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Abstract

When probed with complex stimuli that extend beyond their classical receptive field, neu-

rons in primary visual cortex display complex and non-linear response characteristics.

Sparse coding models reproduce some of the observed contextual effects, but still fail to

provide a satisfactory explanation in terms of realistic neural structures and cortical mecha-

nisms, since the connection scheme they propose consists only of interactions among neu-

rons with overlapping input fields. Here we propose an extended generative model for visual

scenes that includes spatial dependencies among different features. We derive a neuro-

physiologically realistic inference scheme under the constraint that neurons have direct

access only to local image information. The scheme can be interpreted as a network in pri-

mary visual cortex where two neural populations are organized in different layers within ori-

entation hypercolumns that are connected by local, short-range and long-range recurrent

interactions. When trained with natural images, the model predicts a connectivity structure

linking neurons with similar orientation preferences matching the typical patterns found for

long-ranging horizontal axons and feedback projections in visual cortex. Subjected to con-

textual stimuli typically used in empirical studies, our model replicates several hallmark

effects of contextual processing and predicts characteristic differences for surround modula-

tion between the two model populations. In summary, our model provides a novel framework

for contextual processing in the visual system proposing a well-defined functional role for

horizontal axons and feedback projections.

Author summary

An influential hypothesis about how the brain processes visual information posits that

each given stimulus should be efficiently encoded using only a small number of cells. This

idea led to the development of a class of models that provided a functional explanation

for various response properties of visual neurons, including the non-linear modulations

observed when localized stimuli are placed in a broader spatial context. However, it

remains to be clarified through which anatomical structures and neural connectivities a

network in the cortex could perform the computations that these models require. In this
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paper we propose a model for encoding spatially extended visual scenes. Imposing the

constraint that neurons in visual cortex have direct access only to small portions of the

visual field we derive a simple yet realistic neural population dynamics. Connectivities

optimized for natural scenes conform with anatomical findings and the resulting model

reproduces a broad set of physiological observations, while exposing the neural mecha-

nisms relevant for spatio-temporal information integration.

Introduction

Single neurons in the early visual system have direct access to only a small part of a visual

scene, which manifests in their ‘classical’ receptive field (cRF) being localized in visual space.

Hence for understanding how the brain forms coherent representations of spatially extended

components or more complex objects in our environment, one needs to understand how

neurons integrate local with contextual information represented in neighboring cells. Such

integration processes already become apparent in primary visual cortex, where spatial and

temporal context strongly modulate a cell’s response to a visual stimulus inside the cRF.

Electrophysiological studies revealed a multitude of signatures of contextual processing, lead-

ing to an extensive literature about these phenomena which have been termed ‘non-classical’

receptive fields (ncRFs) (for a review, see [1, 2]). ncRF modulations have a wide spatial range,

extending up to a distance of 12 degrees of visual angle [3] and are tuned to specific stimulus

parameters such as orientation [4]. Modulations are mostly suppressive [5], although facilita-

tory effects are also reported, especially for collinear arrangements where the center-stimulus

is presented at low contrast [6] and for cross-orientation configurations [7, 8]. However, there

is also a considerable variability in the reported effects, even in experiments where similar

stimulation paradigms were used: for example, [6] found iso-orientation facilitation for low

center stimulus contrasts, whereas another study [9] did not report facilitation at all, regardless

of the contrast level. A further example [7] found strong cross-orientation facilitation, while

[8] reports only moderate levels of cross-orientation facilitation, if at all. These discrepancies

might be rooted in differences between the experimental setups, such as the particular choice

of center/surround stimulus sizes, contrasts, and other parameters like the spatial frequency

of the gratings, but might also be indicative of different neurons being specialized for different

aspects of information integration.

From the observed zoo of different effects in conjunction with their apparent variability,

the question arises if explanations based on a unique functional principle could provide a uni-

fying explanation of the full range of these phenomena.

Even though the circuits linking neurons in visual cortex are still a matter of investigation,

the nature of their properties suggest that the emergence of nCRF phenomena is a conse-

quence of the interplay between different cortical mechanisms [10] that employ orientation-

specific interactions between neurons with spatially separate cRFs. Anatomical studies have

established that long-range horizontal connections in V1 have a patchy pattern of origin and

termination, link preferentially cortical domains of similar functional properties, such as ori-

entation columns, ocular dominance columns and CO compartments [11–13] and extend up

to 8 mm [11, 14]. Although the functional specificity of feedback connections from extrastriate

cortex is more controversial, some studies [15, 16] have reported that terminations of V2-V1

feedback projections are also clustered and orientation-specific, providing input from regions

that are on average 5 times larger than the cRF. These results make both horizontal and
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feedback connections well-suited candidates for mediating contextual effects, potentially with

different roles for different spatio-temporal integration processes.

Is it possible to interpret the structure of these connections in terms of the purpose they

serve?

For building a model of visual information processing from first principles, a crucial obser-

vation is that visual scenes are generated by a mixture of elementary causes. Typically, in any

given scene, only few of these causes are present [17]. Hence, for constructing a neural expla-

nation of natural stimuli, sparseness is likely to be a key requirement. Indeed electrophysiolog-

ical experiments have demonstrated that stimulation of the nCRF increases sparseness in

neural activity and decorrelates population responses, in particular under natural viewing con-

ditions [18–20]. Perhaps the most influential work that linked sparseness to a form of neural

coding that could be employed by cortical neurons was the paradigm introduced by Olshausen

and Field [21]. After it was shown that sparseness, combined with unsupervised learning using

natural images, was sufficient to develop features which resemble receptive fields of primary

visual cortex [21–24], a number of extensions have been proposed that have successfully

explained many other aspects of visual information processing, such as complex cell properties

[25] and topographic organization [26]. Moreover, a form of code based on sparseness has

many potential benefits for neural systems, being energy efficient [27], increasing storage

capacity in associative memories [28, 29] and making the structure of natural signals explicit

and easier to read out at subsequent level of processing [30]. Particularly noteworthy is the

fact that these statistical models can be reformulated as dynamical systems [31], where process-

ing units can be identified with real neurons having a temporal dynamics that can be imple-

mented with various degrees of biophysical plausibility: using local learning rules [32], spiking

neurons [33, 34] and even employing distinct classes of inhibitory neurons [35, 36]. In sum-

mary, sparse coding models nicely explain fundamental properties of vision such as classical

receptive fields.

But can these models also explain signatures of contextual processing, namely non-classical

receptive fields?

Recently, Zhu and Rozell reproduced a variety of key effects such as surround suppression,

cross-orientation facilitation, and stimulus contrast-dependent ncRF modulations [37]. In

their framework, small localized stimuli are best explained by activating the unit whose input

field (‘dictionary’ vector) best matches the stimulus. If the stimuli grow larger, other units

become also activated and compete for representing a stimulus, thus inducing ncRF modula-

tions. This mechanism is similar to Bayesian models in which contextual effects are caused by

surround units ‘explaining away’ the sensory evidence provided to a central unit [38]. The nec-

essary interactions between neural units are mediated by couplings whose strengths are anti-

proportional to the overlaps of the units’ input fields. However, most of the effects observed in

experiments are caused by stimuli extending far beyond the range of the recorded neuron’s

input fields [3, 5, 6]. Hence the mechanism put forward by this model [37] can only be a valid

explanation for a small part of these effects, covering situations in which the surround is small

and in close proximity to the cRF. This observation raises the important question, how sparse

coding models have to be extended to better reflect cortical dynamics and anatomical struc-

ture. In particular, such models would have to allow for direct interactions between non-over-

lapping input fields.

If these models are then learned from natural images, which local and global coupling

structures emerge, how do they compare to anatomical findings, and do they still exhibit the

expected cRF properties? Can inference and learning dynamics be implemented in a biophysi-

cally realistic manner? Are such models capable of providing satisfactory explanations of ncRF
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phenomena, and what are the underlying mechanisms? And finally, which predictions emerge

from modeling and simulation for experimental studies?

