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Abstract

Neural networks for the processing of appetitive and aversive information, in isolation, have been 

well characterized. However, how the brain integrates competing signals associated with 

simultaneous appetitive and aversive information is less clear. In particular, it is unknown how the 

presence of concurrent reward modulates the processing of an aversive event throughout the brain. 

Here, we utilized a four-armed bandit task in an fMRI study to measure the representation of an 

aversive electric shock with and without the simultaneous receipt of monetary reward. Using a 

region of interest (ROI) approach, we first identified regions activated by the experience of 

aversive electric shock, and then measured how this shock-related activation is modulated by 

concurrent reward using independent data. Informed by prior literature and our own preliminary 

data, analyses focused on the dorsolateral prefrontal cortex, anterior and posterior insula, anterior 

cingulate cortex, and the thalamus and somatosensory cortex. We hypothesized that the neural 

response to punishment in these ROIs would be attenuated by the presence of concurrent reward. 

However, we found no evidence of concurrent reward attenuating the neural response to 

punishment in any ROI and also no evidence of concurrent punishment attenuating the neural 

response to reward in exploratory analyses. Altogether, our findings are consistent with the idea 

that neural networks responsible for the processing of reward and punishment signals are largely 

independent of one another, and that representations of overall value or utility are arrived at 

through the integration of separate reward and punishment signals at later stages of information 

processing.
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1. Introduction

Decision-making involves the evaluation of the potential costs and benefits of different 

possible actions one can take, based on prior experience, that ultimately results in choice 

behavior (O’Doherty et al., 2017). Effective decision-makers seek to maximize rewards 

while minimizing aversive outcomes and thereby maximize overall utility. In experimental 

paradigms, decision-making tasks commonly consider the role of reward or punishment in 

isolation, in which the explicit goal of the task is either to maximize reward or minimize 

punishment (Burnett et al., 2010; Figner et al., 2009; Ilango et al., 2012; Navalpakkam et al., 

2010; Paulsen et al., 2011; Singh and Khan, 2012; Stark et al., 2004; Stevens et al., 2014; 

Worthy et al., 2011). Even tasks that incorporate both reward and punishment, such as the 

Iowa Gambling Task, often utilize a design in which a given choice is either rewarded 

(monetary gain) or punished (monetary loss), and the goal of the task is to maximize overall 

rewards across multiple decisions (Bechara et al., 1994; Toplak et al., 2010). Under such 

conditions, a given outcome is either distinctly positive or distinctly negative, and these 

individual outcomes must be integrated over time in order to arrive at a representation of 

overall utility.

What about situations in which a given decision can have multiple consequences, some of 

which are positive and some of which are negative? In this sort of situation, it is necessary to 

balance the weight of these positive and negative outcomes in order to arrive at an integrated 

representation of the overall utility of a single decision. A given reward is not as desirable in 

situations in which it is accompanied by an aversive outcome, and a given punishment is not 

as strong of a deterrent in situations in which it is accompanied by a rewarding outcome. 

How does the brain perform the computations necessary to arrive at an understanding of 

such tradeoff?

One possibility is that the brain represents reward and punishment independently via distinct 

neural systems specialized for detecting the respective outcome, and these punishment- and 

reward-specific representations are only integrated into something akin to a common utility 

currency at a later stage of value integration (Yacubian et al., 2006). By this account, the 

brain network activated by punishment will be largely unaffected by reward considerations. 

On the other hand, the receipt of reward may affect the representation of the punishment 

itself and vice versa, with one outcome suppressing the representation of the other. By this 

second account, reward and punishment share a competitive relationship in how they are 

represented in the brain. Such competition could extend all the way to the sensory-

discriminative aspects of aversive information processing, or be restricted to the affective 

and/or cognitive-evaluative aspects.

A distributed neural network involved in the processing of the sensory-discriminative, 

affective, and cognitive-evaluative components of aversive outcomes has been identified that 

includes the thalamus and somatosensory cortex (DaSilva et al., 2002; Davis et al., 1998; 

Wager et al., 2013), dorsolateral prefrontal cortex (dlPFC, see Seminowicz and Moayedi, 

2017, for an extensive review), anterior insula (AI, Davis et al., 1998; Starr et al., 2009; 

Wager et al., 2013), posterior insula (PI, Davis et al., 1998; Kross et al., 2011; Wager et al., 

2013), and anterior cingulate cortex (ACC, Fuchs et al., 2014; Price, 2000; Wager et al., 
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2013). The thalamus, somatosensory cortex, and PI have been implicated in the sensory-

discriminative dimension of aversive information processing (e.g., DaSilva et al., 2002; 

Davis et al., 1998; Wager et al., 2013), the AI and ACC in the affective dimension (e.g., 

Davis et al., 1998; Fuchs et al., 2014; Price, 2000), and the dlPFC in the cognitive-evaluative 

dimension, endogenously mitigating the experience of pain (Seminowicz and Moayedi, 

2017). The extent to which these different components of punishment processing are 

integrated with the representation of other outcomes (and in particular, reward) is unclear.

