(3) Place the elbow joint angle at the start point (±2◦.) during the rest period and at the

end point (±6◦.) at the end of the task.
(4) Place the shoulder and elbow joints within 3 cm of the initial position between the

pre-rest and post-rest.
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Figure 1. Experiment Condition: (A) state, (B) task.

The position data were measured at three locations, namely, the hand, elbow, and
shoulder, using Optotrack Certus, (NDI Inc., Waterloo, Canada, sampling rate: 500 Hz).
The EMG was measured at the biceps brachii (×4), brachialis (×1), brachioradialis (×1),
anconeus (×1), triceps brachii (outside) (×2), triceps brachii (long head) (×2), and extensor
carpi radialis longus (×1), totaling 12 locations, by using Trigno Lab Avanti (Delsys, Natick,
MA, USA, sampling rate: 2000 Hz)

2.6. Position Processing

Position processing consisted of noise reduction, work space → joint angle space
conversion, elbow joint angular velocity conversion, coding, and decimation to obtain
the target (rest, flexion, and extension of elbow joint movement) from the positions of the
hands, elbows, and shoulders obtained in the subject experiment.

For noise reduction, we applied a zero-phase low-pass Butterworth filter (2nd order
20 Hz). The Python scipy.signal “butter” and “sosfiltfilt” functions were used.
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Work space→ joint angle space conversion involved the conversion of the positions
of the hand, elbow, and shoulder to the elbow and shoulder joint angles using Equation (8). θsld = atan2d(a, b)− atan2d

(√
a2 + b2 − c2, c

)
θelb = atan2d

(√
a2 + b2 − c2, c

)
+ atan2d

(√
a2 + b2 − d2, d

)
a = yhand − ysld
b = xhand − xsld

c =
(
a2 + b2 + Lsld

2 − Lelb
2)/2Lsld

d =
(
a2 + b2 − Lsld

2 + Lelb
2)/2Lelb

(8)

where atan2d(y, x) is the function that calculates the angle [deg.] from the two-dimensional
coordinate position, xhand and yhand are the hand position [m], xsld and ysld are the shoulder
position [m], and Lsld and Lelb are the upper arm and forearm length, respectively [m].

Elbow joint angular velocity conversion involved the conversion of the joint angle to
the joint angular velocity using Equation (9).

.
θelb,t = (θelb, t+1 − θelb, t) fs (9)

where
.
θelb,t is the elbow joint angular velocity at the discrete time t, and fs is the sampling

frequency.
Coding involved the conversion of the elbow joint angular velocity to the target using

Equation (10). This target was used as the teacher data for model training.

targett =


flexion

( .
θelb,t ≥ 2.0 [deg./s]

)
extension

( .
θelb,t ≤ −2.0 [deg./s]

)
rest (otherwise)

(10)

3. Results

Prior to evaluating the classification performance (Section 3.2) and generalizability
(Section 3.3) of the machine learning model by the proposed SWN method, we investi-
gated the effects of window length for feature extraction and normalization (Section 3.1).
Thereafter, we investigated the effect of the number of subjects used in model OTHER
(Section 3.4). The chance level of accuracy in all results was 33.3% (3 classes: rest, flexion,
and extension).

3.1. Effect of Window Length

In model OWN, we investigated the effect of changing window length for feature
extraction and normalization on accuracy.

First, the effect of window length for feature extraction on accuracy was investigated.
Figure 2 shows the results of changing the window length for feature extraction between 100
and 500 ms in 100 ms intervals and comparing the proposed SWN (the window length fixed
at 500 ms), z-score, and None (no normalization) for the six types of features. Figure 2A
shows that applying SWN improved accuracy as the window length for feature extraction
increased. In contrast, with z-score and no normalization, the accuracy decreased as the
window length for feature extraction increased (Figure 2B,C). We surmise that applying
SWN improves the classification performance of the model by lengthening the feature
extraction window.
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Figure 2. Effect of window length on feature-extraction (OWN). Window length for SWN is fixed at
500 ms. Horizontal axis indicates window-length for feature-extraction and vertical axis indicates
accuracy using a model trained by data from own subject. Each color line shows results for the type
of feature-extraction. (A) the results with the SWN (window length is fixed 500 ms), (B) the results
with the z-score, and (C) the results with None (no normalization).

