
ORIGINAL RESEARCH
published: 09 May 2017

doi: 10.3389/fnins.2017.00258

Frontiers in Neuroscience | www.frontiersin.org 1 May 2017 | Volume 11 | Article 258

Edited by:

John Ashburner,

UCL Institute of Neurology, UK

Reviewed by:

Antoine Lutti,

Centre Hospitalier Universitaire

Vaudois, Switzerland

Gerard R. Ridgway,

University of Oxford, UK

*Correspondence:

Roberto Viviani

roberto.viviani@uibk.ac.at;

roberto.viviani@uni-ulm.de

Specialty section:

This article was submitted to

Brain Imaging Methods,

a section of the journal

Frontiers in Neuroscience

Received: 09 November 2016

Accepted: 21 April 2017

Published: 09 May 2017

Citation:

Viviani R, Pracht ED, Brenner D,

Beschoner P, Stingl JC and Stöcker T

(2017) Multimodal MEMPRAGE,

FLAIR, and R∗2 Segmentation to

Resolve Dura and Vessels from

Cortical Gray Matter.

Front. Neurosci. 11:258.

doi: 10.3389/fnins.2017.00258

Multimodal MEMPRAGE, FLAIR, and
R∗

2 Segmentation to Resolve Dura
and Vessels from Cortical Gray
Matter
Roberto Viviani 1, 2*, Eberhard D. Pracht 3, Daniel Brenner 3, Petra Beschoner 4,

Julia C. Stingl 5, 6 and Tony Stöcker 3, 7

1 Institute of Psychology, University of Innsbruck, Innsbruck, Austria, 2 Psychiatry and Psychotherapy Clinic III, University of

Ulm, Ulm, Germany, 3German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany, 4Clinic for Psychosomatic

Medicine and Psychotherapy, University of Ulm, Ulm, Germany, 5 Research Division, Federal Institute for Drugs and Medical

Devices, Bonn, Germany, 6Center for Translational Medicine, University of Bonn Medical School, Bonn, Germany,
7Department of Physics and Astronomy, University of Bonn, Bonn, Germany

While widely in use in automated segmentation approaches for the detection of group

differences or of changes associated with continuous predictors in gray matter volume,

T1-weighted images are known to represent dura and cortical vessels with signal

intensities similar to those of gray matter. By considering multiple signal sources at

once, multimodal segmentation approaches may be able to resolve these different tissue

classes and address this potential confound. We explored here the simultaneous use of

FLAIR and apparent transverse relaxation rates (a signal related to T∗2 relaxation maps

and having similar contrast) with T1-weighted images. Relative to T1-weighted images

alone, multimodal segmentation had marked positive effects on 1. the separation of gray

matter from dura, 2. the exclusion of vessels from the gray matter compartment, and

3. the contrast with extracerebral connective tissue. While obtainable together with the

T1-weighted images without increasing scanning times, apparent transverse relaxation

rates were less effective than added FLAIR images in providing the above mentioned

advantages. FLAIR images also improved the detection of cortical matter in areas prone

to susceptibility artifacts in standard MPRAGE T1-weighted images, while the addition

of transverse relaxation maps exacerbated the effect of these artifacts on segmentation.

Our results confirm that standard MPRAGE segmentation may overestimate gray matter

volume by wrongly assigning vessels and dura to this compartment and show that

multimodal approaches may greatly improve the specificity of cortical segmentation.

Since multimodal segmentation is easily implemented, these benefits are immediately

available to studies focusing on translational applications of structural imaging.

Keywords: multimodal segmentation, cortex, dura, cortical vessels, voxel-based morphometry

INTRODUCTION

Probabilistic tissue classification methods represent one of the most important approaches to the
investigation of brain structural differences in vivo with magnetic resonance imaging techniques
(Zhang et al., 2001; Fischl et al., 2002, 2004; Ashburner and Friston, 2005). An important
issue is the specificity of segmentation based, as commonly the case, on T1-weighted images.
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The use of multiple magnetic resonance images acquired
with sequences with different contrast properties may improve
the capacity of the segmentation process to resolve between
tissue classes (“multichannel,” “multispectral,” or “multimodal”
segmentation, Vannier et al., 1985; Fletcher et al., 1993;
Alfano et al., 1997; Lambert et al., 2013a). Unlike work that
increases contrast by non-linearly combining images acquired
with different modalities into a single image (Misaki et al.,
2015), multimodal segmentation considers multiple image types
simultaneously and models the intensity of signal from tissue
classes as a set of densities in multivariate space. This allows
the algorithm, which summarizes the evidence for classification
optimally given the density model, to identify the appropriate
source of contrast to set the tissue classes apart. Here, we explored
the use of multimodal segmentation to improve the accuracy
of segmentation of cortical gray matter using combinations of
MPRAGE, R∗

2 , and FLAIR images (Figure 1).
One well-known problem in the segmentation of gray matter

tissue, first highlighted by the community involved in the
development and use of cortical thickness estimation methods,
consists in the misclassification of dura mater as cortex (van der
Kouwe et al., 2008). This problem is due to the equal intensity
of the signal from dura and gray matter in many magnetic
resonance sequences and is of variable severity across cortical
regions and across individuals. In areas where the dura adheres to
the cortex, it becomes difficult to distinguish it from gray matter,
even when manual visual correction is attempted (see Figure 2).