Some studies have utilized the approach-avoidance conflict (AAC) paradigm to identify 

brain regions specifically recruited during conflict (Amemori and Graybiel, 2012; Aupperle 

et al., 2015). Others have examined interactions between reward and punishment in neuro-

economical models of valuation (Park et al., 2011) and in the anticipation of possible 

outcomes (Choi et al., 2014), suggesting widespread representations of expected value that 

integrate reward and punishment information. Talmi et al. identified the modulation of 

reward anticipation in the ventral striatum and rostral anterior cingulate cortex (rACC) by 

anticipated punishment: reward predictions were reduced when a painful compared to a 

neutral stimulus would accompany the reward (Talmi et al., 2009). However, to our 

knowledge, the effect of concurrent reward on the processing of punishment outcomes (i.e., 

the experience of the punishment itself) remains unexplored. In an effort to address this gap 

in knowledge, our focus in the present study was explicitly on the role of reward in 

modulating the neural representation of punishment.

In the present fMRI study, we used monetary reward and punishment in the form of electric 

shock to examine the modulation of punishment processing due to simultaneous presentation 

of reward. Monetary gains and electric shock are frequently manipulated to study reward and 

punishment processing in the brain, including in studies assessing the relationship between 

them (e.g., Choi et al., 2014; Talmi et al., 2009). Although they differ in that money is a 

secondary reinforcer and shock is a primary punisher, the manipulation of monetary reward 

still permits an opportunity to assess whether concurrent reward influences the 

representation of punishment more broadly. In light of prior precedent, we chose to use 

money as a reward and electric shock as a punishment outcome.

More specifically, to address our research question, we utilized a functional localizer 

approach (Poldrack, 2007) to identify regions of interest (ROIs) involved in representing 

punishment and probe the nature of these representations during situations of conflicting 

reward and punishment (presented simultaneously), punishment only, and no feedback. ROIs 

sensitive to the experience of punishment without concurrent reward were identified through 

a localizer scan. Our ROIs encompassed brain areas previously identified in punishment 

processing including the dorsolateral prefrontal cortex (dlPFC), anterior and posterior insula 

(AI/PI), anterior cingulate cortex (ACC), and the thalamus and somatosensory cortex (SSC). 

During the main portion of the experiment, participants performed a four-armed bandit task 

with pseudo-random outcome probabilities, where reward alone, punishment alone, reward 

and punishment simultaneously, or no outcome are equiprobable. In this sense, our 

behavioral paradigm amounts to a gambling task, although we included a choice element in 

an effort to help maintain participant engagement and render the outcomes behaviorally 

relevant. By equating the frequency of different outcomes, we were able to measure 
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outcome-specific processing uncontaminated by differences in prediction errors brought 

about by differences in learning or behavioral strategies. We therefore limited our research 

question to decision-making contexts in which outcomes follow actions that participants 

take, which has similarly been the focus of related work in this area (Choi et al., 2014; Talmi 

et al., 2009).

Of interest in the present study was whether and where punishment-sensitive responses in 

brain will be reduced by the receipt of concurrent reward, with the experience of reward 

attenuating the representation of the aversive outcome. Based on the work by Talmi et al. 

(2009) in the context of reward prediction and work by Choi et al. (2014) in the context of 

outcome anticipation, we hypothesized that at least some of the aforementioned ROIs will 

demonstrate an attenuated response to punishment in the presence of concurrent reward. We 

did not have specific hypotheses concerning which regions will show this attenuated 

response and therefore endeavored to include a wide variety of punishment-sensitive regions 

in our analyses to provide a comprehensive account of the nature of reward-dependent 

modulation.