In this paper, we address the above questions by building a novel framework to better cap-

ture contextual processing within the sparse coding paradigm. In particular, we define a gener-

ative model for visual scenes that takes into account spatial correlations in natural images. To

perform inference in this model, we derive a biologically inspired dynamics and a lateral con-

nection scheme that can be mapped onto a neural network of populations of neurons in visual

cortex. We show that the emerging connectivity structures have similar properties to the recur-

rent interactions in cortex. Finally, we evaluate the model’s ability to predict empirical findings

reported in a set of electrophysiological experiments and we show that it replicates several hall-

mark effects of contextual processing. In summary, our model provides a unifying framework

for contextual processing in the visual system proposing a well-defined functional role for hor-

izontal axons.

Results

Extended generative model

The low-level, pixel representation of a natural image is multidimensional and complex. How-

ever, the corresponding scene can often be described by a much smaller number of high-level,

spatially extended components such as textures, contours or shapes, which in turn are com-

posed of more elementary, localized features such as oriented lines or grating patches. Stan-

dard sparse coding posits that images can be generated from linear combinations of such

elementary features. In particular, it proposes that an image patch s 2 RM
can be written as

s ¼ Fa; ð1Þ

where the feature vectors �i 2 R
M

are arranged in a M × N matrix F often called ‘dictionary’

and the vector a 2 RN
contains the cofficients with which a particular image can be repre-

sented in feature space. An implicit assumption made by many sparse coding models (e.g.

[21, 24, 39, 40]) is that the features are localized and thus have a limited spatial extent. Such

assumption is plausible when features are interpreted as the synaptic input fields of cortical

neurons, nevertheless it restricts sparse coding models to encoding only small patches of much

larger images.

For constructing an extended generative model for natural scenes, we want to take into

account that the presence of objects in the scene typically induces long-range dependencies

among the elementary features—for instance, an oriented edge that belongs to a contour

entails the presence of a co-aligned edge in its proximity [41, 42]. We start by considering a

discretization of a (potentially large) visual scene. The simplest scenario that still allows to cap-

ture dependencies between features situated in different, non-overlapping locations consists in

having two adjacent image patches, as the two horizontally aligned square regions indexed by

u and v in Fig 1A. Next, we assume that the presence of a feature i at one particular location u
can be ‘explained’ by the presence of features j at other locations v via coefficients Cuv

ij . We illus-

trate this in Fig 1A, where we have highlighted pairs of oriented edge that belong to the same

object and that are thus present in both locations of the visual field. With such matrices Cuv

and Cvu that capture the co-occurrence of features in different locations, we can then define

the following feature representations

bu ¼ au þ Cuvav; ð2Þ

bv ¼ av þ Cvuau: ð3Þ
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Furthermore, we assume a reversal symmetry Cuv
ij ¼ Cvu

ji for all i, j, which implies Cvu = (Cuv)>:

if the presence of a feature i at location u implies the presence of a feature j at location v, then

the presence of a feature j at location v should imply the presence of a feature i at location u
to the same extent [41]. This allows us to drop the indexes u, v from Eqs (2) and (3) and write

Cuv = C and Cvu = C> with which, finally, we get

bu ¼ au þ Cav ð4Þ

bv ¼ av þ CTau ð5Þ

su ¼ Fbu ð6Þ

sv ¼ Fbv: ð7Þ

In what follows, we will interpret the two patches as a ‘central’ and ‘contextual’ stimulus. The

extension to more than two patches is straightforward and is presented in the supplement

(S1 Text).

Note that such model might be considered as sparse coding with additional wiring con-

straint. In fact, substituting Eqs (4) and (5) into (6) and (7) and defining

s ¼
su

sv

" #

; a ¼
au

av

" #

and F ¼
F FC

FC> F

" #

yields the classic linear mixture models used to investigate sparse coding of natural scenes

[22, 43]

s ¼ Fa: ð8Þ

In fact, for C = 0, Eq (8) becomes exactly equivalent to the standard sparse coding model,

Fig 1. Simplified generative model and neural inference network. (A) In a simplified model, we consider visual

scenes composed of two horizontally aligned, separate image patches which are encoded by their sparse representation

au, av via local featuresF and non-local dependencies C. The highlighted regions indicate how particular pairs of local

features may co-occur due to the long-range dependencies induced by spatially extended objects. (B) Inference in the

simplified generative model can be performed by a neural population dynamics (22) whose activities represent the

coefficients au, av and bu, bv. The corresponding neural circuit involves feedforward, recurrent, and feedback

interactions which are functions of the dictionaryF and of the long-range dependencies C.

https://doi.org/10.1371/journal.pcbi.1007370.g001
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where image patches would be encoded independently without using the potential benefits of

long-range dependencies.

Learning visual features and their long-range dependencies. To fully define the coding

model we posit an objective function, used for optimization of the latent variables and the

parameters. In our scheme, it allows to learn which fundamental features ϕi are best suited to

encode an ensemble of images, and to derive a suitable inference scheme for the latent vari-

ables au, av such that they optimally explain a given input image (su, sv) given the constraints.

Most importantly, it allows to determine the spatial relations C between pairs of features.

The objective function E consists of four terms. The first two quantify how well the two

image patches are represented, by means of computing the quadratic error between the

patches and their reconstruction. The third and fourth terms require the representation in the

coefficients a’s and the matrix C to be sparse, which is crucial for our assumption that only few

non-zero coefficients are necessary to represent a complex image (su, sv)μ from an ensemble of

images μ = 1, . . ., P. Mathematically, it is defined as

Emðau; av;F;CÞ ¼
�
�
�sum � Fða

u þ CavÞ

�
�
�

2

2
þ

�
�
�svm � Fða

v þ C>auÞ
�
�
�

2

2
þ laðkauk1 þ kavk1Þ þ lCkCk

2

2
:

ð9Þ

The parameters λa and λC are sparseness constants, with larger values implying sparser repre-

sentations. To obtain the matrices F and C we used a gradient descent with respect to au, av, F
and C on the objective function defined by Eq (9). As image patches (su, sv) we used pairs of

neighboring quadratic patches (aligned either horizontally or vertically) extracted from natural

images (McGill data set [44]) after applying a whitening procedure as described in [22]. Our

optimization scheme consisted of two alternating steps: First, we performed inference for an

ensemble of image patches by iterating, for each image μ,

anew
m
¼ aold

m
� Za

@Em
@a

ð10Þ

until convergence to a steady state while holding F and C fixed. Then, we updated F or C by

computing

Fnew ¼ Fold � ZF
@E
@F

� �

m

ð11Þ

or

Cnew ¼ Cold � ZC
@E
@C

� �

m

ð12Þ

with learning rates ηF and ηC, respectively. Angle brackets h� � �iμ denotes the average over the

image ensemble while keeping the a’s at the steady states (for details, see Methods). This learn-

ing schedule reflects the usual assumption that inference and learning take place at different

time scales. For increasing computational efficiency, we performed optimization in two

phases. First, using only Eqs (10) and (11), we learned the dictionary F assuming C = 0, and

second, using only Eqs (10) and (12), we obtained the long-range dependencies C while hold-

ing F fixed.

Inference with a biologically plausible dynamics

While in theory inference and learning can be realized by the general optimization scheme

presented above, in the brain inference needs to respect neurobiological constraints. In what

Constrained inference in sparse coding: Contextual effects and neural dynamics
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follows, we derive a dynamics where the mixture coefficients au, av and bu, bv are activities of

populations of neurons which we hypothesize to realize the necessary computations in cortical

hyper-columns connected by local and long-range recurrent interactions (see Fig 1B). Hereby

we require populations to have direct access only to ‘local’ image information, conveyed by

their synaptic input fields.