A second, perhaps less widely known, problem is given
by the misclassification of medium-size vessels as gray matter
in common T1-weighted imaging protocols. This problem is
potentially more severe in the areas where medium-sized vessels
tend to congregate (Viviani, 2016), such as in the medial aspect
of the cerebral hemispheres (due to the pericallosal arteries and

FIGURE 1 | Examples of input images used in the study (clockwise

from top left: reconstructed MPRAGE image, MPRAGE first echo,

MPRAGE last echo, FLAIR, and R*
2
images).

their emissaries), in the deep folds of the Sylvian fissure, and on
the medial and anterior face of the temporal lobes (mainly due
to the middle and posterior cerebral arteries; Figure 3). More
generally, medium-sized vessels running in sulci or in the vicinity
of cortex may be occasionally misclassified as gray matter if
giving rise to a bright signal as a consequence of inflow effects
(Figure 4).

The purpose of the present study is the comparative evaluation
of multiple signal sources in multimodal segmentation to address
these possible misclassifications. While the benefits of using
information from multiecho MPRAGE to resolve dura from
gray matter tissue have been reported in the literature (van
der Kouwe et al., 2008), little is known about the opportunities
offered by multimodal segmentation to address the problem
of the misclassification of vessels. Helms et al. (2006) could
show that multimodal segmentation with T1- and T2-weighted
images resolved signal from non-brain tissue such as draining
sinuses and the adjacent connective tissue. However, no study
has systematically addressed the comparative advantages of
using different combinations of input images in multimodal
segmentation approaches.

We considered two possible additional signal sources to
the segmentation algorithm. In the first, we supplemented
MPRAGE data with fluid-attenuated inversion recovery (FLAIR)
images (Bydder and Young, 1985), and are increasingly used in
segmentation and large imaging databases (Mendrik et al., 2015;
Smith et al., 2017). Like appropriately weighted T2-weighted
images, FLAIR images present differences in signal intensity
between dura and cortical gray matter (Helms et al., 2006).
Furthermore, these images also offer a good contrast between
gray matter and cerebral fluid/white matter. In the second, we
explored the utility of images of apparent transverse relaxation
rates (R∗

2 maps), combined with T1-weighted MPRAGE images
or in a three-channel combination with MPRAGE and FLAIR.
The apparent transverse relaxation rate R∗

2 is related to the
effective relaxation time of the radiofrequency signal T∗

2 by the
formula T∗

2 = 1/R∗
2 (for a recent review, see Cohen-Adad, 2014).

The use of relaxation estimates has historically represented the
first approach to correct for the dura confound problem in the
cortical thickness estimation literature (van der Kouwe et al.,
2008). Our results show that the addition of either R∗

2 maps or
FLAIR improves the specificity of the segmentation. However, in
our study the MPRAGE+FLAIR combination emerged as clearly
superior, albeit at the cost of increased overall acquisition times.

The rest of the paper is structured as follows. The Section
Materials and Methods provides details on the sample, the
MRI sequences used in the study, and the algorithms used in
the analysis. In the Results Section we will examine different
combination of input modalities in turn. We begin by providing
illustrative examples of differences in the segmentation of cortical
areas arising from the use of T1-weighted MPRAGE images
alone and in the various combinations with FLAIR and R∗

2
maps. We continue by presenting the summary data of the
whole sample, using the bi-modal and three-modal combinations
of all signal types to visualize systematic differences in the
segmentation due to the addition of the FLAIR and/or R∗

2 signals.
We also provide a comparison with maps of vascular intensities
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FIGURE 2 | Example of a misclassification of dura mater as gray matter. The red arrows on the T1-weighted images on the upper left point to bright thick dura

sections, highlighted by a dotted red line in the inset, which shows a magnified section of the affected area. In the central sections, tissue probability maps of the

segmentation obtained from the T1-weighted images alone (overlay in blue-green) and the multimodal segmentation of the T1-weighted and FLAIR volumes (overlay in

red-orange). On the right, the multimodal and the T1-weighted alone segmentations were superimposed to show the areas where the multimodal segmentation was

more conservative in assigning voxels to the gray matter tissue class. There were no voxels in this image where the probability to belong to gray matter was

substantially higher in the multimodal than in the t1-weighted alone segmentation.

predominantly showing the spatial distribution of arterial in-flow
effects to identify where different segmentation outcomes may
be attributed to a reclassification of this signal source. In the
final part of the Results Section, we conclude with details on the
estimates of the probability densities of the signal intensity in the
brain tissue classes. These estimated densities, which are modeled
asmixtures of Gaussians, give insight on how the algorithm “sees”
the tissue classes and on the achieved separation between them.

