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Abstract Insulin-like growth factor 1 (IGF-1) and inter-
leukin 6 (IL-6) play an important role in the adaptation of
both muscle and bone to mechanical stimuli. Here, we
provide an overview of the functions of IL-6 and IGF-1
in bone and muscle metabolism, and the intracellular sig-
naling pathways that are well known to mediate these
functions. In particular, we discuss the Akt/mammalian
target of rapamycin (mTOR) pathway which in skeletal
muscle is known for its key role in regulating the rate of
mRNA translation (protein synthesis). Since the role of
the mTOR pathway in bone is explored to a much lesser
extent, we discuss what is known about this pathway in
bone and the potential role of this pathway in bone re-
modeling. We will also discuss the possible ways of
influencing IGF-1 or IL-6 signaling by osteocytes and
the clinical implications of pharmacological or nutritional
modulation of the Akt/mTOR pathway.
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Introduction

Most people know from personal experience that muscles
increase in mass when loaded and decrease in mass during a
period of physical inactivity. Much less commonly known is
that exactly the same principle holds true for bones. This ad-
aptation of bone mass to mechanical demands is facilitated by
the activity of osteoblasts and osteoclasts. Osteoclasts remove
bone in places of relative unloading, while osteoblasts form
bone in places of relative high mechanical loading, leading to
a constant adaptation of bone mass and structure [1]. As a
result, healthy bones are able to withstand the forces placed
upon them, while using a minimum of material. During oste-
oporosis, this delicate balance between bones’ resistance
against mechanical loads and bone mass is clearly disturbed,
mostly as a result of enhanced bone loss [2]. Although most
studies have focused on the role of osteoblasts and osteoclasts
in the emergence of osteoporosis, osteocytes may well be
involved in the pathogenesis of this disease. It is well known
that osteocytes produce signaling molecules in response to
mechanical loading which affect osteoclast and osteoblast re-
cruitment and activity [3, 4]. Our group has shown that nitric
oxide and prostaglandin production in response to mechanical
loading of cultured osteocytes from osteoporotic individuals
differs from that of osteocytes derived from people with a high
bone mass [5]. As such, alterations in the osteocyte responses
to mechanical loading, in terms of signaling molecule produc-
tion, may well be involved in the etiology of osteoporosis.

In recent years, a defined picture is emerging of osteocytes
as signaling centers, actively communicating with osteoblasts,
osteoclasts, marrow cells, cells of the lymphatic system, and
the kidney. In addition, potential lines of communication be-
tween bone and muscle are currently under much scrutiny
[6–9]. The organ most closely connected to the skeleton is
arguably the musculature. If bones indeed communicate with
muscle, the most likely source of the paracrine and endocrine
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signal is the osteocyte, which is by far the most abundant cell
in adult bones, and osteocyte-derived signals have been
shown to reach remote organs [10]. Presuming that osteocyte
communication with muscles affects muscle mass, the oppo-
site may also be true. Muscles may communicate to osteo-
cytes, or muscles could communicate directly with osteoblasts
and osteoclasts via similar signals that osteocytes employ to
dictate osteoclast and osteoblast behavior. Osteocytes and
muscle cells show considerable overlap in the molecules they
use to regulate their mass in response to mechanical cues. Our
group recently showed that differentiated myotubes and oste-
ocytes alike cells produce factors such as nitric oxide (NO),
hepatocyte growth factor (HGF), vascular endothelial growth
factor (VEGF), insulin-like growth factor 1 (IGF-1), and in-
terleukin 6 (IL-6) in response to mechanical loading [11•, 12].
Short-lived molecules are unlikely to do more than autocrine
and some paracrine signaling, but elevated levels of muscle-
derived IL-6 and IGF-1 are found in the circulation after vig-
orous exercise [13–15]. We have shown that IL-6 derived
from myotubes affects formation of osteoclasts in vitro [12].
This indicates that communication between muscle and bone
is theoretically possible. Whether muscle and bone indeed
communicate via the production of soluble factors is difficult
to establish, but some evidence is available in support of this
hypothesis [6, 16]. One complicating factor is that muscles
exert mechanical forces in bone, thereby affecting bone mass
regardless of the existence of an exchange of biochemical
factors. Considering this, it is possible that osteoporosis is
simply related to a decrease in the number and/or magnitude
of mechanical stimuli in bone, caused by the loss of muscle
mass that is commonwith aging.Maintenance of muscle mass
could thus be a therapeutic option in elderly, in order to pre-
serve bone integrity and mass. Even if it turns out that bio-
chemical communication between muscle and bone does not
play a significant role in bone homeostasis, it is likely that,
considering the similarities in signaling molecules employed
by both tissue types, much can be learned from the muscle
field in order to generate a better understanding of bone mass
regulation and vice versa.