For inference, we assume the quantities F and C to be given and we associate each feature

i to one neural population having an internal state (e.g. an average membrane potential) and

an activation level (i.e., its average firing rate). Following the approach of Rozell et al. [31], we

define the population activities aX ¼ ðaXj Þj¼1;...;N as the thresholded values of the internal states

hX
¼ ðhXj Þj¼1;...;N by setting

aX ¼ ½hX
� la�

þ
; for X ¼ u; v; ð13Þ

using the sparseness constant λa as a threshold, and we let hX evolve according to

th
_hX ¼ �

@E
@aX

: ð14Þ

The linear threshold operation ensures the positivity of a, which is a necessary requirement for

a neural output. Writing (14) explicitly leads to

th
_hu ¼ � hu

þ F>su � ðF>F � IN þ CF>FC>Þau � ðCF>Fþ F>FCÞav þ CF>sv ð15Þ

th
_hv ¼ � hv

þ F>sv � ðF>F � IN þ C>F>FCÞav � ðC>F>Fþ F>FC>Þau þ C>F>su: ð16Þ

Interpreting these equations in a neural context reveals one problem: The dynamics of the

populations at location u explicitly depends on the ‘stimulus’ (image patch) at location v—and

vice versa (last terms on the r.h.s of Eqs (15) and (16)). This dependency violates our assump-

tion of populations having access to only local image information. One way to get rid of this

dependence is to approximate the input by its reconstruction suggested by the generative

model, that is su = F(au + Cav) and sv = F(av + CTau), which leads to

th
_hu ¼ � hu

þ F>su � ðF>F � INÞau � F
>FCav ð17Þ

th
_hv ¼ � hv

þ F>sv � ðF>F � INÞav � F
>FC>au: ð18Þ

These two equations can be further simplified by extending the dynamical reformulation to

include the coefficients b using Eqs (4) and (5). For this, we define another set of internal vari-

ables kX satisfying

bX ¼ ½kX�þ ð19Þ

and let them evolve according to a similar relaxation equation (i.e. leaky integration):

tk
_ku ¼ � ku þ au þ Cav ð20Þ

tk
_kv ¼ � kv þ av þ C>au: ð21Þ

Constrained inference in sparse coding: Contextual effects and neural dynamics
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The final model is thus given by the following four differential equations

th
_hu ¼ � hu

þ F>su � F>Fbu þ au ¼ � hu
þW inputsu þW localbu þ au

th
_hv ¼ � hv

þ F>sv � F>Fbv þ av ¼ � hv
þW inputsv þW localbv þ av

tk
_ku ¼ � ku þ au þ Cav ¼ � ku þ au þW longav

tk
_kv ¼ � kv þ av þ C>au ¼ � kv þ av þ ðW longÞ

>au

8
>>>>>>><

>>>>>>>:

ð22Þ

and by the linear threshold operations of Eqs (13) and (19).

This temporal dynamics can be implemented in a network of four neural populations orga-

nized in two cortical columns (Fig 1B). Specifically, populations au and av in the two columns

receive feed-forward input Winput = F> from two different locations in the visual field. The

input is then processed by a set of recurrent local connections that couple population au to bu

and av to bv within the same column (matrices I and Wlocal = −F>F). The two populations bu

and bv are also targets of long-range connections Wlong = C and (Wlong)> originating from pop-

ulations av and au in the neighboring column, respectively. For example, the two populations

a and b inside a column could be interpreted as neural ensembles located in different cortical

layers, or alternatively as two subpopulations in the same layer, but with different connection

topologies. Note that the term ‘long-range’ not necessarily relates to long-ranging horizontal

interactions—different anatomical interpretations are possible, and we will speculate on two

alternative explanations in the Discussion.

The computation performed within single columns implements a competition based on

tuned inhibition between units that code for similar features—which is a typical characteristics

of sparse coding models—and it produces a sparse representation of the incoming stimulus.

The interactions conveyed by horizontal connections between columns can induce modula-

tory effects on such a representation. All these connection patterns are completely determined

by the matrices F and C.

Since the representations a and b can contain both positive and negative entries, each origi-

nal unit can be realized by two neural populations which we will term ‘ON’ and ‘OFF’ units.

Hereby ON-units represent positive activations of the original units, while OFF-units repre-

sent negative activations of the original units through positive neural activities. Accordingly,

OFF-units are assigned the same shape of the synaptic input field, but with opposite polarity.

With this necessary extension, Eq (14) implies that a will minimize the energy function E:

even though the dynamics does not follow the gradient along the direction of its steepest slope,

it still performs a gradient descent, since a is a monotonously increasing function of h. We

note here that, despite converging to the same fixed point, the dynamics defined by Eq (22)

is not equivalent to performing standard gradient descent as in Eq (10) (see Discussion for a

more complete explanation).

Connection patterns and topographies

The link between the formal generative model and its realization as a cortical network allows

to interpret F and C (shown in Figs 2 and 3) in terms of the connection matrices Winput, Wlocal

and Wlong.

After convergence of the training procedure (see Methods) our model produces feature vec-

tors that resemble Gabor filters (Fig 2A), having spatial properties similar to those of V1 recep-

tive fields. This result is a consequence of the sparseness constraint and does not come as a

surprise, since it was obtained in a number of studies before [21, 23, 24], but verifies that our

extended framework produces meaningful results by being able to learn similar features. The
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variety of the dictionary elements is represented in Fig 2A and contains examples of localized

and oriented Gabor-like patches, concentric shapes, and structures with multiple, irregularly

shaped subfields. Each of the dictionary elements represents the synaptic input field of a neural

unit and typically shows up as its classical RF when mapped with localized random stimuli

through a reverse correlation procedure [22]. For further analysis, we extracted parameters

that characterize the cell’s tuning properties—namely its orientation preference, spatial fre-

quency preference, RF center and size—by fitting a Gabor filter to each feature vector (see

Methods). Typically, all feature vectors taken together build a complete representation for all

orientations (and other stimulus features), thus the columns indicated in Fig 1B are similar to

orientation hypercolumns found in primary visual cortex [45]. The distribution of orientation

preferences exhibits a bias for cardinal orientations as observed in physiological studies [46].

As previously mentioned, short-range interactions are specified by the dictionary matrix

through the equation Wlocal = −F>F. This implies that the absolute strength with which two

units are locally connected is proportional to how closely their respective input fields match.

In particular, as it is illustrated in Fig 2B, units with similar orientation preference and oppo-

site phase are excitatorily connected, while units with similar orientation and similar phase

are inhibitorily connected. Support for such like-to-like suppression can be found in a recent

experiment [47], where optogenetic stimulation of mice V1 revealed a prominent inhibitory

influence between neurons with similar tuning, suggesting that feature competition is indeed

implied in sensory coding.