MATERIALS AND METHODS

Sample and Acquisition
The data were acquired using a Siemens 3T Prisma scanner
located on the premises of the Clinic of Psychiatry and
Psychotherapy III at the University of Ulm, Germany. This study
was carried out in accordance with the recommendations of the
Ethic Review Board of the University of Ulm. All subjects gave
written informed consent in accordance with the Declaration of
Helsinki. The protocol was approved by the Ethic Review Board
of the University of Ulm. The data are part of a larger genetic
neuroimaging database that is currently under acquisition. The
sample consisted of 35 healthy participants (age mean/standard
deviation 24.4/6.0, 18 females).

MR Acquisition
For our MPRAGE sequence we used a multi-echo MPRAGE
sequence (MEMPRAGE) from which both the T1-weighted
signal and R∗

2 maps were obtained. The MEMPRAGE sequence
had a high readout bandwidth, matched to the readout
bandwidth of the FLAIR sequence. The high bandwidth
minimizes differential distortions in the two sequences, and
offers the theoretical advantage of reducing the effects of
susceptibility artifacts in the gradient-echo MPRAGE images.
Besides obtaining an R∗

2 star signal without requiring additional
scanning time, matching the readout bandwidth was an
important motivation in the adoption of this sequence. Relative
to the MPRAGE+FLAIR combination, the MPRAGE+R∗

2 maps
approach has the advantage that only the MEMPRAGE imaging
session is required. MEMPRAGE images were acquired with
isotropic voxel size 1 mm, FOV 256 × 256, 176 sagittal slices,
phase encoding anterior-posterior, TR = 2,500 ms, TE = 1.48,
2.98, 4.48, 5.98, 7.48 ms, TI = 1120 ms, bandwidth 780 Hz/pixel,
non-selective inversion recovery, flip angle 7◦, acquisition time
4 min 43 s. The MPRAGE image was obtained by averaging the
images obtained at all echo times.

FLAIR images were acquired with isotropic voxel size 1
mm, FOV 256 × 256, 176 sagittal slices, phase encoding
anterior-posterior, TR = 5,000 ms, TE = 397 ms, TI =
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FIGURE 3 | Example of a misclassification of vessels as gray matter in the medial aspect of the temporal lobe (red arrows and dotted line in the inset

in the top left). As in Figure 2, the segmentation of the T1-weighted images alone is shown as a blue-green overlay, and the multimodal segmentation with the

added FLAIR images in red-orange. Light blue arrows point to differences in the classification of extracerebral tissue. The insets show an enlarged section of the

medial right temporal lobe, where the improvements due to the multimodal segmentation are apparent.

1,800 ms, bandwidth 781 Hz/pixel, non-selective inversion
recovery, flip angle 120◦, acquisition time 4 min 42 s. In two
participants two additional MPRAGE images were acquired
using standard protocols (“Freesurfer” and “ADNI”). The
acquisition parameters for these protocols were obtained online
from https://surfer.nmr.mgh.harvard.edu/fswiki/ and from
http://adni.loni.usc.edu/methods/documents/mri-protocols/.
Data from these two participants were used to draw Figures 2–
4, in which the results the simple MPRAGE and combined
segmentations may be compared. The acquisition parameters
and the processing stages of the time-of-flight images of Figure 6
are described in Viviani (2016).

Algorithms and Software Used
To obtain the apparent relaxation rate maps (R∗

2 maps) in each
individual the formula described in Hagberg et al. (2002) was
used. Due to the larger variability of estimated T∗

2-values, these
maps provided better segmentation results than images based on

the estimated T∗
2 times, either when used alone or in combination

with the T1-weighted data.
All further processing was carried out with the freely available

SPM software package (version 12, Welcome Trust Centre for
Neuroimaging, University College London, http://www.fil.ion.
ucl.ac.uk/spm/). FLAIR images were preliminarily co-registered
to the MEMPRAGE T1-weighted images. MPRAGE, apparent
relaxation rates-, and FLAIR images were included (as indicated
by the combination at hand) in the “unified segmentation”
procedure available in this software package (Ashburner and
Friston, 2005). Figures 2–4 display gray matter probability maps
at the original voxel size 1 mm. All other Figures refer to
“modulated” probability maps for the analysis of volumetric
effects- resampled at voxel size 1.5 mm. Bhattacharyya distance,
a measure of overlap between two densities, is given in the
multivariate case by the formula 1