Insulin-Like Growth Factor 1

IGF-1 is a hormone rather similar in molecular structure to
insulin. It is produced primarily by the liver under the control
of growth hormone, plays an important role in regulating
growth in children, and has anabolic effects in adults [17].
By far, the largest amount of IGF-1 in the body is bound to
IGF-binding proteins (IGFBPs), which affect the activity of
IGF-1. For instance, IGFBP-2 and IGFBP-5 bind IGF-1 at a
higher affinity than its receptor, and an increased serum level
of these IGFBPs thus result in lower IGF-1 signaling [18].
Several splice variants from the IGF-1 gene have been

identified, of which IGF-1Ea and IGF-1Eb/c (also known as
mechano growth factor (MGF)) play a role inmuscle and bone
homeostasis. These two splice variants differ with respect to
their nucleotide sequence in exon 5 which encompasses an
insert of about 23 amino acids, coding for the E-peptide
[19]. The 70 kD IGF-1 domain, coded by exons 3 and 4 of
the IGF-1 gene, stimulates osteocyte and osteoblast survival
[20, 21], as well as osteoblast differentiation and matrix pro-
duction [22], while the E peptide in MGF promotes MC3T3-
E1 osteoblast proliferation [23]. In addition to these anabolic
effects in bone, the 70 kD IGF-1 domain has been shown to
promote osteoclastogenesis [24, 25].

Besides being an endocrine molecule, IGF-1 also exerts
effects in a paracrine/autocrine manner in many tissues. IGF-
1 is produced locally in bone and is able to exert effects in
bone in an autocrine manner [26]. Since then, the question
“howmuch of the anabolic effect of IGF-1 in bone is autocrine
in nature?” has remained unsolved until Elis et al. showed
that, in the absence of tissue-specific IGF-1 gene expression,
maintaining long-term elevated IGF-1 levels in serum by IGF-
1 gene overexpression in the liver was sufficient to restore
skeletal architecture and mechanical function [27•]. In addi-
tion, conditional disruption of the IGF-1 gene in osteocytes
under the control of the DMP-1 promoter slightly reduces
bone mineral content, but not mineral density, and IGF-1
knockout in osteocytes does not alter plasma levels of IGF-1
[28]. This suggests that IGF-1 produced locally in bone has a
minor role in bone development compared to IGF-1 produced
in the liver. However, the importance of local production of
IGF-1 in bone in response to mechanical loading may be a
different story altogether. Mechanical loading is anabolic for
bone, and osteocytes have been shown to produce IGF-1 in
response to mechanical loading in vitro and in vivo [29•, 30].
In addition, mechanical loading increases bone formation in
wild-type mice but not in mice with osteocytes deficient in
IGF-1 [31••]. From the above, it was concluded that IGF-1
plays a pivotal role in the response of bone to mechanical
forces.