Together with the dictionary, we also learn the long-range feature dependencies C (Fig 3

shows results relative to the horizontal configuration). To investigate which pattern of

Fig 2. DictionaryF and local connections. (A) Feature vectors learned by training the model on natural images

resemble localized Gabor filters. Features are ordered according to their orientation, which was estimated by fitting a

Gabor function. Only a subset of the total set of N = 1024 dictionary elements is shown. (B) Units with overlapping

input fields have strong short-range connections. The sign of the coupling is determined by the arrangement of on/off

regions of the input fields: opposite phases correspond to excitatory connections (red) and matching phases to

inhibitory connections (blue).

https://doi.org/10.1371/journal.pcbi.1007370.g002
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connections is induced, we computed the average absolute connection strength h|Wlong(θpost,

θpre)|i as a function of the orientation preferences θpost and θpre of the units they connect (Fig

3A). The highest absolute connection strengths appear along the diagonal, indicating that

pairs of units with similarly oriented input fields tend to be more strongly connected via long-

range interactions. The distribution contains another structure, although more faint, located

along the anti-diagonal, indicating that pairs of units whose orientations sum up to 0 degrees

Fig 3. Correlation matrix C and long-range interactions. (A) Average absolute strength of long-range connections

Wlong = C as a function of the orientation preferences of the pre- and postsynaptic units. Each point in the graph

represents a connection from a unit responsive to the right portion of the visual field to a unit responsive to the left

portion of the visual field (see four examples on the left). (B) Average absolute strength of excitatory (top, red color

scale) and inhibitory (bottom, blue color scale) long-range connections as a function of the pre- and postsynaptic

orientation preferences as in (A). (C) Average absolute strength of long-range connections as a function of the

difference in orientation preference of the connected units. For comparison, data from the primary visual cortex of tree

shrews are shown in the inset. The graph displays the percentage of boutons contacting postsynaptic sites that differ in

orientation preference by a specified amount from the presynaptic injection site of a biocytin tracer. Individual cases

are shown in gray and the median is shown in black. The dashed line reflects the percentage of boutons expected in

each orientation difference bin if the boutons were distributed evenly over the map of orientation preference (redrawn

from [13]). (D) Long-range interactions between units having positive correlations between the adjacent borders of

their synaptic input fields tend to be excitatory (red frame in upper input fields example), while units having negative

correlations tend to be inhibitory. This effect increases with increasing absolute coupling strengths |Cij|, as indicated by

the area under the ROC curve (auROC) computed from the corresponding correlation distributions for positive and

negative connections.

https://doi.org/10.1371/journal.pcbi.1007370.g003
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are also strongly connected. Particular examples of units that have strong long-range coupling

are shown in Fig 3A.

This result is consistent with anatomical measurements taken in primary visual cortex of

mammals. Several experiments [11–13, 48, 49] report that horizontal long-range connections

in V1 show a ‘patchy’ pattern of origin and termination, linking preferentially cortical domains

responding to similar features. We quantified such a tendency in our model by computing the

average connection strength as a function of the orientation preference difference Δθ = θpost −
θpre between pre- and post-synaptic cell. The corresponding graph is shown in Fig 3C, and a

similar distribution obtained from anatomical measurements is reported for comparison in

the inset.

In three shrew [13], cat [50] and monkeys [51], it has been shown that long-range connec-

tions between neurons of similar orientation selectivity exist primarily for neurons that are

retinotopically aligned along the direction of their cells’ preferences. We computed average

absolute coupling strength between populations with aligned cRFs (i.e., 0 ± 15 degrees), and

between populations with parallel cRFs (i.e., 90 ± 15 degrees), revealing that aligned couplings

were indeed 26% percent stronger on average.

When splitting long-range interactions into negative and positive weights, we do not find

any significant difference between their dependency on pre- and postsynaptic orientation pref-

erence (Fig 3B). However, a different pattern emerges when we take the polarities or phases of

the synaptic input fields into account: For this purpose we measured the correlation ρ between

the right border of the left input field, and the left border of the right input field (colored

frames in inset of Fig 3D), which are adjacent in visual space. Excitatory connections tend to

exhibit positive correlations, while inhibitory connections tend to exhibit negative correla-

tions. The stronger the couplings, the more pronounced this effect becomes. To quantify this

effect, we compared the distributions pðr jW long
ij > dÞ for positive couplings larger than δ with

the distributions pðr jW long
ij < � dÞ for negative couplings smaller than −δ by computing a

receiver-operator characteristics ROC. Consistently, we find that separability as quantified by

the area under ROC (auROC) increases with δ (Fig 3D). This effect is opposite to what we

have (by construction) for the short-range connections: while units with similar cRFs within
a column compete with each other, units with similar cRFs across two columns facilitate each

other.

Contextual effects

With the input fields (dictionary) and the long-range interactions obtained from a representa-

tive ensemble of natural images, the connectivity of the network represented in Fig 1 is

completely specified. We can then subject the model to arbitrary stimulus configurations and

investigate how well the dynamics described by Eqs (13), (19) and (22) predicts key effects

exhibited by real neurons when processing contextual visual stimuli, and whether it can offer a

coherent explanation to experimentally established context effects. For this purpose, we first

selected units that were well driven and well tuned to the orientation θc of small patches sc of

drifting sinusoidal gratings positioned at the center ru of the left input region (cf. Fig 2B),

scðr; tÞ ¼ kcgcðrÞ sin ðocðr � ruÞeyc þ ottÞ;

gcðrÞ ¼
1

2
1þ tanh ðbðrc � jr � rujÞÞð Þ:

ð23Þ

Here kc denotes grating contrast, rc the radius of the patch, ωc its spatial frequency, ωt the drift-

ing frequency and β controls the steepness of the transition between stimulus und background.

Thereby we mimic the situation in experiments in which typically also time-dependent stimuli
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are used. Subsequently, these selected units were subjected to contextual stimulation, and the

induced modulation by the context quantified.

In the following, we will focus on three exemplary stimulation paradigms in contextual pro-

cessing, assessing size tuning, orientation-contrast effects, and luminance contrast effects.

Size tuning. Experiments in monkey and cat [5, 52] have shown that the stimulation of

visual space surrounding the classical receptive field often has a suppressive influence on neu-

rons in V1. Stimuli typically used to reveal this effect consist of a moving grating or an oscillat-

ing Gabor patch having the cell’s preferred orientation, and being positioned at the center of

its cRF. Recording the neural response while increasing the size of the grating yields the size

tuning curve which exhibits two characteristic response patterns [5], as indicated in Fig 4A:

After an initial increase in firing rate with increasing stimulus size, either the cell’s response

becomes suppressed and firing rate decreases (upper panel), or firing rate increases further

and finally saturates (lower panel). In our model we realized a similar stimulation paradigm by

using an optimally oriented grating (Eq (23)) and increasing its size rc. Hence the stimulus first

grows towards the border of the input field in which it is centered, and then extends into the

neighboring fields. From all selected units, we show the size tuning curves of two exemplary

cells in Fig 4B, demonstrating that the model can capture both qualitative behaviors known

from cortical neurons.

For quantifying the degree of suppression and the extent to which this effect is present at

the population level, we computed for all selected units a suppression index (SI) defined as

SI ¼ 1 � afull=max
rc
ðaðrcÞÞ ;

where afull was the response to a stimulus fully covering the input field. The SI indicates how

much, in percentage, the response of a unit at largest stimulus size is reduced with respect to

its maximum response, with 0 meaning no suppression and 1 meaning total suppression. The

distribution of the SI across all the simulated cells is plotted in Fig 4C. For population a, we

find values comparable to what has been found experimentally: [5] reports that 44% of cells

had less than 10% suppression and in the model the percentage of cells with SI< 0.1 is 38%. In

general, the model shows less suppression (i.e., lower SI values) for population b.

Since surround suppression was already observed in sparse coding models without long-

range interactions [37], we expect this effect to stem from a combination of local and long-

range connections. To quantify their roles in producing surround suppression, we simulated a

version of the model without long-range interactions by setting C = 0. The resulting distribu-

tion of changes in SI is shown in Fig 4D and displays a mean increase of the SI for population

a when including long-range connections, indicating that they contribute considerably to

suppressive modulation induced by stimuli in the surround. In fact, without long-range inter-

actions the percentage of cells with SI< 0.1 becomes 64%, which is quite far from the experi-

mental result reported above. Conversely, the effect of including long-range connections is

predominantly facilitatory for population b, leading to a decrease in the observed SI’s.

Cross-orientation modulation. Contextual processing is often probed by combining a

central grating patch inside the cRF with a surround annular grating outside the cRF. For such

configurations, the influence of the surround annulus on the response to an optimally oriented

center stimulus was found to be orientation selective. When center and surround have the

same orientation, the firing rate modulation is mostly suppressive, as we already know from

studying size tuning (previous subsection).