8 (µ1 − µ2)′6
−1(µ1 − µ2) +

1
2 ln
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FIGURE 4 | Example of a misclassification of sulcal vessels as gray matter (red arrows and dotted red line in the T1-weighted images on the left). As in

the previous figures, the segmentation of the T1-weighted images alone is shown as a blue-green overlay, and the multimodal segmentation with the added FLAIR

images in red-orange. Note the vessels misclassified as gray matter by the T1-weighted segmentation (in green in the rightmost column of images), but not in the

multimodal procedure.

determinant (Kailath, 1967). All computations were carried out
with the software package MATLAB, version 12. Overlay images
were produced with the freely available software MRIcron (Chris
Rorden, http://www.mccauslandcenter.sc.edu/mricro).

RESULTS

Segmentation MPRAGE+FLAIR
The results of the segmentation were assessed in two ways.
The first consisted of visualizing tissue probability maps
individually to compare the outcome of the segmentations based
on the MPRAGE images alone and on the MPRAGE+FLAIR
combination. The second consisted of the generation of
parametric maps of differences of mean segmentation
outputs to visualize systematic differences between the
segmentations.

In the individual assessment, the MPRAGE+FLAIR
combination presented very good results, with no instances
where visual inspection detected errors in the classification of
vessels or dura. The addition of the FLAIR signal resulted in a
more conservative assignment of voxels to the gray matter tissue

class with the exception of a few specific areas (detailed below).
This occurred because the main sources of different classification
in the multimodal procedure, dura and vessels, both tended
to decrease the number of voxels assigned to gray matter. The
addition of the FLAIR input modality made little difference to
the classification of the gray matter tissue class in most voxels,
except for the three conditions described above, i.e., dura, vessels,
or connective tissue at the edge of the brain. The latter were
particularly pronounced at the swaths of tissue located between
the occipital and calcarine cortex and the cerebellum. Examples
of such individual comparisons for two participants are shown
in Figures 2–4.

To assess the extent to which the misclassification may be
due to the specific parameters of our acquisition protocol, we
also acquired T1-weighted images using standard MPRAGE
acquisition protocols in the two participants of Figures 2–4
(in the rest of the sample, only the MEMPRAGE images were
acquired). The misclassification (when T1-weighted images were
used alone) in the segmentation was similar irrespective of the
MPRAGE protocol used and the changes following the inclusion
of the FLAIR signal were almost identical.
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In Figure 2, one can see that the misclassified dura was
assigned a probability of ∼0.8 to belong to gray matter in
the segmentations using the T1-weighted images alone, but
a probability of about zero in the multimodal segmentations.
Similarly, in Figures 3, 4, which show misclassification of vessels
in the medial aspect of the temporal lobe and in the cortical
sulci, the T1-weighted segmentations classified the vessels as
gray matter with a probability about ∼0.8 where the multimodal
segmentations set this probability to about zero.

Figure 3 also illustrates how conservative the T1-
weighted+FLAIR combination was in assigning voxels to
gray matter at the edge of the brain in places where gray matter
was adjacent to connective tissue. One example is the anterior
pole of the right temporal lobe (also shown in the inset). Here,
connective tissue surrounded vascular tissue and the optic nerve.
A similar effect of the addition of the FLAIR signal is apparent in
the occipital pole/calcarine cortex, at the border with cerebellar
tissue (light blue arrows). Here, large swaths of connective tissue
that is isointense to gray matter in the T1-weighted signal may
be classified as non-brain when the T2-weighted FLAIR signal is
available (Helms et al., 2006).

The parametric maps of the difference between the average
tissue probability maps in the MPRAGE+FLAIR combination
and the segmentation with MPRAGE alone (Figure 5)
summarize these differences for the entire sample (in this
and the following figures, we refer to “CSF” for the tissue class
that includes the ventricles and liquor-filled spaces, although

this is in reality a somewhat heterogeneous compartment whose
precise content changes according to the combination of inputs
to the segmentation algorithm). The data are put in register
through the “unified segmentation-normalization” procedure
that is integrated in the segmentation algorithm. One can see that
the predominant change in the multimodal MPRAGE+FLAIR
combination was a decrease in the areas assigned to the gray
matter compartment (in blue-green in the top row of the
figure; the few exceptions in which assignment to gray matter
increased are discussed below). This is consistent with the
different assignment of voxels representing dura of vessels noted
in the individual analysis of Figures 2–4. Figure 5 also reveals
that shifts in the classification away from gray matter were
particularly apparent in lower slices (where the misclassification
of the dura may be expected to be more prominent, van der
Kouwe et al., 2008; Ribes et al., 2011), and in correspondence of
large and medium-sized vessels.