In skeletal muscle, the application of mechanical loading,
either applied passively by stretching or actively by neuronal-
initiated contractile activity, stimulates the expression of IGF-
1 Ea and MGF [32]. IGF-1 Ea acts on the muscle stem cells
(i.e., satellite cells (MuSC) located between the sarcolemma
and the basal lamina (Fig. 1) by stimulation of their differen-
tiation into myotubes [32, 33]. In contrast, MGF E peptide has
been shown to stimulate proliferation and migration of myo-
blasts [33, 34]. For an injured muscle fiber, MGF will enhance
the capacity for regeneration while for intact mechanically
overloaded muscle fibers this will lead to an expansion of
the pool of myonuclei within the muscle fiber and as such
an increase in the amount of DNA serving as template for
transcription. Besides the effects of IGF-1 splice variants on
MuSCs, IGF-1 signaling also occurs in the mature muscle
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fiber. Like insulin, the 70 kD IGF-1 domain stimulates muscle
fiber hypertrophy (i.e., increases muscle fiber diameter) [35,
36] by concurrently stimulating the rate of protein synthesis

and inhibiting the rate of protein degradation [37]. This dual
role makes IGF-1 inmuscle an autocrine and paracrine growth
factor with a strong potency to induce muscle hypertrophy.

Fig. 1 Insulin-like 1 (IGF-1) and interleukin-6 (IL-6) signaling in the
regulation of skeletal muscle adaptation and bone metabolism. a In
skeletal muscle, the machinery for protein synthesis and degradation
resides within the muscle fibers, which are multinucleated cells. The
muscle satellite cells (MuSCs) reside between the sarcolemma (i.e.,
plasma membrane) and the basal lamina. b In bone, osteoid is
synthesized by osteoblasts (OB) which are derived from osteogenic
progenitor cells and differentiate into osteocytes (OC) when buried in
their own matrix. Osteocytes have long extensions embedded within the
canaliculi and are highly sensitive to mechanical loading. In response to
mechanical stimuli, myofibers (MF) produce paracrine/endocrine factors
such as IL-6, and both splice variants of IGF-1, i.e., mechano growth
factor (MGF) and IGF-1Ea. These factors are able to affect myofibers,
MuSCs, and cells in other organs such as the liver and potentially bone.
IL-6 slows down the rate of translation in myofibers while enhancing the
rate of protein breakdown via 5′ adenosine monophosphate-activated
protein kinase (AMPK), resulting in a net catabolic effect. On the other
hand, IL-6 stimulates the proliferation and differentiation of satellite cells
via the Janus kinase/Signal Transducer and Activator of Transcription
(JAK/STAT) pathway, which would be an anabolic response. IGF-1

stimulates the rate of protein translation in myofibers via the
phosphatidylinositol 3 kinase (PI3-K)/Akt/mammalian target of
rapamycin (mTOR) pathway while inhibiting the expression of
catabolic ubiquitin E3 ligases resulting in an increase in muscle mass.
MGF stimulates satellite cell proliferation and differentiation, but it is so
far unclear via which pathway this occurs. Mechanically-loaded
osteocytes and osteoblasts produce IGF-1 (likely both splice variants),
and IGF-1 is released from the matrix during osteoclastic (OCL) bone
resorption. Mechanically-loaded osteocytes and osteoblasts also produce
IL-6, as do apoptotic osteocytes. IGF-1 enhances differentiation of
osteoblast precursors cells (OBPC) via the PI3-K/AktT/mTOR pathway
(not shown) and activity and formation of osteoclasts via stimulation of
RANKL expression in osteoblasts and osteocytes. IL-6 also stimulates
osteoblast precursor differentiation and osteoclast formation, via an
increase in RANKL expression by osteoblasts. Whether IL-6 and IGF-1
affect the rate of protein translation in osteoblasts or osteoclasts is
currently unknown. IRS-1 insulin receptor substrate-1; eIF4E eukaryotic
initiation factor 4E; 4E-BP eIF4E-binding protein; p70S6K p70S6 kinase;
eIF2B eukaryotic initiation factor 2B. GSK3β glycogen synthase kinase
3β
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Interleukin 6