Hypotheses:

Our overarching hypothesis was that the neural response to punishment will be attenuated by 

concurrent reward. Specifically, concerning the hemodynamic response to feedback: 

punishment alone > simultaneous punishment and reward. This hypothesis was tested in the 

following ROIs that were both determined a priori and supported by pilot data (see 

Methods), being examined independently for each ROI given that we have no a priori 
hypotheses concerning which regions are more or less likely to demonstrate the predicted 

relationship:

H1a. right dlPFC

H1b. left dlPFC

H1c. mid ACC

H1d. thalamus (bilateral)

H1e. contralateral (right) somatosensory cortex

H1f. left AI

H1g. right AI

H1h. left PI

H1i. right PI

2. Methods

2.1. Participants

At least 29 but no more than 40 participants were proposed a priori to be recruited from the 

Texas A&M University community (see Preliminary Data and Power Analysis below). 33 

participants were recruited but two participants withdrew from the study prior to completing 
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the fMRI session (see Experiment Procedure). Thus, 31 participants (16 females), between 

the ages of 18 and 35 inclusive (M = 22.8y, SD = 4.1y), ultimately completed the study and 

contributed data. All participants reported normal or corrected-to-normal visual acuity and 

normal color vision. All procedures were approved by the Texas A&M University 

Institutional Review Board and are consistent with the principles expressed in the 

Declaration of Helsinki. Written informed consent was obtained for each participant.

2.2. Preregistration of study protocol

The approved study protocol was made publicly available following in principle acceptance 

on the Open Science Framework (DOI:10.17605/OSF.IO/A5PXZ, https://osf.io/a5pxz/), 

prior to data collection (excluding the pilot data referenced below and in the approved 

protocol).

2.3. Experiment Procedure

Participants were scheduled for an initial in-lab visit for 1 h and a scan-center visit on the 

following day. During their initial appointment, participants came into the lab for 

consenting, MRI safety screening, and to practice the decision-making tasks to acquire 

familiarity with the different possible outcomes as well as the stimulus-response mapping. 

Each eligible participant completed a single 1 h fMRI session that took place the following 

day. During the fMRI session, participants completed 4 runs of the (main) conflict task, an 

anatomical scan, and a punishment functional localizer scan. Data from a functional 

localizer scan for regions sensitive to reward feedback were also acquired for a pilot study 

examining the effect of reward feedback on stimulus-specific reactivation in the visual 

cortex that is unrelated to the questions posed in the present study. The functional localizer 

scans were performed after the main task in order to avoid potentially biasing participants 

towards reward-seeking or punishment-avoidance; this order allows us to assess how reward 

modulates punishment responses when the two outcomes were only ever equiprobable in the 

task.

2.4. Apparatus

During the initial in-lab visit, all tasks were completed on a Dell OptiPlex 7040 computer 

(Dell, Round Rock, TX, USA) equipped with Matlab software (Mathworks, Natick, MA, 

USA), and Psychophysics Toolbox extensions (Brainard, 1997). Stimuli were presented on a 

Dell P2717H monitor. The participants viewed the monitor from a distance of approximately 

70 cm in a dimly lit room. Paired electrodes (BioPac Systems, Inc., Goleta, CA, USA) were 

attached to the left forearm of each participant, and electric shocks were delivered through 

an isolated linear stimulator under the constant current setting (STMISOLA, BioPac 

Systems), which were controlled by custom Matlab scripts.

For the fMRI portion of the experiment, stimulus presentation was controlled by an Invivo 

SensaVue display system. The eye-to-screen distance was approximately 125 cm. Key 

responses were entered using two Cedrus Lumina two-button response pads. MRI-

compatible electrodes (BioPac Systems) were attached to the left ankle of each participant, 

and electric shocks were delivered through an STM100C controlled by an MP160 system 

(BioPac Systems) triggered by custom Matlab scripts via parallel port interface.
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2.5. Procedure

For all tasks, each trial consisted of a fixation display, choice array, an inter-stimulus-interval 

(ISI), a feedback display, and an inter-trial-interval (ITI). The fixation display consisted of a 

white fixation cross (0.8° × 0.8° visual angle) for 1200 ms (see Fig. 1). The choice array 

consisted of the fixation cross flanked by two boxes to the left and right (each box 3.7° × 

4.8°). The two inner boxes were 4.9° center-to-center from the fixation cross and the two 

outer boxes were 7.4° center-to-center from the neighboring box. The color of each box was 

drawn from the following set without replacement {red (RGB: 255 0 0), green (RGB: 0 255 

0), blue (RGB: 0 0 255), yellow (RGB: 255 255 0)}.

Prior to completing the decision-making tasks, participants underwent a shock calibration 

procedure to achieve a level of shock that is “unpleasant, but not painful” (Murty et al., 

2012; Schmidt et al., 2015, 2017). In the task, participants were instructed to choose a 

colored box, but if a decision was not made fast enough a random box was chosen for them. 