To validate the vascular origin of these classification
differences, we compared them to images of vessel frequency
obtained from time-of-flight images (Figure 6). The figure shows
that some of the decreases in gray matter probability maps
in the combined MPRAGE + FLAIR segmentation were due
to vascular signal (blue arrows). This was especially the case
at the anteromedial border of the temporal lobe (transversal
slices). Vessel signals may also have contaminated T1-weighted
estimates of gray matter tissue at the border of the anterior half
of the corpus callosum and the pons.

FIGURE 5 | Comparison of the segmentation obtained with the multimodal procedure using MPRAGE and FLAIR images, relative to a segmentation

obtained with the MPRAGE images alone (difference of averaged tissue probability maps). In blue, values that decrease in the multimodal procedure; in red,

values that increase. From top to bottom the segmentation output values for gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) were overlayed on the

mean normalized MPRAGE image (coordinates in mm, MNI space). The yellow dotted circles highlight areas affected by susceptibility artifacts (visible at z –28 and in

the sagittal images). The orange arrows and letter “v” point to areas where the multimodal segmentation gave different results due to detection of vessels (visible at z

–28, –18 and in the sagittal image). The blue arrows at z –18 and –8 show decreases in the GM values in areas affected by the dura problem (present also in slices

above). One can also see a shift in intensity from the GM to the WM compartment in the putamen, especially in its posterior portion (magenta arrows at z 2).

Decreases of estimated GM volume amounted to an average 67 ± 21 ml in the combined relative to the simple segmentation. In the combined segmentation, WM

and CSF volumes were on average 12 ± 8 and 25 ± 35 ml larger, respectively.
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FIGURE 6 | (Top row) enlarged slices from Figure 5, showing differences in

the tissue probability maps for gray matter (GM) obtained with the

MPRAGE+FLAIR combination relative to the MPRAGE segmentation.

(Bottom row) images of vascular density (VD), obtained from a publicly

available vascular density atlas from time-of-flight images segmented

semimanually (Viviani, 2016). The top of the brain is not represented in these

data due to missing coverage. Note that the multimodal segmentation

identifies more tissue as non-gray matter than the time-of-flight based data (for

example around the cerebellum in the center slice), due to the different

intensity of connective tissue in the T2-weighted signal (Helms et al., 2006).

Figure 6 also shows extensive areas of reduced gray matter
in the MPRAGE+FLAIR segmentation corresponding to the
cerebellar tentorium, around the cerebellum, especially at the
junction with the inferior occipital lobes and in the medial
aspect of the anterior temporal pole. These areas correspond to
tissue with different intensity in the time-of-flight images due
to the presence of large collectors of venous blood (the time-
of-flight images were acquired without the saturation band at
the top of the head that suppresses venous signals in clinical
applications of this sequence). The same areas changed in the
individual of Figure 3 (light blue arrows), where the T1-weighted
signal gave no indication regarding the extracortical nature of
this tissue. Changes in gray matter posterior to the splenium of
the corpus callosum corresponded to the location of the great
cerebral vein. These changes in the classification of tissue adjacent
to cortical gray matter attributable to large venous collectors and
the surrounding connective tissue are similar to those reported
by Helms et al. (2006) in their investigation of the T1- and
T2-weighted combined segmentation.

Two notable exceptions to the general pattern of reduced
gray matter in the MPRAGE+FLAIR segmentation were given
by the medial orbitofrontal cortex and the concavity of the
inferior aspect of the temporal lobes (yellow dotted ovals in
Figure 5). Being adjacent to the sphenoid sinus and mastoid air
cells, these areas are typically affected by magnetic susceptibility-
induced artifacts. This led to signal dephasing and signal loss,
which were more marked in the gradient-echo T1-weighted
MPRAGE images than in the spin-echo FLAIR images. A
comparison with the values assigned by the segmentation to
the CSF compartment (bottom row) shows that in these areas

the combined MPRAGE+FLAIR segmentation recovered signal
from gray matter assigned to CSF in the MPRAGE segmentation
alone.

