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A deep-learning estimate of the decadal trends in
the Southern Ocean carbon storage
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Uptake of atmospheric carbon by the ocean, especially at high latitudes, plays an important

role in offsetting anthropogenic emissions. At the surface of the Southern Ocean south of

30∘S, the ocean carbon uptake, which had been weakening in 1990s, strengthened in the

2000s. However, sparseness of in-situ measurements in the ocean interior make it difficult to

compute changes in carbon storage below the surface. Here we develop a machine-learning

model, which can estimate concentrations of dissolved inorganic carbon (DIC) in the

Southern Ocean up to 4 km depth only using data available at the ocean surface. Our model

is fast and computationally inexpensive. We apply it to calculate trends in DIC concentrations

over the past three decades and find that DIC decreased in the 1990s and 2000s, but has

increased, in particular in the upper ocean since the 2010s. However, the particular circu-

lation dynamics that drove these changes may have differed across zonal sectors of the

Southern Ocean. While the near-surface decrease in DIC concentrations would enhance

atmospheric CO2 uptake continuing the previously-found trends, weakened connectivity

between surface and deep layers and build-up of DIC in deep waters could reduce the ocean’s

carbon storage potential.
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Atmospheric CO2 concentrations have been rising since the
preindustrial era, in large part due to burning of fossil
fuels and land-use changes, such as deforestation and

urbanization1,2. Global carbon budget models estimate that
oceans absorb about 25% of anthropogenic carbon emissions3.
Polar regions play a particularly important role in carbon uptake,
i.e., the transfer of CO2 from air into the ocean. Indeed, carbon
uptake increases with decreasing temperature and increasing
wind speed, which enhances gas solubility and mixing, respec-
tively at the surface4. Consequently, it is estimated that the
Southern Ocean is responsible for approximately 40% of the
oceanic carbon sink of the anthropogenic emissions5, where
persistent zonal winds are strong and temperatures are relatively
cold. Biological uptake of carbon has also been shown to play an
important role in the Southern Ocean6–8. Biological uptake pre-
dominantly occurs in the spring and summer, importantly when
CO2 solubility is weak, and previous studies6 have found decadal
variability in primary production, which subsequently affects the
ocean carbon sink.

There has been concern regarding a declining trend in the
Southern Ocean carbon uptake from the 1980s into early
2000s9,10. However, recent multidecadal analysis of surface ocean
CO2 measurements found a reversed trend, i.e., that the ocean
carbon uptake has been increasing in the 2000s, attributed to
changes in ocean circulation, which are primarily due to non-
trivial shifts in wind forcing11. However, carbon needs to be
exported from the surface down into the ocean interior, where it
cannot further exchange with the atmosphere12. The changes in
this export are important not only for the climate but also marine
chemistry. An increase in dissolved carbon has led to ocean
acidification that subsequently affects marine organisms13. How-
ever, trends in carbon concentrations in the ocean interior are still
poorly understood, primarily for two reasons. First, it is difficult to
model biogeochemical cycles in ocean models14 and second, ocean
measurements are spatially and temporally sparse15,16.

To address this sparseness of observations, we developed a
deep-learning model17 that predicts concentrations of dissolved
inorganic carbon (DIC) in the upper 4 km in the ocean using
surface and near-surface variables: sea surface temperature, flow
velocity at the surface, sea surface height, near-surface wind
velocity, and surface CO2 partial pressure (pCO2). All of the input
parameters are readily available via satellite measurements, with
the exception of pCO2, which has been previously estimated by
another neural network18 trained and tested with observational
data from Surface Ocean CO2 Atlas (SOCAT).

We train our model in two phases (see Methods): first is the
Biogeochemical Southern Ocean State Estimate (B-SOSE), which is
a data assimilating ocean circulation model14. It is available at a
high spatial and temporal resolution of 1/3∘ and 3-day resolution,
respectively, and therefore provides a large volume of data for the
initial training, especially in the deep layers, where fewer obser-
vational measurements are available. In the second phase, we use
DIC measurements from Global Ocean Data Analysis Project
version 2 (GLODAPv2) shipboard measurements (available at least
up to 4 km depth)19,20 and Southern Ocean Carbon and Climate
Observations and Modeling (SOCCOM) biogeochemical Argo
floats (available up to 2 km depth)21. These measurements are used
to correct any biases originating from the B-SOSE model used in
the first phase. Similar to previous works on modeling pCO2

22, we
find that the model relative error is reduced when using a com-
bination of shipboard and float measurements in the training set.

Results
Using this deep-learning model, we computed the distribution of
five-day-averaged DIC concentrations over the 1993−2019

period south of 30∘S23. The depth- and zonally-averaged DIC
concentrations, separated into three ocean basins (Atlantic,
Pacific, and Indian), are shown in Fig. 1 and averaged over three
periods (1993–1999, 2000–2009, 2010–2019). As there are several
climate variabilities that drive the Southern Ocean dynamics on
time scales of years to decades, we align our temporal periods
with previous studies following the changes in global observation
system9,11 rather than any specific climatological cycle. Near the
surface, DIC concentrations increase polewards with latitude and
largely follow the neutral density surfaces in the interior, con-
sistent with previous estimates24. The Pacific and Indian basins,
which have older, bottom-sourced waters25 have higher DIC
concentrations compared with the Atlantic basin, whose deep
waters are ventilated more frequently25.