Next, the effect of window length for normalization on accuracy was investigated. We
changed the window length for normalization between 100 and 500 ms at 100 ms intervals,
and the window length for feature extraction was fixed at 500 ms. Figure 3 shows the
results of calculating with all six feature types. The accuracy fundamentally increases
with the window length for normalization. We recommend that the window length for
normalization should be selected within the range of 200–500 ms, with the window length
that maximizes accuracy being selected.
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We also investigated whether there was any synergy between normalization and
feature extraction window length, but no synergistic effects were observed. This result is
shown in Appendix A.



Sensors 2022, 22, 5005 9 of 16

3.2. Comparison of Normalization Methods

We investigated whether the proposed method (SWN) would improve the classifi-
cation performance of the models using all the features (ALL). Research in recent years
has been conducted to reduce the pre-data measurement of each user by enabling others’
machine learning models to exhibit the same classification performance as one’s own model
(i.e., improving generalizability). Therefore, in this study, we compared the accuracy of
SWN, z-score, and non-normalization (None) between a model learned from one’s own
data (OWN) and a model learned from other subjects’ data (OTHER). The window lengths
for normalization and feature extraction were changed between 100 and 500 ms in 100 ms
intervals, and the maximum accuracy was compared. The number of subjects used when
training model OTHER was set to nine people.

Figure 4 shows a result comparing the accuracy of the model (OWN or OTHER) with
SWN, z-score, and no normalization (None). A comparison between SWN_OWN (accuracy:
77.7 ± 2.9%, blue bar) and None_OWN (accuracy: 56.2 ± 7.1%, orange bar) shows that the
mean accuracy of SWN_OWN significantly increased by 21.5% (Wilcoxon rank-sum test,
p < 0.001) and its standard deviation of accuracy decreased by 4.9%. A comparison between
SWN_OWN (accuracy: 77.7 ± 2.9%, blue bar) and z-score_OWN (accuracy: 77.2 ± 2.4%,
green bar) shows that SWN demonstrated the same performance as z-score on the model
type OWN (p > 0.05). These results show that the proposed SWN can improve the accuracy
of machine learning model, much like the z-score when using the machine learning model
that was trained from one’s own data. Furthermore, a comparison between SWN_OTHER
(accuracy: 63.1 ± 5.1%, blue shaded bar) and None_OTHER (accuracy: 41.4 ± 11.3%, green
shaded bar) shows that the accuracy of SWN_OTHER significantly increased by 21.6%
(p < 0.01) and its standard deviation of accuracy decreased by 6.2%. A comparison between
SWN_OTHER (accuracy: 63.1 ± 5.1%, blue shaded bar) and z-score_OTHER (accuracy:
54.4 ± 8.5%, orange shaded bar) shows that the accuracy of SWN_OTHER significantly
increased by 8.8% (p < 0.01) and its standard deviation of accuracy decreased by 3.4%. These
results show that the proposed SWN can improve the accuracy compared to the z-score
when using other’s machine learning models. These two results show the effectiveness of
the proposed method.
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Figure 4. Performance comparison between normalization methods and model types using feature
ALL. Horizontal axis indicates normalization methods and model types, and vertical axis indicates
accuracy using a model trained by data from other or own subjects using feature ALL. SWN is the
result of applying proposed normalization, z-score is the result of applying compared normalization
and None is the result of not applying normalization.
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3.3. Generalizability Comparison

We investigated whether the proposed SWN method would improve generalizability
(i.e., other’s machine model would exhibit the same classification performance as one’s
own model). A comparison was made between the accuracy of model OTHER with SWN
applied that was used in Section 3.2 in Figure 4 and model OTHER where normalization
was not applied.

From Figure 4, a comparison between SWN_OTHER (accuracy: 63.1 ± 5.1%, blue
shaded bar) and None_OWN (accuracy: 56.2 ± 7.1%, green bar) shows that SWN_OTHER
had an accuracy that was 6.9% higher (p < 0.05) and standard deviation of accuracy that
was 2% lower. However, a comparison between SWN_OWN (accuracy: 77.7 ± 2.2%, blue
bar) and SWN_OTHER (accuracy: 63.1 ± 5.1%, blue shaded bar) shows that SWN_OWN
had an accuracy that was 14.7% higher (p < 0.001) and standard deviation of accuracy
that was 3% lower. These results show that the classification performance of the machine
learning model was improved by the proposed SWN, but even a model that used a large
amount of other’s data did not improve generalizability to the extent that it was similar to
the classification performance using one’s own data.