A further exception to the general pattern was the increased
gray matter in the occipital cortex of the posterior pole of
the brain and, to a much smaller extent, in the rectus and
orbital gyri in the orbitofrontal cortex. Comparison with the
values assigned to white matter (middle row) shows that the
increased gray matter values occurred at the expenses of the
white matter compartment. This stood in contrast to the
general effect of the addition of the FLAIR signal, which
tended to shift the classification of voxels at the gray-white
matter boundary toward white matter. The visual inspection of
individual MPRAGE images revealed that the white/gray matter
contrast of the T1-weighted signal in the occipital cortex was very
low, compounding possible partial volume effects from white
matter arising from the thinness of the cortical ribbon (Figure 7).
The low contrast is explained by the high cortical myelin content
of this part of the cortex (Walters et al., 2003; Eickhoff et al.,
2005), as identified in appropriately configured segmentations
that include the T2-weighted signal of FLAIR (Viviani et al.,
2017).

There were further differences in the outcome of the
segmentation in the brainstem and in the basal ganglia. In
the latter, we observed a decrease of the gray matter values in
the combined MPRAGE+FLAIR segmentation in the posterior
putamen, which was shifted toward white matter (visible at z
= 2 in Figure 5). Less marked, similar shifts were observed in
the anterior pallidum and the substantia nigra. These differences
are consistent with the sensitivity of gradient-echo images to
differences in tissue iron content (Drayer et al., 1986; Haacke
et al., 2005; Pfefferbaum et al., 2009). Elsewhere, decreased gray
matter values may have been due to an increase in contrast
with the white matter of the internal capsule. The addition of
the FLAIR images also appear to have captured signal intensity
differences in the thalamic laminae (also visible in the slice at z =
2; Figure 5).

Segmentation MPRAGE+R∗

2
The comparison between theMPRAGE+R∗

2 (apparent transverse
relaxation rates) and the MPRAGE segmentations is shown
in Figures 8, 9. Some aspects of the different classification in
the multimodal procedure are similar to those visible in the
MPRAGE+FLAIR combination, but the degree of correction at
the outer surface of the cortex, where we would expect the dura
problem to be most prominent, was smaller. Visual inspection
revealed that the addition of the R∗

2 maps led to a reduction of
the tissue probability map values assigned to gray matter in the
voxels affected by the misclassification (see top row of Figure 8).
This effect, particularly apparent in the lower slices, is reflected
in the lower average gray matter values at the edge of the brain
(visible in Figure 9). In large vessels, the MPRAGE+R∗

2 tissue
probability maps showed large decrements in the gray matter
values, similarly to the MPRAGE+FLAIR combination (middle
row of Figure 8). However, the MPRAGE+FLAIR combination
was more effective in detecting medium-sized vessels in the
cortex (compare the bottom row of Figures 4, 8). This is
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FIGURE 7 | Example of classification differences in the occipital cortex. As in those figures, the segmentation of the T1-weighted images alone is shown as a

blue-green overlay, and the multimodal segmentation with the added FLAIR images in red-orange. In the left column the input MPRAGE and FLAIR image are shown.

The yellow arrows show loss of contrast in the T1-weighted MPRAGE images, which was retained in the FLAIR images. The right column show the classification

outcome in the MPRAGE alone segmentation (top, in green) and in the MPRAGE+FLAIR combination (in red-yellow). The yellow arrows pointing to loss of contrast

show in the MPRAGE alone segmentation that these areas achieved a classification of about 0.1–0.2 as gray matter, but 0.9 or more in the combined

MPRAGE+FLAIR combination. The images in the bottom right corner show the difference in the classification outcome. Note that the parts adjacent to the cortex

where the MPRAGE alone segmentation attributed a higher classification probability than the MPRAGE+FLAIR combination (blue arrows) were not gray matter, but

connective tissue. This is apparent from the inspection of the input MPRAGE image, where the dura is evident as a continuous sheet running over the left half of the

figure, isointense to gray matter in the MPRAGE data but giving low signal in the FLAIR image.

reflected in the diffuse shift toward CSF of the cortical gray
matter probability maps of the MPRAGE+FLAIR segmentation
of Figure 5, which was absent in the MPRAGE+R∗

2 data of
Figure 9.

In the areas of the orbitofrontal and temporal cortex where
there was an increase of the gray matter tissue probability
map values in the MPRAGE+FLAIR combination, the opposite
effect was observed here (yellow dotted circles in Figure 9).
This is consistent with increased magnetic susceptibility-
induced artifacts. At their peaks, the average gray matter value
reductions in these areas in the combined MPRAGE+R∗

2 relative
to MPRAGE segmentations were considerable, amounting to
over 30%.

Segmentation MPRAGE+R∗

2+FLAIR
In Figure 10 we show the comparison between the multimodal
segmentation using all sources of signal (MPRAGE, R∗

2 maps,
and FLAIR) and the combination MPRAGE+FLAIR. Because
of the good performance of the MPRAGE+FLAIR combination,
our intent was to investigate if the addition of R∗

2 maps
would add any useful information to the MPRAGE+FLAIR
combination.