IL-6 is a pleiotropic cytokine which is produced by a variety
of cell types such as T-cells and macrophages, but IL-6 is also
readily produced by other cell types, such as smooth muscle
cells, fibroblasts, skeletal muscle fibers, osteoblasts, and oste-
ocytes [38••, 3]. IL-6 requires gp130 (ubiquitously expressed)
and IL-6 receptor (IL-6R) for signaling. IL-6R is expressed by
a limited population of cells, amongst which osteoblasts and
osteoclasts as well as muscle cells [39]. Human osteocytes
express high amounts of IL-6R at week 8 and 14 during ges-
tation, and MLO-Y4 osteocytes have been shown to express
IL-6R mRNA [40]. Even if a cell does not express IL-6R, it
can respond to IL-6 because IL-6R exists in a soluble form in
the serum where it acts as an agonist. IL-6R can end up in the
serum because it is shed from cell membranes through cleav-
ing by ADAM17 or ADAM10. Interestingly, osteocytes ex-
press ADAM10, making osteocytes possible modulators of
IL-6 signaling [41].

IL-6 was first discovered to mediate bone loss associated
with estrogen-withdrawal in mice [42]. More recently, it has
been described that increased circulating IL-6 levels in pa-
tients with Duchenne muscular dystrophy seem responsible
for increased osteoclastic bone resorption [43]. IL-6most like-
ly stimulates osteoclastogenesis indirectly, by increasing
Rankl gene expression by osteoblasts [44, 39, 45]. Elevated
IL-6 levels could thus explain why the low grade systemic
inflammation as occurs after the menopause enhances osteo-
clastogenesis and reduces bone mass [46]. On the other end of
the spectrum, mice lacking IL-6 also have a low bone mass
[47]. Furthermore, IL-6 null mice show reduced osteoblast
numbers and delayed fracture healing [47]. Indeed, IL-6-
type cytokines promote differentiation of committed osteo-
blastic cells toward a more mature phenotype [48], and IL-6
has been shown to enhance osteoblast differentiation in stem
cells [49]. This double edged role of IL-6 in bone, i.e., both
stimulatory for osteoclasts and osteoblasts, is also reflected in
the production of IL-6 by osteocytes. Cultured MLO-Y4 os-
teocytes produce high amounts of IL-6 [29•]. Fluid shear
stress at low physiological levels stimulates IL-6 production
in osteocytes in vitro [38••]. On the other hand, IL-6 has also
been shown to be expressed by osteocytes when they undergo
apoptosis in response to bone unloading [3]. Overall, these
data indicate that in bone IL-6 has a key role in bone
metabolism.

In skeletal muscle, multiple roles have been identified for
IL-6 [50]. Contractile activity stimulates IL-6 expression in
humans and rodent skeletal muscle [51, 52], which is
paralleled by elevated serum levels in humans [14, 53]. IL-6
produced by muscle is generally known for its role in glyco-
gen metabolism and insulin signaling [54], but IL-6 may also
be involved in the regulation of muscle fibers size. Direct
chronic IL-6 administration to skeletal muscle induces muscle

fiber atrophy [55]. However, recovery of gastrocnemius mus-
cle from disuse atrophy is attenuated in IL-6 knockout mice
[56], and overload-induced muscle hypertrophy is blunted in
IL-6 deficient mice [57]. These reports suggest opposite roles
of IL-6 in the regulation of muscle fiber size and regeneration,
similarly to bone.