3.4. Number of Subjects to Train Model (OTHER)

It was shown in Section 3.2 that applying the proposed SWN method could improve
the classification performance of not only the model trained from one’s own data (OWN)
but also the model trained from other user’s data (OTHER). Therefore, investigating the
extent to which the classification performance of the model (OTHER) could be improved
by training the model by mixing the data of multiple other subjects. The number of subjects
used for training the model was changed from 1 to 9. The window lengths for normalization
and feature extraction were changed in the range of 100 to 500 ms in 100 ms intervals,
and the maximum accuracy was compared. All the features (ALL) were used for the
classification. From Figure 5, accuracy for feature ALL for cases of proposed SWN and
z-score increased with subjects used in model training. In contrast, the accuracy did not
either monotonically increase or decrease with respect to the number of subjects for cases
without normalization (None). This implies that high classification performance can be
achieved with an increase in the number of subjects by applying proposed SWN in cases
that use others’ data.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 16 
 

 

3.3. Generalizability Comparison 

We investigated whether the proposed SWN method would improve generalizabil-

ity (i.e., other’s machine model would exhibit the same classification performance as one’s 

own model). A comparison was made between the accuracy of model OTHER with SWN 

applied that was used in Section 3.2 in Figure 4 and model OTHER where normalization 

was not applied. 

From Figure 4, a comparison between SWN_OTHER (accuracy: 63.1 ± 5.1%, blue 

shaded bar) and None_OWN (accuracy: 56.2 ± 7.1%, green bar) shows that SWN_OTHER 

had an accuracy that was 6.9% higher (p < 0.05) and standard deviation of accuracy that 

was 2% lower. However, a comparison between SWN_OWN (accuracy: 77.7 ± 2.2%, blue 

bar) and SWN_OTHER (accuracy: 63.1 ± 5.1%, blue shaded bar) shows that SWN_OWN 

had an accuracy that was 14.7% higher (p < 0.001) and standard deviation of accuracy that 

was 3% lower. These results show that the classification performance of the machine learn-

ing model was improved by the proposed SWN, but even a model that used a large 

amount of other’s data did not improve generalizability to the extent that it was similar to 

the classification performance using one’s own data. 

3.4. Number of Subjects to Train Model (OTHER) 

It was shown in Section 3.2 that applying the proposed SWN method could improve 

the classification performance of not only the model trained from one’s own data (OWN) 

but also the model trained from other user’s data (OTHER). Therefore, investigating the 

extent to which the classification performance of the model (OTHER) could be improved 

by training the model by mixing the data of multiple other subjects. The number of sub-

jects used for training the model was changed from 1 to 9. The window lengths for nor-

malization and feature extraction were changed in the range of 100 to 500 ms in 100 ms 

intervals, and the maximum accuracy was compared. All the features (ALL) were used 

for the classification. From Figure 5, accuracy for feature ALL for cases of proposed SWN 

and z-score increased with subjects used in model training. In contrast, the accuracy did 

not either monotonically increase or decrease with respect to the number of subjects for 

cases without normalization (None). This implies that high classification performance can 

be achieved with an increase in the number of subjects by applying proposed SWN in 

cases that use others’ data. 

 

Figure 5. Effect of the number of subjects to train model (OTHER). Horizontal axis indicates number 

of subjects to train model (OTHER) and vertical axis indicates accuracy using a model trained by 

data from other subjects. Each color line shows results for the type of normalization. 

Figure 5. Effect of the number of subjects to train model (OTHER). Horizontal axis indicates number
of subjects to train model (OTHER) and vertical axis indicates accuracy using a model trained by data
from other subjects. Each color line shows results for the type of normalization.

Next, to investigate whether the increase in the number of subjects had a significant
effect, we compared cases with either nine subjects (highest accuracy in Figure 5) and one
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subject (lowest accuracy in Figure 5) used in the training of the machine learning model.
The results show p < 0.01 on proposed SWN, p < 0.001 on z-score, and p ≥ 0.05 on None
(no normalization). It implies increasing the accuracy by normalization (proposed SWN
and z-score).