If the surround strongly deviates from the orientation of the center, suppression becomes

weaker [4, 8, 53, 54] and in some cases even facilitation with respect to stimulation of the cen-

ter alone is observed [7, 55]. In particular, one study in cats [4] reports three typical response
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Fig 4. Size tuning and surround suppression. Dependence of neural responses on the size of a circular moving

grating presented at the cell’s preferred orientation. (A) Single-cell size tuning curves in primary visual cortex of cat

exhibiting surround suppression (top) or saturation (bottom). Redrawn from [5]. (B) Size tuning curve of exemplary

units in the model showing similar behaviour as in (A). (C) Distribution of suppression indices SI for the full model

with long-range interactions. Values of 0 correspond to no suppression, values of 1 to full suppression. (D) Change in

SI (ΔSI = SIwith long − SIwithout) induced by long-range connections. Enhanced suppression occurs more frequently than

facilitation in population a, while in population b one observes the opposite effect.

https://doi.org/10.1371/journal.pcbi.1007370.g004
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patterns: (I) equal suppression regardless of the orientation of the surround, (II) suppression

which decays with increasing difference between the orientations of center and surround, and

(III) suppression that is strongest for small differences between orientations of center and sur-

round, and weaker for large orientation differences and orientation differences close to zero.

In the literature, the last effect is also termed ‘iso-orientation release from suppression’ (see Fig

5A for examples).

We realized this experimental paradigm in our model by combining a central grating patch

(Eq (23)) with a surround annulus

saðr; tÞ ¼ kagaðrÞ sin ðoaðr � ruÞeya þ ottÞ;

gaðrÞ ¼
1

4
1þ tanh ðbðjr � ruj � riÞÞð Þ 1þ tanh ðbðra � jr � rujÞÞð Þ

ð24Þ

having orientation θa, spatial frequency ωa = ωc, inner radius ri = rc, outer radius ra, and grat-

ing contrast ka = kc. For each neural unit we investigated, the center stimulus had an optimal

size defined by the radius rc for which we obtained the maximum response in the unit’s

size tuning curve. The surround annulus had the same parameters as the center patch and

extended from the radius of the center patch to the whole input space (as displayed in Fig 5,

stimulus icons in the legends). While the center orientation was held at the unit’s preferred

orientation, the surround orientation θa was systematically varied between 0 and π. For this

experiment, we selected all units for which their optimal size was not larger than 21 pixels, to

ensure that there was still space for a surround annulus in the restricted input space.

The three distinct behaviors observed in the experiments are qualitatively captured by the

model: in Fig 5B (dashed lines) we show the orientation tuning curve of selected units of the

model. Adding an annular surround stimulus to an optimally oriented center induces modula-

tions which are mostly suppressive and tuned to the orientation of the surround (Fig 5B, solid

lines). Cross-orientation modulations are summarized across the investigated model subpopu-

lation in Fig 5C and 5D, where responses of cells exhibiting the same qualitative behavior are

averaged together, as in the experiment (cf. panel A, see Methods for a detailed description of

the pooling procedure). We distinguish, from top to bottom, untuned suppression, iso-orien-

tation suppression, and iso-orientation release from suppression.

To assess the contributions of long-range connections to these effects, we repeated the

experiment with C = 0. The population averages over the same categories of behaviors are

overlaid in Fig 5C and 5D in gray. A comparison between the results of the model with and

without C shows that long-range interactions induce two different effects: enhancing responses

for large orientation differences for cells with untuned surround suppression, and increasing

maximum suppression for cells with tuned surround suppression in population a. In particu-

lar, we observe strong facilitatory effects in population b. This difference between the two

populations might explain an apparent contradiction in experimental data where in a similar

orientation contrast tuning paradigm one study exhibited strong facilitation [7], while a differ-

ent investigation found only moderate release from suppression [8].

Luminance-contrast effects. In addition to orientation, also the relative contrast between

the brightness of the center and the surround can be varied. In particular, such stimuli often

reveal facilitatory effects, which are more frequently observed when the cRF is weakly acti-

vated, for example by presentation of a low-contrast visual stimulus. For many cells in V1

(� 30%, in [6, 56]), collinear configurations of center-surround stimuli induce both facilitation

and suppression. Here the visual contrast of the center stimulus in comparison to a fixed-

contrast surround controls the sign of the modulation, and the point of crossover between

suppression and facilitation is related to the cell’s contrast threshold [3, 4, 6, 8, 57]. The
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characteristics of differential modulation is exemplified in Fig 6A where the contrast response

function of a single cell in cat V1 (filled circles) is plotted together with the response of the

same cell to the compound stimulus (empty circles). The graph shows that the same surround

stimulus can enhance the response to a low-contrast center stimulus and reduce the response

to a high-contrast center stimulus.

For obtaining corresponding contrast response curves in our model, we presented each

selected unit with a center stimulus of optimal orientation and size of which we varied its con-

trast kc (Eq (23)). To mimic the collinear configuration of the compound stimulus, we then

placed a surround annulus (Eq (24)) at high contrast ka = 1, iso-oriented with the center patch

(see stimulus icons in Fig 6), and again varied the contrast of the center patch. The resulting

Fig 5. Orientation-contrast modulations. A center stimulus with preferred orientation is combined with an annulus of varying orientations (see icons in column

(B)). (A) In experiments three response patterns are observed, namely, from top to bottom, untuned suppression, iso-orientation suppression and iso-orientation

release from suppression (data replotted from [4]). The model reproduces these three response patterns both at the single cell level (B) and at the population level

for a (C) and b (D). For comparison, orientation tuning for a center-alone stimulus is shown by the dashed line in (B). In (C, D), the gray lines display orientation-

contrast tuning of the same ensembles without long-range interactions. Note that in (A) and (C, D), responses are shown normalized by the response to the center

alone at the preferred orientations of the units. Percentages indicate the proportion of cells that fall in the same orientation-modulation class.

https://doi.org/10.1371/journal.pcbi.1007370.g005
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switch from facilitation to suppression, apparent by the crossing of the two response curves, is

well captured by the model and illustrated for an example unit in population b in Fig 6B.

As in previous examples, differential modulation shows considerable variability across

recorded cells. In particular, there are V1 neurons which exclusively show suppressive effects,

Fig 6. Luminance contrast tuning. (A, B) Single-cell responses to a center stimulus of varying contrast without

flanking surround stimuli (filled circles) are compared to responses to the same center stimulus combined with high-

contrast flanking surround stimuli of the same preferred orientation (open circles) in experiment (A) (redrawn from

[6]) and model (B). The stimulus configurations are indicated inside the graphs. (C, D) Population statistics, detailing

the proportion of cells showing facilitation (light bars) or suppression (gray bars) in dependence on center stimulus

contrast. Experimental data in (C) is redrawn from [6]. In the model (D), cells were judged to be significantly

facilitated (suppressed) if their activation ratio between center-surround and center alone stimulation bsur(kc)/bcen(kc)
at contrast kc was larger than 1 + ε (smaller than 1 − ε), with ε = 0.01. Solid black lines indicate proportion of cells

showing facilitation without long-range interactions. The top plot in (D) shows the statistics for population a and the

bottom plot for populations b.

https://doi.org/10.1371/journal.pcbi.1007370.g006
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while other neurons exclusively exhibit facilitatory effects. The corresponding statistics is dis-

played in Fig 6C: For each value of contrast that was tested in [6], the bars show the proportion

of cells that exhibit either facilitation or suppression. In particular, suppression becomes

increasingly more common as the contrast of the center stimulus increases. The same analysis

applied to our model reveals an identical result (Fig 6D), thus indicating that the model also

captures the diversity of behaviors observed in electrophysiology. For population b, the model

statistics matches experimental findings also quantitatively. In particular, we observed that the

increase in numbers of suppressed cells with increasing center contrast is mainly caused by

the long-range connections, since this effect largely disappeared when we set C = 0 (horizontal

lines in Fig 6D).