During the in-lab portion, box choices were made using the keyboard via the “Z”, “X”, “N”, 

and “M” keys corresponding to location from left-to-right. During the fMRI portion, box 

choices were made using two dual-button response pads (middle and index finger of each 

hand), again corresponding to the location of the boxes from left-to-right. The choice array 

remained on screen for 2400 ms. Whether or not a response was logged within this 2400 ms, 

all four boxes disappeared and only the fixation cross remained visible during the ISI. The 

ISI lasted for 600, 1200, or 1800 ms (equally distributed). The feedback display was then 

presented for 1500 ms, which consisted of the fixation cross, the amount of monetary reward 

earned on the current trial (+15¢ or 00¢), and the total reward accumulated across all trials. 

In this way, the reward and no reward feedback differ only in the magnitude of the monetary 

increment indicated (+15¢ or +00¢), being equated for reading demand and number of 

characters (physical salience). Electric shock, if administered on that trial, was delivered 

simultaneously with the onset of the feedback display. Lastly, the ITI lasted for 1200, 3000, 

or 4800 ms (exponentially distributed, with 1200 ms occurring most frequently). The 

fixation cross disappeared for the last 200 ms of the ITI to indicate to the participant that the 

next trial was about to begin.

2.6. Design

The punishment localizer task consisted of one run of 64 trials while each of the 4 runs of 

the conflict task consisted of 32 trials. During the punishment localizer task, there was never 

any money earned (every trial was +00¢). To determine the ROIs, the localizer task was 

designed to yield punishment or no punishment an equal number of times regardless of the 

choices participants made. Similarly, for the conflict task, the four outcomes of reward only, 

punishment only, simultaneous reward and punishment, or no outcome were equiprobable 

regardless of the choices participants made, such that all possible outcomes were 

experienced with equal frequency for every participant. It is important to note that 

punishment only feedback was still accompanied by text indicating the (lack of) monetary 

increment and total earnings, such that the receipt of reward was not accompanied by 

increased information processing demands. The location of each color was determined 

randomly on each trial, and the order of outcomes was pseudorandomly determined with the 

constraint that each type of outcome occurred equally-often in each run of the task.
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2.7. MRI data acquisition

Images were acquired using a Siemens 3-T MAGNETOM Verio scanner with a 32-channel 

head coil at the Texas A&M Institute for Preclinical Studies (TIPS), College Station, TX. 

High-resolution whole-brain anatomical images were acquired using a T1-weighted 

magnetization prepared rapid gradient echo (MPRAGE) pulse sequence [150 coronal slices, 

voxel size = 1 mm isotropic, repetition time (TR) = 7.9 ms, echo time (TE) = 3.65 ms, flip 

angle = 8°]. Whole-brain functional images were acquired using a multiband T2*-weighted 

echo planar imaging (EPI) pulse sequence [56 axial slices, multiband factor = 8, TR = 600 

ms, TE = 29 ms, flip angle = 52°, image matrix = 96 × 96, field of view = 240 mm, slice 

thickness = 2.5 mm with no gap]. Each EPI pulse sequence began with dummy pulses to 

allow the MR signal to reach steady state and concluded with an additional 6 s blank epoch 

to allow for measurement of the unfolding of the blood oxygenation level dependent 

(BOLD) response.

2.8. Proposed analyses

2.8.1. Preprocessing—All preprocessing was conducted using the AFNI software 

package (Cox, 1996). Each EPI run for each participant was motion corrected using the 

image following the anatomical scan as a reference. EPI images were then coregistered to 

the corresponding anatomical image for each participant. These images were then non-

linearly warped to the Talairach brain (Talairach and Tournoux, 1988) using 3dNwarpApply 

to aid in identification of the ROIs. Finally, the EPI images were converted to percent signal 

change normalized to the mean of each run, and then spatially smoothed to a resulting 5 mm 

full-width half-maximum using 3dBlurToFWHM.

2.8.2. Statistical analysis—All statistical analyses were performed using the AFNI 

software package. For the localizer task, the data was subjected to a general linear model 

(GLM) with regressors for (1) the presentation of the choice array and corresponding button 

press, (2) feedback with shock, and (3) feedback without shock, in addition to standard 

nuisance regressors for six degrees of head motion and drift in the scanner signal. 

Furthermore, images during which head motion exceeds one-half the width of a voxel, along 

with the image preceding and following such motion spikes, were censored from analysis. 

Each of the three task-related regressors were modeled using 16 finite impulse response 

functions (FIRs), beginning at event onset. The mean beta value for each regressor from 3 to 

6 s post stimulus presentation, corresponding to the approximate peak of the response, were 

extracted. Analysis of the data from the main task followed this same approach, only with 

four different feedback regressors corresponding to the four different types of possible 

outcomes (punishment alone, reward alone, punishment and reward simultaneously, no 

reward or punishment).