The inspection of Figure 10 reveals that the addition of R∗
2

maps to FLAIR only led to minor differences in the output
of the segmentation procedure. Possible exceptions here were
small improvements in the detection of vessels. One also sees
that in the orbitofrontal cortex and in the inferior temporal
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FIGURE 8 | Data from the two individuals of Figures 2–4, here comparing the outcome of the segmentation of the T1-weighted data alone (identical to

the data of Figures 2–4) and the outcome of the combination T1-weighted+R*
2.

lobes the use of the R∗
2 maps led to decreases in signal intensity

for gray matter relative to the output of the MPRAGE+FLAIR
segmentation, as we would expect from the sensitivity of the
apparent transverse relaxation signal to magnetic susceptibility-
induced artifacts.

Tissue Class Density Separation in the
Tissue Class Density Models
The algorithm used here classifies voxels in tissue classes
according to their signal intensities, which are evaluated in
relation to estimated distributions of this signal for each
tissue class (Ashburner and Friston, 2005). In Figures 11A–D,
we show the estimated densities for the gray matter, white
matter, and CSF tissue classes, averaged from the whole sample.
A mixture of two Gaussians was used to model the signal
intensity of CSF and one Gaussian each for gray and white
matter, as in usual applications of this software package to the
segmentation of gray matter from T1-weighted images. One
can see that the separation between the gray matter and CSF
densities is considerably better in the MPRAGE+FLAIR than
in the MPRAGE+R∗

2 combination and in the MPRAGE alone
case. The larger separation of the densities is consistent with
the improvements in the identification of dura and vessels,

which depends on the densities estimated for gray matter and
CSF. This visual impression is confirmed by the comparison
of the Bhattacharyya distances between the Gaussians, which
quantify the distance between the centers of mass of the
densities while taking their covariances into account (Figure 11E,
GM to CSF, Table 1). As one can see from Figure 11E

and Table 1, the MPRAGE+FLAIR model achieved a better
separation of gray matter from CSF than the MPRAGE+R∗

2
combination or MPRAGE alone (the increased distances are
statistically significant at p < 0.001, paired sample t-test).
The increased GM-CSF distances of the centers of mass of
the MPRAGE+R∗

2+FLAIR relative to the MPRAGE+FLAIR
combination, in contrast, were not significant due to the high
variance in these data.

Figure 11E and Table 1 also show that the addition of the
FLAIR signal in the segmentation increased the separation of
the densities of gray and white matter (GM to WM). This
is consistent with the observation that the MPRAGE+FLAIR
segmentation was much better in estimating the cortical mantle
at the occipital pole (Figure 5). The average distance between
the centers of white matter and CSF (WM to CSF) may vary
without practical consequences, because these two densities have
no overlap.
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FIGURE 9 | Comparison of the segmentation obtained with the multimodal procedure using MPRAGE images and the R*
2 signal, relative to a

segmentation obtained with the MPRAGE images alone. Decreases of estimated GM volume amounted to an average 26 ± 11 ml in the combined relative to

the simple segmentation. There were no appreciable differences in the WM volumes in the combined and simple segmentation (<1 ml). In the combined

segmentation, CSF volumes were on average 11 ± 20 ml larger than in the simple segmentation. Colors and symbols as in Figure 5.

FIGURE 10 | Comparison of the segmentation obtained with the multimodal procedure using MPRAGE images, FLAIR images, and the R*
2 maps,

relative to the segmentation obtained with the combination MPRAGE + FLAIR images. Decreases of estimated GM volume amounted to an average 9 ± 9

ml in the MPRAGE+FLAIR+R*
2 relative to MPRAGE+FLAIR. There were no appreciable differences in the WM volumes in the combined and simple segmentation (<1

ml). Effects on the CSF volume were not consistent. In the MPRAGE+FLAIR+R*
2 segmentation, CSF volumes increased on average by 14 ± 28 ml than in the

MPRAGE+FLAIR segmentation. Colors and symbols as in Figure 5.

DISCUSSION

The addition of an input modality to the segmentation

procedure was predominantly accompanied by improvements

of the specificity of the classification of voxel in the gray
matter compartment, as confirmed by visual inspection of the
causes of the differences observed in the aggregate images. As
anticipated, the improvements occurred because of the increased

Frontiers in Neuroscience | www.frontiersin.org 10 May 2017 | Volume 11 | Article 258

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Viviani et al. Multimodal Segmentation for Cortical Gray Matter

FIGURE 11 | Estimates of tissue class densities and relative separation. (A–D) : average signal densities from the MPRAGE, MPRAGE+R*
2, MPRAGE+FLAIR,

and MPRAGE+R*
2+FLAIR segmentations. The estimate from the MPRAGE segmentation alone was displayed as a two-dimensional density to facilitate comparison.