Discussion

The pioneering work of Olshausen and Field [21] demonstrated that simple cell responses in

primary visual cortex can be understood from the functional requirement that natural images

should be represented efficiently by optimally coding an image with sparse activities. Since

then, there have been many attempts to derive also other neuronal response properties in

visual cortex from first principles. Common to these models is the framework of generative

models, where the activities in an area are considered to represent the results of inference in

the spirit of Helmholtz [58, 59]. Most of these investigations concentrate on local receptive

field properties [22–26]. More recently, formal models were introduced that can qualitatively

reproduce also several established non-classical receptive field effects [38, 60–63] and/or pre-

dict interactions resembling features of long-ranging horizontal and feedback connections in

cortex [61, 64].

It is, however, unclear how the networks in cortex might perform the inference these mod-

els hypothesize given the neurobiological constraints on anatomy and neuronal dynamics. In

this regard, the neural implementation proposed by [31] provided a significant advance, since

it can explain a range of contextual effects [37] with a neural population dynamics that requires

only synaptic summation and can also be extended to obey Dale’s law [36]. But this model

still presents a fundamental, conceptual difference to visual cortex: there are no interactions

between neurons with non-overlapping input fields and thus the model can not account for

the long-range modulatory influences from far outside the classical receptive field.

Here we propose a generative model for sparse coding of spatially extended visual scenes

that includes long-range dependencies between local patches in natural images. An essential

ingredient is the inclusion of plausible neural constraints by limiting the spatial extent of ele-

mentary visual features, thus mirroring the anatomical restrictions of neural input fields in pri-

mary visual cortex.

Relations to standard sparse coding

As it becomes evident rearranging the equations that define the generative model (Eq (8)),

our model offers an implementation of sparse coding that allows to encode spatially extended

visual scenes. Although it might be tempting to consider it simply as a ‘scaled-up’ version of

[31], we argue that this is indeed not the case. To demonstrate our reasoning, we consider the

example of encoding a long horizontal bar. While a scaled-up-sparse-coding would have a spe-

cialized long horizontal feature to explain the stimulus (i.e. the sparsest representation), our

model, by constraining the features to have a limited size, would require two separate horizon-

tally aligned features to coactively form a representation of the stimulus; such collaborations

between neighboring neurons are enforced by long-range connections.
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Connection structures

By optimizing model parameters via gradient descent it is possible to determine all connec-

tions in the network e.g. from the statistics of natural images. Synaptic input fields F resemble

classical receptive fields of V1 neurons (Fig 2A). The structure of C turns out to have similar

characteristics as the anatomy of recurrent connections in visual cortex, exhibiting a prefer-

ence to link neurons with similar orientation preferences via long-ranging horizontal axons

[11, 50, 65] or via patchy feedback projections [15, 16]. Furthermore, we find a bias for collin-

ear configurations being more strongly connected than parallel configurations, matching the

observed elongation of cortical connection patterns along the axis of collinear configurations

in the visual field in three shrew [13], cat [50] and monkeys [51]. These connection properties

reflect regularities of the visual environment such as the edge co-occurrence observed in natu-

ral images [66].

The role of long-range connections in context integration was investigated also in a recent

work [67]. Here the authors assume a neural code in which the firing rate of a neuron selective

for a particular feature at a particular location is related to the probability of that feature to be

present in an image, and influenced by the probability of other features being present in sur-

rounding locations. In an analogous way as in our model, they assume that the only informa-

tion a neuron tuned to a specific location in the visual field has about the stimulus context at

neighboring locations comes from the neurons that are tuned to those neighboring locations

(limited extent of the visual input). Thus, the lateral coupling scheme they obtain is also in

good agreement with that observed in V1. Those connections are beneficial in increasing cod-

ing accuracy under the influence of noise, but the authors did not critically test their model

with contextual stimulus configurations. Since their network does not implement competition,

we expect their model to exhibit surround enhancement for co-aligned stimulus configura-

tions, rather than the experimentally observed suppressive effects.

Learning rules

To be a completely realistic model, still many details are missing. For example, the question

of whether connectivity can be learned using realistic plasticity rules remains open. Currently

our learning rules (11) and (12) require the change in single synapses to rely on information

from all the neurons in the network. Moreover, the analytically derived formula for Wlocal (Eq

(22)) implies a pretty tight relation between the short-range interactions and the feed-forward

weights and it is not clear which synaptic mechanisms could achieve it in parallel. The local

plasticity rules used in [32] solved these issues in the context of the standard formulation of

sparse coding, but it is not clear if a similar approach could be used to derive a learning rule

also for Wlong.

Finally, our model violates Dale’s law, postulating direct inhibitory connections between

excitatory cells (for both short- and long-range interactions). In the context of standard

sparse coding, some work has been done to improve biological plausibility by implementing

inhibition in a separate sub-population of neurons, both in spiking networks [35] and

dynamical systems [36]. While the first model [35] consists in adding a second population of

inhibitory units and then learning separately three sets of weights (E − I, I − E and I − I), the

second [36] relies on a low-rank decomposition of the recurrent connectivity matrix into

positive and negative interactions. Both approaches were able to learn a sparse representa-

tion code and to develop Gabor-like input fields (notably, using the same E/I ratio observed

in visual cortex). However, generalizing either one of them to our extended model might not

be straightforward.
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Neural dynamics

Inference in the presented model is realized by a biologically realistic dynamics in a network of

neural populations that are linked by short- and long-range connections. This implementation

of a dynamics is close to the approach of Rozell [31] but additionally includes long-range inter-

actions between units with non-overlapping input fields. Most importantly, the constraint that

only local visual information is available to the units receiving direct input from the visual

field implies, and predicts, that inference is performed by two separate neural populations with

activities a and b and different connection structures.

It is worth to speculate about a direct relation to the particular properties of neurons and

anatomical structures found in different layers and between areas of visual cortex: Physiologi-

cal studies distinguish between the near (< 2.5 degrees) and far surround (> 2.5 degrees) in

contextual modulation [10]. Taking into account the spread of long-range horizontal axons

within V1, which is less than about three degrees in visual space [15], it seems likely that near

surround effects are predominantly caused by horizontal interactions, while far surround

effects are rather explained by feedback from higher visual areas. Assuming that one input

patch in the model spans across 3 degrees in visual space, which is not implausible given the

spatial extent of Gabor-like input fields shown in Fig 2A (up to 1 degree in cortex), we would

therefore identify ‘local’ interactions Wlocal = −FTF with horizontal axons within V1, while

‘long-range’ interactions Wlong = C would be mediated by the combination of feedforward and

feedback connections between visual cortical areas. A possible circuit diagram emerging from

this paradigm is depicted in the scheme in Fig 7B.

An alternative picture evolves if we assume that input patches correspond to smaller

regions in visual space. Now horizontal interactions within V1 would span over sufficiently

long distances to mediate long-range interactions in the model (Wlong = C), while local inter-

actions Wlocal would indeed be local to a cortical (hyper-)column, possibly realized by the

dense network linking different cortical layers in a vertical direction (example circuit shown

in Fig 7C).

In both discussed scenarios structure and polarity of cortical interactions are compatible

with the model: horizontal and feedback connections are orientation-specific, and their effec-

tive interaction can be positive or negative [48, 71] since they have been found to target both,

excitatory and inhibitory neurons [68]. It is more difficult, however, to identify the potential

locations of populations a and b in the different cortical layers. Two possibilities are shown in

Fig 7. The reason why this choice is ambiguous is because indirect input from LGN is provided

via layer IV to both superficial and deeper layers [72], because horizontal axons exists in both

layers II-III and layers V-VI [69, 73], and because feedback from higher visual areas also termi-

nates in both superficial and deep layers [74].