Intracellular Signaling Pathways Activated BY IGF-1
AND IL-6

In skeletal muscle, IGF-1 stimulates the rate of protein syn-
thesis via two ways: (1) IGF-1 increases the rate of mRNA
transcription of myofilaments such asα-skeletal actin, a major
constituent of the muscle contractile apparatus [36, 58], and
(2) IGF-1 stimulates the phosphatidylinositol 3 kinase (PI3-
K)/Akt (also known as protein kinase B) pathway which acti-
vates the mammalian target of rapamycin (mTOR). Down-
stream targets of mTOR are p70S6 kinase (p70S6k) and
heat- and acid-stable protein 1 (PHAS-1, also referred to as
4E-BP) [59]. Activated mTOR phosphorylates P70S6K,
thereby activating the ribosomal protein S6, which is involved
in the translation of mRNAs [59] (Fig. 1). In addition, mTOR
inhibits 4EBP, which is a negative regulator of the translation
initiation factor eIF4E, thereby further enhancing the rate of
translation [59, 60]. Akt also inactivates glycogen synthase
kinase 3 β (GSK3β), thereby preventing the inhibitory effect
of GSK3β on eukaryotic initiation factor 2B (eIF2B), which
results in an enhanced rate of mRNA translation [61] (Fig. 1).
Apart from its potency to enhance the rate of protein synthesis,
IGF-1 also attenuates the rate of protein degradation via PI3-
K/Akt/FOXO pathway [62]. Activated Akt phosphorylates
the transcription factor FOXO, causing its cytoplasmic local-
ization, which reduces the rate of transcription of muscle-
specific ubiquitin E3 ligases (Fig. 1). Muscle E3 ligases will
tack contractile proteins with ubiquitin, which marks them for
degradation within the 26S-proteasome system. Taken togeth-
er, IGF-1 is a highly potent growth factor resulting in muscle
hypertrophy by reducing protein degradation and stimulating
the rate of protein synthesis through a combination of increas-
ing mRNA content of contractile proteins and increasing the
rate of translation per mRNA.

Although the role of the mTOR pathway in IGF-1-induced
muscle hypertrophy has been extensively studied, this path-
way attracted little attention in the bone world, until it has
been shown recently that IGF-1 may have an anabolic effect
on bone via stimulation of the PI3-K/Akt/mTOR pathway
[63••]. IGF-1 released from the bone matrix during bone re-
modeling stimulates osteoblastic differentiation of recruited
mesenchymal stem cells (MSCs) by activation of Akt/
mTOR [63••]. The observation that mTOR mediates osteo-
blast differentiation has also been shown in experiments
where rapamycin, a potent mTOR inhibitor, suppressed
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WNT7B-induced osteoblast differentiation in ST2 mouse
bone marrow derived cells, as determined by assessing alka-
line phosphatase activity and von Kossa staining [64]. As
mentioned before, activated Akt not only affects mTOR, but
also inhibits GSK3β. Thereby, Akt activates cellular β-
catenin signaling in osteocytes [65••], explaining why condi-
tional disruption of IGF-1 in osteocytes abolishes the loading-
induced increase in β-catenin protein levels in osteocytes
[31••]. The activation of β-catenin by mechanical loading in
osteocytes inhibits osteocyte apoptosis [66, 67].

IL-6 signaling occurs through binding of IL-6 with the IL-6
receptors (IL-6R), which subsequently bind to gp130 receptors
[68]. In skeletal muscle, both MuScs and myofibers express
IL-6, IL-6R, and gp130 receptor. In MuSCs, IL-6-induced pro-
liferation and migration occurs via the JAK/STAT pathway,
which stimulates the expression of proliferation-associated
transcription factors cyclin D1 and c-myc [57, 69]. Regarding
the effects of IL-6 on the myofiber (MF), several studies have
shown that IL-6 modulates both the rate of protein synthesis
and that of protein breakdown [70–73]. Primary human
MuSCs differentiated into myotubes showed increased phos-
phorylation of Akt after exposure to IL-6 [70, 71] suggesting
an enhancement of the mTOR signaling. However, the oppo-
site has been reported in mice overexpressing IL-6 in quadri-
ceps muscle. IL-6 attenuated the activity of mTOR via its stim-
ulatory effect on 5′-adenosine monophosphate-activated pro-
tein kinase (AMPK) [72•]. This enzyme is phosphorylated and
activated by a low energy status (i.e., increased ratio AMP/
ATP), but is also a downstream target of IL-6 [73]. Activated
AMPK has a multitude of regulatory functions in skeletal mus-
cle: (1) stimulation of biosynthesis of mitochondria and fatty
acid oxidation and glucose uptake [74], (2) inhibition of
mTOR [75], and (3) stimulation of expression of muscle-
specific E3 ligases [76, 77] which is linearly related to in-
creased muscle protein degradation. The actual effects of IL-
6 on the PI3-K/Akt/mTOR pathway within muscle fibers re-
main to be determined. Note that there may also an indirect
way by which IL-6 affect the Akt/mTOR signaling within
muscle. Transgenic overexpression of IL-6 or its exogenous
injection in mice is associated with reduced circulating IGF-1
levels, likely due to increased proteolysis of the IGF-1 binding
protein 3 (IGFBP3) and enhanced clearance of IGF-1 [78].