To define the targeted ROIs, we contrasted the peak of the hemodynamic response (averaged 

over the 3–6 s time period) for feedback with and without punishment separately for each 

participant. Up to the 50 most significant voxels in each region (plus ties) were identified, 

provided that each voxelwise p < 0.01. To maintain consistency in ROI definition across 

participants, particularly for larger regions such as the dlPFC, each cluster for each ROI 

shared some overlap with the corresponding clusters identified in Fig. 2, with the exception 
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of the thalamus given its small size and well-defined anatomical structure. For the main task, 

the peak of the response to punishment, reward + punishment, and neither outcomes were 

extracted from these ROIs (i.e., the mean of the beta values 3–6 s post stimulus presentation, 

computed separately for each voxel and then averaged over all voxels in an ROI to arrive at a 

mean level of activation of that ROI) and compared, with particular emphasis on the 

comparison of punishment with and without concurrent reward (punishment versus neither 

outcome served as a positive control, see below). We tested our main hypothesis separately 

and independently for each ROI as outlined in the Introduction, applying Bonferroni 

correction for multiple comparisons.

2.8.3. Positive control—The appropriateness of each ROI was confirmed by 

contrasting punishment alone with feedback consisting of no punishment or reward, which 

provided a replication of the contrast used to define the region using independent data. To be 

included in the primary analysis (comparing punishment vs. punishment + reward), for a 

given ROI this contrast of punishment vs. no reward or punishment needed to be significant 

at p < 0.005. ROIs not meeting this criterion were deemed to have potentially insufficient 

sensitivity to detect a modulation of the punishment response by reward and excluded from 

the main analysis.

2.8.4. Criteria for data exclusion—Data for a given participant was discarded and 

replaced if (a) more than 10% of all time points were censored due to motion spikes, (b) 

motion artifact in the anatomical image produced noticeable banding that obscures structure, 

(c) the participant did not make a behavioral response on at least 85% of trials, which would 

suggest low task engagement, and/or (d) no a priori ROIs were identified in the localizer 

scan. In the event of scanner failure or crashing of the presentation software, the run affected 

was repeated if available scanner time allowed; to be included in the final dataset, 

participants needed to complete at least 80% of trials in each of the localizer and main tasks. 

In the present study, no data needed to be discarded based on these criteria.

2.9. Preliminary Data and Power Analysis

Prior to submission as a pre-registered report, we collected data from five participants using 

the above-described protocol. We were able to identify bilateral AI, bilateral PI, bilateral 

dlPFC, thalamus, contralateral SSC, and ACC, in all five participants from the functional 

localizer scan, which served as the a priori ROIs to be used for the present study (Fig. 2) and 

are reflected in the a priori hypotheses (see Introduction).

To obtain a measure of effect size for the potentially suppressing influence of concurrent 

reward on the representation of punishment, we computed the primary contrast of interest 

(punishment alone vs. simultaneous reward and punishment) for each ROI and then 

collapsed across ROI for each participant to arrive at an overall average influence of 

concurrent reward in reducing punishment-evoked activity. The resulting effect size for this 

collapsed comparison was dz = 0.863. A similar analysis using the average of the computed 

effect sizes for each individual region (without collapsing) yielded a slightly larger effect 

size estimate.
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Although there are no published studies to our knowledge that have examined the role of 

reward in modulating the neural response to punishment, there is one study that examined a 

different modulator (concurrent cognitive processing) in attenuating the neural response to 

punishment (pain) using an ROI approach with regions that overlap with the present study 

(Seminowicz et al., 2004). In that study, the effect size of the attenuation effect was dz = 

0.675 or greater in each of the significant regions identified. As the lowest of all estimates 

obtained, we chose dz = 0.675 for the purpose of power analysis.

A power analysis using G*Power 3 (Faul et al., 2007) with effect size dz = 0.675, desired 

power β = 0.8 and α = 0.05/9 (one-tailed, experiment-wise α = 0.05, Bonferroni corrected 

for 9 ROIs) yielded a sample size of 29, which was the minimum sample size we proposed 

to collect. We proposed to collect data until (a) each a priori ROI was represented in 29 

participants, yielding the desired minimum power in each ROI, or (b) data from 40 retained 

participants were collected, at which point study resources would have been exhausted. In 

the event that an ROI had fewer than 29 participants represented in the final sample, this ROI 

would be dropped from the main analysis along with its corresponding hypothesis, although 

the results of the contrast would still be reported as an exploratory/secondary analysis for 

transparency.