4. Discussion

In this study, we proposed a new normalization method, SWN, to improve the classifi-
cation performance of machine learning models. We succeeded in increasing classification
accuracy from 56.2% to 77.7%, an increase of 21.5%, by applying the SWN (blue and
green bar with no line in Figure 4). Furthermore, the standard deviation of accuracy de-
creased from 7.1% to 2.9%, a decrease of 4.9%. The results show the effectiveness of the
proposed method.

In this section, we discuss the performance of SWN compared with z-score and no
normalization (Section 4.1), the parameters and features selection on SWN (Section 4.2),
the factors that improve the model classification performance by the proposed method
(Section 4.3), and the feasibility of real-time prediction (Section 4.4).

4.1. Performance of SWN

The proposed SWN can improve a classification accuracy (OWN) because the proposed
SWN (77.7%) has a 21.5% higher accuracy than no normalization (56.2%) from Figure 4 in
Section 3.2. However, the proposed SWN has the same accuracy as the z-score (77.2%) and
is not better than the z-score. The advantage of the proposed SWN is that it normalizes EMG
signals in each sliding window and does not need a reference value (e.g., min, max, mean,
or standard deviation of each EMG channel). However, the z-score method normalizes
the signal using all the data. If the measurement is done across days, the EMG signals
may vary between days and the normalization could negatively affect the accuracy. The
same effects are likely to occur in the case when the sensor placement changes and muscles
fatigue. Therefore, we need to investigate whether the proposed SWN is better than the
z-score using data that changes depending on the measurement day, sensor location, and
muscle fatigue statement.

In recent years, research has focused on enabling other people’s machine learning
models (model type of OTHER) to exhibit the same classification performance as machine
learning models trained from their own data (model type of OWN). Therefore, we in-
vestigated whether the SWN proposed in Section 3.3 could deliver the same or higher
performance than the model trained on our own data. As a result, SWN_OTHER (63.1%)
had a 14.7% lower accuracy than SWN_OWN (77.7%); however, it was higher than z-
score_OTHER (54.4%) and None_OTHER (41.4%). The proposed SWN has better model
accuracy when using other people’s data than the z-score. This could be because SWN
can normalize the myoelectric signal within the sliding window and the difference of data
between subjects are reduced while z-score and None are influenced by such differences.
This point is the advantage of the proposed SWN compared with the z-score. Furthermore,
the accuracy increased with the number of subjects to train model (OTHER), much like
the previous study [31,36,37]. Therefore, the proposed SWN has the same effect as the
previous study’s methods. However, similar to previous studies, a large amount of subjects’
data is needed to obtain high classification accuracy when applying the proposed SWN to
model OTHER.

4.2. Parameters and Features Selection of SWN

The parameters of SWN are the window length for normalization and feature extrac-
tion. They should be fundamentally set to long to improve the accuracy of the model
when applying the proposed SWN. The window length for normalization should be set
between 200–500 ms and the window length for feature extraction should be set at 500 ms
from Figures 2 and 3. Furthermore, the effect of window length was investigated by using
data with a short trial of 4 s in this paper. However, if the data length is more than 4 s,
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increasing the window length for normalization and feature extraction to more than 500 ms
may improve the accuracy of the model. Therefore, we need to investigate the effect of the
window length on normalization and feature extraction for data, where one trial of the
measurement experiment is longer than 10 s.

The feature STFT has the highest accuracy on SWN from the five feature types: MAV,
MWL, DRMS, STFT, and SWT, as shown Figure 2. Although SWT has the highest accuracy,
the other four features have almost the same accuracy on no normalization (None). Thus,
even though high accuracy was obtained in the previous study, it may not be possible to ob-
tain it in the case of the proposed SWN. Additionally, using multiple features (feature ALL)
has a higher accuracy than single features (MAV, MWL, etc.) as shown in Figures 2 and 3.
Hence, classification accuracy can be enhanced by incorporating multiple features.