The gray matter (GM) and white matter (WM) tissue classes were modeled with one Gaussian, while cerebrospinal fluid (CSF) was modeled as a mixture of 2

Gaussians. (E) Box-plots of the Bhattacharyya distances between the tissue classes computed in the individual segmentations. The distance of GM to CSF (box-plot

in the middle) was computed to the Gaussian with largest weight in the mixture.

TABLE 1 | Comparative summary of the Bhattacharyya distances of the

Gaussian components modeling tissue intensity distributions estimated in

different segmentations.

Component Weight Bhattacharyya distance

WM CSF1 CSF2

T1

GM 1 1.55 0.91 2.15

WM 1 5.60 10.37

CSF1 0.58 0.20

CSF2 0.42

T1 + R*
2

GM 1 1.44 0.77 3.25

WM 1 4.51 14.36

CSF1 0.61 0.67

CSF2 0.39

T1 + FLAIR

GM 1 1.87 1.27 3.65

WM 1 4.64 5.23

CSF1 0.68 0.22

CSF2 0.32

T1 + R*
2

+ FLAIR

GM 1 1.92 1.34 3.68

WM 1 4.95 5.29

CSF1 0.69 0.37

CSF2 0.31

identifiability of the dura and vessel signal disturbances but
also of the better classification of connective tissue and venous
collectors at the edge of the brain. The improvements were

particularly marked in structures were documenting atrophy is
of key importance, such as the medial and inferior face of the
hippocampus. However, these improvements were much larger
when the FLAIR signal, rather than the apparent relaxation
rate R∗

2 , was added in the multimodal segmentation. One may
conclude that the addition of the signal from the multiple echos
to the segmentation procedure may improve the quality of the
outcome only when FLAIR data are not available. The addition of
the FLAIR signal also improved the detection of the thin cortical
mantle in the occipital poles. The FLAIR images also corrected
small but consistent drops in signal intensity for the gray matter
compartment in areas affected by susceptibility artifacts in the
data from T1-weighted images alone, which is consistent with
the proneness of gradient echo techniques to these artifacts
(Reichenbach et al., 2005).

A limitation of the present study with respect to the estimation
of the R∗

2 maps consisted of the short echo intervals of the
MEMPRAGE sequence, whose rationale was to evaluate the
added value of this signal with no additional acquisitions. R∗

2
maps may be measured with improved precision at longer
echo times. However, even at the short echo times of our
study, we observed an increase of susceptibility artifacts in the
segmentation that included R∗

2 maps, suggesting that data from
longer echo times would be prone to even larger dephasing
effects.

An interesting effect of the addition of the FLAIR signal to the
multimodal segmentation procedure was given by differences in
the segmentation output in the basal ganglia and the brainstem.
These differences are consistent with the different contrast
properties of MRI protocols. The effect of iron on T2-weighted
images, in particular, may have been felt in the segmentation
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of subcortical structures, compounding problems in the correct
attribution to gray matter that affect segmentations of MPRAGE
images (Lorio et al., 2016). These changes show that the
addition of new input modalities in a segmentation procedure
may introduce or strengthen sources of contrast that do not
necessarily reflect volumetric differences.

It is important to draw attention to the significance and
benefits of multimodal segmentation as such that emerge
in the present study. First, if the signal has good signal-
to-noise properties, inclusion of multiple input modalities
can only increase the specificity of segmentation due to
the additional sources of contrast. The present study shows
that, in the case of cortical gray matter, the gains may
be substantial. Second, multimodal segmentation is not only
feasible but also easy to implement. Given the current
interest in using structural imaging in characterizing disorder
subgroups or predicting their course, the increased specificity
of multimodal segmentation is immediately available in studies
of key translational significance. Third, to date little has
been done to explore the opportunities offered by multimodal
segmentation. Beside its utility in differentiating cortex from
dura and vessels, it may also be useful in identifying subcortical
gray matter (Derakhshan et al., 2010; Datta and Narayana,
2013), brainstem structures (Lambert et al., 2013a,b), cerebral
lesions (Alfano et al., 2000; Van Leemput et al., 2001;
Engström et al., 2014) and, for what concerns cortical gray
matter, identifying morphological differences in cortical myelin
content (Viviani et al., 2017). To fully realize the potential

of multimodal segmentation, it will be important to explore
models of signal density in which the number of Gaussian
components is varied to identify additional features of tissue
(Viviani et al., 2017). This suggests that, in addition to
increased specificity, multimodal segmentation alone or in
combination with quantitative techniques may expand the
amount of information that we may gain noninvasively with
MRI.
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