3. Results

All anonymized study data, digital materials/code, and the laboratory log has been made 

freely available on the Open Science Framework (DOI:10.17605/OSF.IO/V4HEU, https://

osf.io/v4heu). After collecting data from 31 participants, all a priori ROIs were represented 

in at least 29 participants: two participants did not show significant voxel activation in the 

mid-ACC. We first applied our positive control assessment to each ROI by contrasting 

punishment feedback (P) vs. no outcome (None), which showed significant activation at the 

specified p < 0.005 level for the mid-ACC, t(28) = 3.05, p = 0.0025, thalamus, t(30) = 4.05, 

p = 0.00017, contralateral SSC, t(30) = 8.22, p < 0.00001, left AI, t(30) = 5.32, p < 0.0001, 

right AI, t(30) = 6.95, p < 0.00001, left PI, t(30) = 8.35, p < 0.00001, and right PI, t(30) = 

7.47, p < 0.00001 (see Fig. 3). However, neither the left nor right DLPFC passed this 

positive control, ts(30) < 2.07, ps > 0.024, and were thus excluded from further analysis.

To evaluate our overarching hypothesis that the neural response to punishment will be 

attenuated by concurrent reward, we compared voxel activation in the aforementioned seven 

regions corresponding to punishment feedback (P) vs. concurrent punishment and reward 

feedback (P + R). In no region was a significant difference evident, with the direction of 

effect being opposite the direction hypothesized in each region, ps > 0.90 (Fig. 3). Thus, we 

see no evidence that reward attenuates the representation of simultaneous punishment.

3.1. Exploratory analyses

Given the surprising pattern of feedback responses observed above, with the direction of 

effect being the opposite of what was predicted, we first probed whether the apparent 

increase in feedback-elicited activation by concurrent punishment and reward vs. to 

punishment alone would have been sufficiently robust to have passed correction for multiple 

comparisons had our hypothesis been two-tailed. In the contralateral SSC, this was the case, 
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t(30) = 4.28, p = 0.00018, although for the other six ROIs the difference would have been 

non-significant, ts < 2.71, ps > 0.011.

In a second exploratory analysis, we looked to evaluate whether the neural response to 

reward would be attenuated by concurrent punishment, as suggested by a prior study 

focusing on reward anticipation (Talmi et al., 2009). Although it was not of primary interest, 

to allow us to address another research question concerning the influence of reward feedback 

on stimulus-specific reactivation in the visual cortex not described here, participants also 

completed a reward feedback localizer (see Methods), allowing us to conduct a parallel 

analysis concerning the manner in which concurrent punishment influences reward 

processing. Mirroring our analyses for the punishment localizer, but without pre-specified 

constraints for the boundaries of regions from pilot data, ROIs sensitive to reward feedback 

were identified: From data collected in the reward localizer scan of the 31 participants, we 

identified (A) ventral striatum (VS) in 27 participants, (B) posterior parietal cortex (PPC) in 

31 participants, (C) medial prefrontal cortex (mPFC) in 30 participants, and (D) 

orbitofrontal cortex (OFC) in 29 participants (see Fig. 4). Again, as a positive control, we 

evaluated the appropriateness of each ROI by contrasting reward alone vs. feedback 

consisting of neither reward nor punishment (i.e., no outcome) in the main task, with a 

Bonferroni corrected alpha level of 0.0125 (0.05/4). Voxel activation was increased from 

reward feedback (R) compared to no outcome (None) in the VS, t(26) = 4.93, p = 0.00004, 

the PPC, t(30) = 2.85, p = 0.0079, the mPFC, t(29) = 3.01, p = 0.0054, and the OFC, t(28) = 

4.93, p = 0.0059 (Fig. 5). However, we found no statistical differences in any of the ROIs 

when evaluating neural responses to reward feedback (R) vs. concurrent reward and 

punishment feedback (R + P), ts < 1.85, ps > 0.074 (Fig. 5).

Lastly, we looked to evaluate whether choice behavior in the task was influenced by the 

nature of the outcomes participants received. We conducted a within-subjects ANOVA over 

the probability to choose the same color box again following each type of outcome (reward, 

punishment, concurrent reward and punishment, no outcome) and found a significant 

difference depending on the outcome, F(1,30) = 12.73, p < 0.001, η2 = 0.298 (Fig. 6). To 

determine whether subjects were adopting a “Win-Stay-Lose-Switch” strategy, we further 

evaluated whether subjects were more likely to choose the same color box following receipt 

of reward (reward and concurrent reward + punishment vs. punishment and no feedback) 

and whether subjects were less likely to choose the same color box following receipt of 

punishment (punishment and concurrent reward + punishment vs. reward and no feedback). 