Finally, the proposed neural dynamics presents several non-trivial computational aspects,

who are essential for producing the contextual effects we obtained. Even though the gradient

descent (Eq (10)) and the proposed inference scheme (Eq (22)) have the same fixed points, the

latter is much richer in its dynamics, since each reconstruction coefficient is represented by

two neural activities who are in addition subject to rectification, and since activities a and b
are associated with different neural time constants. In consequence, the effects we describe are

most probably caused by a combination of sparse constrained coding and the particular prop-

erties of its neural implementation. The fact that all the experimental paradigms we reproduce

in our model employ time-varying stimuli makes it hard to disentangle these different factors,

since the inference network does never reach a steady state and the largest differences between

a ‘classic’ gradient descent and neural dynamics are expected to show up in those transient

epochs.
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Contextual effects

Consistently the model reproduces a large variety of contextual phenomena, including size

tuning, orientation-contrast effects and luminance-contrast modulations. In particular, all

classical and non-classical receptive fields emerge in a fully unsupervised manner by training

the model with ensembles of natural images. After training is finished, reproduction of all

reported results is possible without change or fine-tuning of parameters, gains or thresholds—

just by adhering to the exact visual stimulation procedures as used in the corresponding exper-

imental studies. It is intriguing that also variability of the observed phenomena is reliably

reflected in the statistics of model responses. Moreover, when we repeated the contextual-

modulation experiments using a more general configuration of the visual field (i.e. using four

surround patches instead of only one, as indicated in S1 Fig), we found that using a ‘bigger’

surround does not affect the agreement between our results and experimental data (the effects

at the population-level are reported in S2, S3 and S4 Figs). This close match to experimental

findings indicates that the assumed constraints from which dynamics and structure of the

Fig 7. Putative neural circuits performing inference in visual cortex. (A) Equations that define the network

dynamics. (B, C) Depending on the assumed spatial scale of input fields in the generative model, one distinguishes

between cortical circuits where ‘long-range’ interactions Wlong would be mediated by recurrent loops between

different cortical layers and ‘local’ interactions Wlocal by long-ranging horizontal axons within primary visual cortex

(B), or where long-range interactions Wlong would be mediated by long-ranging horizontal axons, and local

interactions Wlocal by the dense vertical/horizontal connection structures within a cortical hypercolumn (C). The

length scales of input fields are indicated by the size of the image patch sections shown below. Interaction pathways

associated with Wlong, Wlocal and Winput are indicated in green, red and blue, respectively. Other links realizing

different parts of the model equations (above the schemes) for column u are drawn in black. The putative connection

schemes are embedded into sections of primary visual cortex with light and dark gray shading indicating different

layers. Note that in our scheme, horizontal interactions originate and terminate in different, but nearby layers as

evident from anatomical evidence for layer II-III [68] and layer V-VI [69, 70] long-ranging axons, and that interactions

might be indirect by being relayed over intermediary target populations (filled dots) such as inhibitory interneurons.

https://doi.org/10.1371/journal.pcbi.1007370.g007
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model were derived are constructive for providing a comprehensive framework for contextual

processing in the visual system.

The nature of the observed effects, being orientation-specific and exhibiting both enhance-

ment and suppression (see Figs 4, 5 and 6), closely mirrors the structures and polarities of local

and long-range interactions. Furthermore, they explicitly link functional requirements to the

anatomy of the visual system: As already observed in [37], local interactions between similar

features are strongly suppressive. They realize competition between alternative explanations

of a visual scene which is related to ‘explaining away’ in Bayesian inference [38]. The effects

of long-range interactions depend on the exact stimulus configuration, and on the balance

between neural thresholds and the combination of all recurrent inputs in the inference circuit.

They serve to integrate features across distances, leading to the enhancement of noisy evidence

such as in low-contrast stimuli [6], but also to the suppression of activation by the model find-

ing a simpler explanation for a complex stimulus configuration (i.e., by expressing the pres-

ence of multiple collinear line segments in terms of a single contour). This explicit link of

natural statistics and cortical dynamics to function is also reflected in psychophysical studies:

For example, in natural images an edge co-occurrence statistics being similar to the matrix C
was observed and used to quantitatively predict contour detection performance by human

subjects via a local grouping rule [66]. High-contrast flankers aligned to a low-contrast center

stimulus strongly modulated human detection thresholds [75], providing facilitation over long

spatial and temporal scales of up to 16 seconds [76]. Also detection thresholds of 4-patch stim-

ulus configurations are closely related to natural image statistics [77]. In both [75, 77], the

interactions between feature detectors with similar cRF properties are inhibitory for near con-

texts, and exhibit disinhibitory or even facilitatory effects for far contexts—paralleling the dif-

ferential effects that local and long-range interactions have in our model.

In parallel to sparse coding, hierarchical predictive coding has emerged as an alternative

explanation for contextual phenomena [78]. The general idea is that every layer in a cortical

circuit generates an error signal between a feedback prediction and feedforward inference,

which is then propagated downstream in the cortical hierarchy. While being conceptually dif-

ferent on the inference dynamics, the corresponding hierarchical generative model of visual

scenes is similar to our paradigm when subjected to spatial constraints.

Besides principled approaches, contextual processing has been investigated with models

constructed directly from available physiological and anatomical evidence [79–81]. Core cir-

cuit of such models is often an excitatory-inhibitory loop with localized excitation and broader

inhibition and different thresholds for the excitatory and inhibitory populations, which is simi-

lar to our proposed cortical circuits shown in Fig 7 with self-excitation of a and direct excita-

tion on b and broader inhibition provided by Wlocal back onto a. Such local circuits are

connected by orientation-specific long-range connections, similar to the connections repre-

sented by Wlong, even though they are typically assumed to be more strongly tuned. From

these structural similarities we would speculate that contextual effects are caused in both

model approaches by similar effective mechanisms.

Outlook

In summary, our paradigm provides a coherent, functional explanation of contextual effects

and cortical connection structures from a first-principle perspective, which requires no fine-

tuning to achieve a qualitative and quantitative match to a range of experimental findings. For

future studies, the model has some important implications:

First, there are experimentally testable predictions. These include the strong dependency of

local and long-range interactions on the relative phase of adjacent classical receptive fields.
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Furthermore, we find two structures emerging in matrix C, namely a diagonal indicating

stronger links between neurons with similar orientation preferences, as known from the litera-

ture, but also an anti-diagonal indicating enhanced links between neurons with opposite ori-

entation preferences. Since connection probabilities were always reported w.r.t. orientation

differences, the latter effect awaits experimental validation. Finally, we expect differences in

the statistics of contextual effects between representations a and b to show up when informa-

tion about the laminar origin of neural recordings is taken into account.

Second, it is formally straightforward to go back from the simplified model with just two

separate input fields to the spatially extended, general scheme and subject it to much ‘broader’

visual scenes. Moreover, the neural dynamics allows also to address temporal contextual

effects, or how neurons would respond to temporally changing contexts in the stimulus such

as in ‘natural’ movies. For example, in simulations we observed strong transient effects shortly

after stimulus onset, but a more thorough investigation and comparison to physiological find-

ings is beyond the scope of this paper.

Methods

Learning and analysis of F and C
Variables F and C were learned using the procedure outlined in the Results section (Eqs (10)

and (11)). We sampled input patches of size 16 × 32 pixels (horizontal configuration) or

32 × 16 pixels (vertical configuration) from a database of natural images [44] from which

we selected 672 images of size 576 × 768 pixels in uncompressed TIFF format. Images were

first converted from RGB color space to grayscale values and then whitened using the method

described in [22]. The optimization step for a (Eq (10)) was carried out for a batch of 100

image patches with a learning rate of ηa = 0.01. At the end of each update step for F (Eq (11)),

the columns of F were normalized such that ||ϕi||2 = 1. We learned N = 1024 feature vectors.