4.3. Analysis of SWN

We investigated the effect of dividing with the standard deviation of EMG, which
was thought to have led to the improvement of the classification performance of machine
learning models and is a feature of SWN. Visualizing the relationship of standard deviation
of EMG and the feature of EMG by drawing a confidence ellipse with a standard deviation
of 2. The “confidence_ellipse” function of matplotlib in Python was used for implemen-
tation. Figure 6 shows an example of the results of treating MAV as a representative of
the features. The S.D. of EMG-MAV distribution in the case with normalization (SWN)
had a weakly negative or no correlation, whereas the distribution in the case without
normalization (None) had a strongly positive correlation.
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Figure 6. Example of the distribution analysis between standard deviation of EMG and feature each
subject on the channel 2 (MAV). (A) Normalization (SWN), (B) No Normalization (None). Both MAV
of SWN and None are normalized (max: 1.0) by maximum data in the 10 subjects.

The results obtained in Figure 6 are used as a basis for conducting a correlation analysis
of cases with normalization (SWN) and without normalization (None). The representa-
tive feature was MAV, which was the same as in Figure 6. We calculated the correlation
coefficient of the S.D. of EMG vs. MAV for each channel and subject, taking the mean
value. The correlation coefficient was −0.33 on the with normalization (SWN) and 0.90
on the without normalization (None). Therefore, the S.D. of EMG and MAV had a weakly
negative correlation for cases with normalization (SWN) and a strongly positive correlation
for cases without normalization (None). These results imply that one of the factors that
improved the classification performance of the machine learning model was the reduction
of the influence of the standard deviation on the features by the proposed SWN method.
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4.4. Comparison of Calculation Time

SWN was effective in improving the classification performance of the machine learn-
ing model. However, it is still unknown whether this can satisfy the required execution
speed for real-time processing. Therefore, the preprocessing and normalization shown in
Section 2.4 were executed at intervals of 20 ms (50 Hz), and the mean execution time was
compared between cases with normalization (SWN) and without normalization (None).
The execution environment was as follows: Intel(R)Core (TM) i7-9700K CPU @ 3.60 GHz,
Python 3.8.12. The result shows 409 µs (SWN) and 333 µs (None). The normalization rate
in 409 µs was 18.6%, a minimal effect. It implies the proposed SWN can be implemented
on a low-computing-power device such as a microcomputer. These results indicate that the
proposed SWN method can be implemented in real time.

5. Conclusions

In this paper, we proposed a normalization method (SWN) that used the sliding win-
dow and z-score to improve the classification performance of devices using EMG. Applying
SWN improved the accuracy by 21.5% compared to the case without normalization. Even
when a machine learning model that was trained with other’s data was used, the accuracy
improved by 21.6% compared to the case without normalization and 8.8% compared to the
case with z-score. These results show that the classification performance of the machine
learning model could be improved by the proposed method (SWN). Results of investigating
the relationship between the standard deviation and features also show that applying the
SWN changed the correlation between the standard deviation and features from that of a
strongly positive one to a weakly negative one. This was assumed to be one of the factors
that improved the classification performance of machine learning models.

The focus of future studies will be on the following two points. First, we found that the
proposed SWN has a higher accuracy than the z-score on the model using other people’s
data. However, the proposed SWN has almost the same accuracy as the z-score in the case
of using own data. To determine whether the proposed SWN is superior to the z-score, we
need to analyze in detail whether it is robust to various data attributes such as measurement
day, sensor location, and muscle fatigue. Second, we applied the proposed SWN to the
classification model. We need to investigate whether the proposed SWN can improve the
performance of the regression model that predicts kinematic parameters such as the joint
angle and angular velocity.
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Appendix A Effect of Window Length for Feature-Extraction and Normalization

In Section 3.1, we investigated the effect of window length by fixing the window
length for feature extraction or normalization at 500 ms. In this session, we investigate
the effect of window length by not fixing the window length for feature extraction and
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normalization. The window length for feature extraction and normalization is changed in
the range of 100–500 ms in 100 ms increments. We compare proposed SWN, z-score, and
None (no normalization) in the six types of features by using model OWN (Figure A1).
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Figure A1. Effect of the window length for feature-extraction and normalization (OWN). Horizontal
axis indicates window-length for feature-extraction and vertical axis indicates accuracy using a
model trained by data from own subject. Each color line shows the normalization methods. The
black line shows no-normalization (None), gray line shows z-score and other color line shows with
normalization each window-length for normalization. (A–F) indicate feature-extraction methods.

From Figure A1, the accuracy increases with window length for feature extraction,
and does not significantly change with window length for normalization, like in Section 3.1.
Furthermore, there are no interactions with window length for feature extraction and
normalization.
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