We found that subjects were significantly more likely to choose the same color box that they 

did on the prior trial following receipt of reward, t(30) = 3.13, p = 0.004, drm = 0.561, while 

the opposite was true following receipt of punishment, t(30) = 2.45, p = 0.019, drm = 0.443.

4. Discussion

Based on our neuroimaging data, we found no evidence in support of our a priori hypothesis 

that neural responses to punishment are attenuated by concurrent reward. Our ROIs for this 

analysis encompassed the sensory-discriminative (thalamus, somatosensory cortex, PI; e.g., 

DaSilva et al., 2002; Davis et al., 1998; Wager et al., 2013) and affective (AI and ACC; e.g., 

Davis et al., 1998; Fuchs et al., 2014; Price, 2000) dimensions of aversive information 
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processing. The dlPFC, reflecting the cognitive-evaluative dimension (Seminowicz and 

Moayedi, 2017), was not reliably activated in our study, suggesting that the process of 

endogenously mitigating the processing of pain signals was not consistently engaged across 

the main and localizer tasks; perhaps the more varied outcomes in the main task 

disincentivized any strategic mitigation of pain signals evoked in the localizer task. Within 

the regions comprising the sensory-discriminative and affective dimensions of aversive 

information processing, we see no evidence of competition from or suppression of these 

signals by the concurrent processing of reward. Exploratory analyses concerning the 

modulation of reward processing by concurrent punishment yielded a similar pattern, with 

no significant difference between reward alone and reward accompanied by punishment.

Our data are instead consistent with the idea that neural networks responsible for the 

processing of reward and punishment signals are largely independent of one another, such 

that the sensory-discriminative and affective evaluation of a punisher is not itself 

significantly affected by potentially offsetting reward considerations. Our results fit with the 

idea that representations of overall value or utility are arrived at through the integration of 

separate reward and punishment signals at later stages of information processing (Yacubian 

et al., 2006) rather than through competitive interactions. In this way, our results fit better 

with a more modular view of feedback processing in a mixed-outcome situation.

In two prior studies of the modulatory role of punishment on reward processing, reward-

related signals were found to be attenuated by the prospect of punishment (Talmi et al., 

2009) and the prospect of reward and punishment were found to interact (Choi et al., 2014). 

However, in each of these two cases, the focus was on the anticipation of the respective 

outcomes. In this case, it appears that outcome predictions do integrate reward and 

punishment information, with these two considerations mutually affecting each other such 

that anticipated reward is attenuated by punishment. The present study suggests that the 

processing of the outcomes used to inform and update such predictions follows a different 

principle, with distinct reward and punishment representations that minimally interact.

In our exploratory analyses, we found some evidence that the processing of punishment 

feedback was actually accentuated by concurrent reward in the somatosensory cortex, 

counter to our hypothesis. In our other ROIs, such an increase was not significant when 

correcting for multiple comparisons. Although there is no clear explanation for this 

observation, one possibility is that the reward feedback increased general attention paid to 

the feedback event as a whole. Attention is automatically biased toward reward-related 

information (Anderson et al., 2011; see Anderson, 2016, 2019, for reviews), and such 

attentional processing can extend to other stimulus input not directly related to the reward 

such as contextual information (Anderson, 2015). Prior neuroimaging studies have 

demonstrated evidence that attention interacts within brain regions processing negative 

valence (e.g., Pessoa et al., 2002). Furthermore, attention has also been shown to modulate 

perception of aversive feedback, by both increasing or decreasing the sensation of pain (e.g., 

Levine et al., 1982; Bushnell et al., 1985; McCaul and Haugtvedt, 1982). In the present 

study, the receipt of reward may have more strongly engaged participants’ attention and 

thereby accentuated the sensory processing of concurrent events, including the experience of 

electric shock.
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There are two important methodological considerations that may limit the generalizability of 

our study that should be considered. The first concerns the behavioral choice component of 

our task. In an effort to help maintain participant engagement, and in keeping with prior 

studies investigating the relationship between the processing of reward and punishment 

(Choi et al., 2014; Talmi et al., 2009), the outcomes experienced in the present study 

followed actions that participants took. In this context, participants were striving to optimize 

their outcomes, which served as teaching signals for subsequent behavior. Understanding 

outcome processing in such a context is important, and our data speak to this case, although 

it is possible that a different pattern of results might be obtained if the outcomes were 

completely divorced from any behavior of the participants and they simply passively 

received them. For example, the desire to maximize gains may have led participants to pay 

differential attention to trials on which a reward was received compared to trials on which no 

monetary reward was delivered, or vice versa if the absence of reward was more 

instrumental for behavioral change. This difference in the importance of the outcome to 

behavioral strategy may have to some degree counteracted an influence of concurrent 

punishment. In our exploratory analyses, we found evidence for a “Win-Stay-Lose-Switch” 

strategy, suggesting that participants’ choices were indeed influenced by the outcomes they 

received. As such, we restrict our conclusions to situations in which participants are actively 

striving to maximize the quality of the outcomes received.