In bone, IL-6 signals via gp130/IL-6R thereby activating
the JAK/STAT pathway, which leads to activation of the tran-
scription factor “nuclear factor kappa-light-chain-enhancer of
activated B cells” [79]. IL-6 also activates the Ras/Raf path-
way leading to the activation of the transcription factor
C/EBPβ, also known as “nuclear factor for IL-6” [80]. The
latter binds promoter sequences of amongst others iNOS and
COX2 genes and stimulates IGF-1 expression, which all play
a role in the regulation of bone metabolism [81]. The C/EBPβ
gene gives rise to three proteins: LAP*, LAP, and LIP. LAP
mediates osteoblast maturation and osteoblast-stimulated

osteoclastogenesis while LIP inhibits osteoblast-stimulated
osteoclastogenesis [82]. In osteoclasts, the balance between
LAP and LIP expression is determined by mTOR activity,
i.e., low mTOR activity favoring LAP, while high mTOR
activity favors LIP [83]. Whether IL-6 affects mTOR activity
in osteoblasts and/or osteocytes is currently unknown.

Role for the mTOR Pathway in Bone

From the foregoing, it is clear that there are similarities and
dissimilarities in the way IGF-1 and IL-6 are employed by
bone and muscle to achieve changes in tissue mass, and that
much can be learned from one field in order to generate a
better understanding of regulation of tissue mass in the other
field. A similarity between muscle and bone is that the balance
between protein formation and degradation determines tissue
mass. In order for protein formation to increase in muscle, the
muscle increases the amount of nuclei (DNA) per fiber, the
amount of RNA per available myonucleus (rate of transcrip-
tion), as well as the rate of translation per mRNAmolecule. In
bone, the protein matrix is deposited outside of the cells rather
than intracellular, and bone formation and degradation occur
by two separate cell types, but otherwise it makes sense that in
order for bone matrix production to increase, the same princi-
ples apply as for muscle. Indeed, an increase in proliferation
and differentiation of osteoblast precursors increases the num-
ber of osteoblast nuclei (DNA) per volume bone. For exam-
ple, MGF enhances the number of osteogenic cells in bone
through stimulation of proliferation [23]. One might then
question: what is next? In order to increase bone formation
rate in an efficient manner, the activity per osteoblast needs to
be enhanced as well. The master switch in the rate of protein
translation in muscle, as in many other cell types, is the PI3-K/
Akt/mTOR pathway, as discussed above [84]. It is possible
that mTOR plays a very analogous role in osteoblasts, al-
though the little evidence that is currently available for such
a role is ambiguous. On the one hand, genetic disruption of
mTOR signaling by deleting Raptor for 3 weeks in the osteo-
blast lineage in 1-month-old mice did not affect bone mass or
strength, suggesting that mTOR signaling in osteoblasts may
not be essential for maintaining bone homeostasis on the short
term [64]. On the other hand, targeted induction of the
WNT7B gene in osteoblasts dramatically enhanced bonemass
due to increased osteoblast number, activity, and significantly
stimulated bone formation, but not when the cofactor for
mTOR signaling Raptor was absent [64]. Thus, Wnt-7B re-
quires mTOR to promote bone formation [64]. In addition, the
importance of mTOR signaling for osteoblasts is exemplified
by the experiments in which PI3K/mTOR inhibitors, designed
as oncostatic drugs, were tested in vivo. Male mice received
amongst others the PI3-K/mTOR inhibitors EZ235 and PI103,
which reduced BV/TV by 36 and 37 %, respectively [85••].