Learning was performed with 104 iterations each for F and C (choosing as learning rates the

values ηF = 0.05 and ηC = 0.01), after which both dictionary and long-range dependencies

matrices were stable. The parameters λa and λC were set to 0.5 and 0.02. To obtain a better sta-

tistics, we repeated learning of the dictionary and of the long-range interactions several times,

initializing the simulations with different seeds. The results presented in Figs 3–6 are based on

Nseed = 8 instances of the model.

To parametrize the feature vectors in terms of orientation, spatial frequency, size and loca-

tion we fitted to each of them a Gabor function of the form

gðy; l; sx; sy; x0; y0;cÞ ¼ k exp �
1

2

x2

s2
x

þ
y2

s2
y

 ! !

cos 2p
y
l
þ c

� �
þ k0

x ¼ x0 cosðyÞ þ y0 sinðyÞ

y ¼ � x0 sinðyÞ þ y0 cosðyÞ;

where θ is the orientation of the sinusoidal carrier, λ its wavelength, ψ its phase, σx and σy are

the standard deviations of the gaussian envelope, κ> 0 the contrast and κ0 an offset. Fitting

was done following a standard least square approach.

Simulation of the neural model

The four differential equations that define the neural model (Eq (22)) were solved numeri-

cally with a Runge-Kutta method of order 4 for a time interval of T = 600 ms. The time con-

stants τh and τk were chosen to be 10 ms, close to physiological values of neurons in cortex
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[82]. For analyzing the responses, we discarded the initial transients and averaged over single

cell activities over the last 333 ms, a period of time that allowed a complete cycle of the stimu-

lus drifting with a temporal frequency of 3 Hz, being the average preferred speed for cortical

neurons [83].

To ensure positivity of neural responses, in addition to the differential equations Eq (22) we

had to introduce a linear threshold operation (Eqs (13) and (19)). In contrast, no constraint is

imposed on the sign of a and b in the generative model (Eqs (4)–(7)), nor by the optimization

Eq (10). To make the neural model consistent with the generative model, we therefore dupli-

cated the number of neurons by introducing ON- and OFF units (see subsection Inference

with a biologically plausible dynamics). In addition, we considered for all dictionary elements

ϕi also their mirrored versions −ϕi and we split the long-range interactions into positive and

negative contributions C+ = max(C, 0) and C− = min(C, 0) via

F  F � F½ � 2 RM�2N and ð25Þ

C  
Cþ C�

C� Cþ

" #

2 R2N�2N
: ð26Þ

For selecting cells well-tuned and well-responding to stimuli centered in one input patch

(see Contextual effects), all units were first stimulated with a set of small drifting sinusoidal

gratings centered at ru with rc = 2 pixels and kc = 1. We varied θc from 0 to π in steps of π/Nθ

(Nθ = 36) and the spatial frequency fc from 0.05 to 0.35 cycles/pixel in steps of 0.025. We then

selected for each neuron the preferred orientation and preferred spatial frequency. A unit was

said to be responsive if its peak response was at least 10% of the maximum recorded activity.

We determined orientation selectivity by computing, for each unit n, the complex vector aver-

age

zn ¼
XNy� 1

k¼0

anðykÞe
2iyk

XNy � 1

k¼0

anðykÞ; for yk ¼
2pk
Ny

;

,

and we considered tuned those neurons for which it was |zn|> 0.85, corresponding to a tuning

width of approximately 20 degrees half-width. With these selection criteria, we were left with

490 cells from all Nseed instantiations of the model.

Selection of orientation contrast tuning classes

When we quantified the effect of cross-orientation stimulation, we pooled responses of units

exhibiting the same qualitative behavior (Fig 5C and 5D). To determine which behavior a unit

showed we first computed, for each unit n with preferred orientation θ?, the average response

to the compound stimulus when the surround orientation was close to θ?

�a?n ¼
1

10�

Z y?þ5�

y? � 5�

anðyaÞdya

and when the surround orientation was near-oblique

�an ¼
1

10�

Z y? � 10�

y? � 20�

anðyaÞdya þ
1

10�

Z y?þ20�

y?þ10�

anðyaÞdya:

The unit was considered to show iso-orientation suppression if �an � �a?n > ε, release from sup-

pression if �a?n � �an > ε and untuned suppression in all other cases (ε = 0.05).
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Constants and parameters

Parameters used in numerical simulations are summarized in Table 1. The code to implement the

model is available at https://github.com/FedericaCapparelli/ConstrainedInferenceSparseCoding.

Supporting information

S1 Text. In this document, we first outline how to extend the generative model to encode

an arbitrary number P of patches and how to formulate it in terms of continuous variables

for covering the full visual field and then we briefly report the results obtained performing

the contextual-modulation experiments using a different, more general configuration of

the visual field.

(PDF)

S1 Fig. Visual field (4−patch surround). Structure of visual field used to investigate contex-

tual phenomena, composed by one central and four surround patches. The same cross configu-

ration is assumed for the cortical space, where Cuv denotes long-range interactions between

distant regions.

(TIF)

S2 Fig. Size tuning and surround suppression (4−patch surround). (A) Stimulus icons.

(B) Distribution of suppression indices SI for the full model with long-range interactions.

Table 1. Parameter values.

Size tuning

θc preferred θa -

ωc preferred ωa -

rc from 2 to 32 in steps of 1 ra -

kc 1 ka -

Orientation-contrast (center-only)

θc from 0 to π in steps of π/36 θa -

ωc preferred ωa -

rc optimal ra -

kc 1 ka -

Orientation-contrast (center-surround)

θc preferred θa from 0 to π in steps of π/36

ωc preferred ωa preferred

rc optimal ra 1

kc 1 ka 1

Luminance-contrast (center-only)

θc preferred θa -

ωc preferred ωa -

rc optimal ra -

kc from 0.1 to 1 in steps of 0.1 ka -

Luminance-contrast (center-surround)

θc preferred θa preferred

ωc preferred ωa preferred

rc optimal ra 1

kc from 0.1 to 1 in steps of 0.1 ka 1

https://doi.org/10.1371/journal.pcbi.1007370.t001
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Values of 0 correspond to no suppression, values of 1 to full suppression. (C) Change in SI

(ΔSI = SIwith long − SIwithout) induced by long-range connections. Enhanced suppression occurs

more frequently than facilitation in population a and, to a lesser extent, in population b.

(TIF)

S3 Fig. Orientation-contrast modulations (4−patch surround). (A) Stimulus icons. (B, C)

Response patterns observed experimentally reproduced by the model (from top to bottom,

untuned suppression, iso-orientation suppression and iso-orientation release from suppres-

sion) in population a and b with (black curves) and without (gray curves) long-range interac-

tions to an optimally oriented center stimulus combined with a concentric annulus of varying

orientations. Note that responses are shown normalized by the response to the center alone at

the preferred orientations of the units. Percentages indicate the proportion of cells that fall in

the same orientation-modulation class.

(TIF)

S4 Fig. Luminance contrast tuning (4−patch surround). (A) Stimulus icons. (B) Population

statistics, detailing the proportion of cells showing facilitation (light bars) or suppression (gray

bars) in dependence on center stimulus contrast found in experiments (redrawn from [6]). (C)

Population statistics computed from the model’s responses of population a (top graph) and b
(bottom graph). Cells were judged to be significantly facilitated (suppressed) if their activation

ratio between center-surround and center alone stimulation bsur(kc)/bcen(kc) at contrast kc was

larger than 1 + ε (smaller than 1 − ε), with ε = 0.01. Solid black lines indicate proportion of

cells showing facilitation without long-range interactions.

(TIF)
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