A second methodological consideration concerns the nature of the feedback employed. Also 

in keeping with prior studies (Choi et al., 2014; Talmi et al., 2009), we used electric shock 

for punishment along with money, a secondary reinforcer, for reward. As the ROI definition 

of our exploratory analyses shows, the reward feedback robustly activated regions of the 

brain known to play an important role in reward processing (e.g., Alexander and Brown, 

2011; O’Doherty, 2004; O’Doherty et al., 2001; Padoa-Schioppa and Assad, 2006; Platt and 

Glimcher, 1999; Samejima et al., 2005; Sugrue et al., 2004), affirming the effectiveness of 

the reward manipulation in recruiting the expected neural circuitry. In addition, both 

outcomes were behaviorally relevant (as further attested to by our exploratory analyses), and 

the anticipation of possible electric shock is capable of modulating signals pertaining to the 

anticipation of monetary reward (Choi et al., 2014; Talmi et al., 2009). With these 

considerations in mind, our results are inconsistent with an account by which concurrent 

reward is associated with a reduction in the processing of an aversive stimulus broadly. It 

could be argued that the reward feedback was insufficiently salient in comparison to the 

electric shock to modulate its processing, which is less of a consideration during the 

anticipation of such outcomes (Choi et al., 2014; Talmi et al., 2009). However, in our 

exploratory analyses, we saw no evidence for the same punishment attenuating the 

processing of reward feedback; this result is inconsistent with a salience-based explanation 

for the null effects we observed in the present study with respect to the modulatory influence 

of concurrent reward, provided that the putatively competitive relationship between the 

processing of reward and punishment is bidirectional. However, it may be the case that two 

more similar types of outcomes, especially two the engage the same sensory system such as 

pleasant and aversive physical touch, would follow a different pattern.

In conclusion, our results provide no support for the idea that the brain’s experience of 

punishment is attenuated by concurrent reward. Although organisms are clearly capable of 
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integrating positive and negative feedback in the process of decision-making, including the 

integration of mixed or conflicting outcomes, our data do not support the idea that the 

integration of such mixed outcomes modulates the brain’s representation of either outcome 

itself. Neither the sensory-discriminative nor the affective response to aversive electric shock 

was attenuated by concurrent monetary gains. Our data fit better with a model in which 

rewarding and aversive outcomes are represented as distinct, non-interacting experiences, 

only to be integrated in the valuation process at later stages of information processing. In 

this respect, our findings place important constraints on the nature and breadth of 

competition between reward and punishment (see Choi et al., 2014).
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Fig. 1. 
Sequence of events for a trial in the main task of the experiment. Each of the four possible 

outcome pairings occured equally-often in each run of the task. For the punishment localizer 

task, no monetary rewards are ever received, and half of all trials result in a shock outcome.
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Fig. 2. 
Overlapping regions of activation from the punishment localizer task used in ROI definition 

(pilot data, n = 5). Activations are overlaid on an image of the Talairach brain. Red indicates 

overlapping activation from all 5 participants, orange from 4 participants, and yellow from 3 

participants.
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Fig. 3. 
Regional activation from punishment (P), punishment and reward (P + R), and no outcome 

(None) across the ROIs that passed the positive control. Error bars depict within-subject 

confidence intervals calculated using the Cousineau method with a Morey correction. P-

values indicate statistical significance following Bonferroni correction. *p < 0.05. **p < 

0.01, ***p < 0.001.
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Fig. 4. 
Voxels representative of each region used in reward localizer exploratory analysis. Each ROI 

shows the 50 most significant voxels (plus ties) for every subject combined and overlaid on 

an image of the Talairach brain.
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Fig. 5. 
Regional activation from reward (R), reward and punishment (R + P), and no outcome 

(None) across the exploratory ROIs. Error bars depict within-subject confidence intervals 

calculated using the Cousineau method with a Morey correction. P-values indicate statistical 

significance following Bonferroni correction. *p < 0.05. **p < 0.01, ***p < 0.001.
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Fig. 6. 
Choice behavior analysis (exploratory). Probability of choosing the same color box that was 

chosen on the prior trial (stay) after receiving reward, punishment, concurrent reward and 

punishment, or no outcome. Error bars depict within-subject confidence intervals calculated 

using the Cousineau method with a Morey correction.
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