Curr Osteoporos Rep (2015) 13:131–139 135



Of course, this could still be through an effect of mTOR on
osteoblast differentiation rather than on the rate of translation.

Whether the mTOR pathway is important for osteocytes is
unknown, but it stands to reason that this pathway affects
osteocyte biology. When oxygen and nutrients are not abun-
dant, for instance in osteocytes that are not in direct contact
with the vasculature, it makes sense that these cells slow down
their metabolism and recycle cell components as much as
possible through autophagy. Since mTOR activation enhances
the energy consuming process of protein translation and in-
hibits autophagy [86•], one could deduce that mTOR activity
needs to stay low in unstimulated osteocytes [87]. Alterations
in mTOR activity could thus have profound effects on osteo-
cyte survival and bone metabolism.

Conclusion

Taken together, IL-6 and IGF-1 are extremely important reg-
ulators of bone and muscle metabolism, which makes them
interesting targets for the treatment of osteopenia or
sarcopenia. However, IGF-1 and IL-6 are ubiquitously
expressed and signal in many cell types, which makes it dif-
ficult to target these molecules only in bone and muscle but
not in other tissues. The same holds for the signaling pathway
that IGF-1 and IL-6 have in common, i.e., the mTOR pathway.
As the mTOR pathway is ubiquitously involved in many cells
types, activation of this pathway specifically in bone will be a
challenge, although targeted delivery of chemicals using
bisphosphonates may be an option. However, even if bone
can be reached as a single target, IGF-1, IL-6, and mTOR
signaling seem to be a two-edged sword: All seem to stimulate
osteogenic differentiation and might be essential in bone de-
velopment and healing. Knockout of IL-6 in otherwise healthy
animals and inhibition of mTOR with compounds such as
rapamycin certainly have deleterious effects in bone mass.
However, both IGF-1 and IL-6 may also stimulate bone re-
sorption, and mTOR activation in osteoclast precursors stim-
ulates osteoclast formation [83]. IL-6 inhibitors are available
in the clinic for suppression of inflammation in rheumatoid
arthritis, where they seem to be osteoanabolic, rather than
catabolic [88]. Pharmacological intervention in these path-
ways will thus require fine tuning of dose and kinetics (e.g.,
continuous or intermitted) in order to achieve an adequate
anabolic effect.

Alternatively, one could try to specifically target IL-6 and
IGF-1 signaling inmuscle by pharmacological means, in order
to increase both muscle and bone mass. Indeed, overexpres-
sion of IGF-1 in the musculature of mice enhanced bone mass
as well [89]. Increased muscle mass could be anabolic for
bone since muscles exert mechanical forces in bone. Exercise,
which stimulates IL-6 and IGF-1 production in bone and mus-
cle, as well as the production of a large quantity of other

growth factors and signaling molecules, may be a safe and
efficient way to enhance both bone and muscle mass.

In muscle, the mTOR pathway is activated via the food
supplement leucine, which transiently stimulated the rate of
translation in muscle cells in vitro [90, 91]. Whether supple-
ments can be applied to affect the proliferation of osteoblasts
and the rate of translation in these cells is yet unknown and
remains to be determined. However, until very fine tuned and
tissue-specific pharmacological interventions are available, a
combination of sufficient exercise and a balanced diet contain-
ing sufficient amounts of for example leucine are a safe and
cheap way to help maintain muscle and bone mass.
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