Strengthening carbon sink in the 1990s. Between 1993 and
2009, DIC concentrations have decreased in the ocean interior,
especially in the Pacific sector (Figs. 2 and 3 left and middle
panels). The decreasing surface DIC trend, which subsequently
lowers pCO2 at the ocean surface, is consistent with the pre-
viously found strengthening of the Southern Ocean carbon sink
in the 2000s11. However, the changes in DIC concentrations are
not zonally uniform, suggesting that distinct mechanisms may
exist in different ocean basins (cf. Fig. 4 top). In the 2010s, DIC
trends reversed, and DIC concentrations have been increasing,
especially near the surface, possibly because the ocean surface was
undersaturated and able to take up more carbon (cf. Figs. 2 and 3
right panels, Fig. 4 bottom).

In the 1990s, DIC mostly increased in the upper 1 km over the
Pacific within the Antarctic Circumpolar region (50−60∘S; Figs. 2a
and 3d). The predominantly positive phase of the Southern
Annular Mode since the 1980s26,27 has been associated with the
intensification and poleward shift in the Westerlies, the zonally
persistent eastward winds at these latitudes (Fig. 5g). These
stronger winds result in flow divergence near the surface and
intensify upwelling of DIC-rich waters from the abyss28.
Consistent with the signature of stronger upwelling, there is a
decrease in DIC in deeper waters (Fig. 2d).

While there is also an increasing DIC trend in the South
Atlantic and South Indian Oceans in the 1990s, in particular
equatorward of 45∘S (Figs. 2a and 3a, g), the rates are lower than
in the South Pacific. The zonal differences could be attributed to
the zonal asymmetry in the atmospheric forcing29 that has
resulted in greater intensification of the Westerlies over the
Pacific than over the Atlantic or Indian sectors11,30 (cf. Fig. 5g).
The overall increase in DIC is further consistent with the increase
in sea surface pCO2 and increased outgassing or decreased uptake
of atmospheric carbon by the Southern Ocean in response to the
positive Southern Annular Mode9,10,31 (cf. Fig. 5d). Notably, the
strong near-surface decrease in DIC in the Western Indian sector
around 40−50∘S (cf. Fig. 2a) could be because of the increased
stratification, which weakens the upwelling of carbon from the
deep ocean, due to warming in this region over the previous
several decades32 corresponding to increasing sea surface
temperature in this region (cf. Fig. 5a).

Zonal asymmetry in water-mass transformation and DIC
trends in the 2000s and 2010s. In addition to an increase in
upwelling, stronger Westerlies in the Southern Hemisphere also lead
to an increase in northward Ekman transport11, which at the surface
brings sea ice and colder and fresher water from the Antarctic coast.
Indeed, decreasing sea surface temperatures33–35 (cf. Fig. 5a) and
increasing freshwater fluxes due to northward sea-ice transport and
increased precipitation36 have been observed over the South Pacific
sector starting in the 2000s. To understand the circulation in the
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Pacific and its role in transport of DIC, we consider effects on water-
mass classes of specific neutral density (γn) ranges: Circumpolar
Deep Water (CDW, γn= 27.5−28 kg/m3), Antarctic Intermediate
Water (AAIW, γn= 27.0−27.5 kg/m3), and Subantarctic Mode
Water (SAMW, γn= 26.6− 27.0 kg/m3)37. CDW comprises old,
dense waters that upwell to the surface south of 55∘S; in the South
Atlantic, this water-mass is North Atlantic Deep Water. AAIW
comprises cold and fresh waters that travel northward from the
upwelling zone and eventually sink to about 1 km depth, and
SAMW of upwelled waters that continue to travel equatorward at
the surface before sinking25 (cf. isocontours in Fig. 3).

A water-mass can gain buoyancy (become lighter) due to ice
melt or lose buoyancy (become denser) due to brine rejection at
the surface. In mid-2000s, an increase in melting of advected ice
contributed to buoyancy gain of SAMW within the upper
700 m37, which was made even lighter by surface heating north of

40∘S33. Increased freshwater flux from ice melt also has made
AAIW lighter, counteracting the buoyancy loss due to cooling at
the surface37,38. In contrast, salt fluxes due to brine rejection led
to buoyancy loss of CDW, but with large zonal differences. In the
Atlantic sector (Weddell Sea), destruction of water-masses in the
27.6−27.8 kg/m3 neutral density range near the surface37

required water in this density range to upwell from the interior.
However, in the Pacific sector (Ross Sea), positive formation rates
of this density range near the surface37 weakened the upwelling.

These water-mass transformations can help explain the DIC
trends in the Pacific that we find in the 2000s. Weakening of CDW
upwelling south of 60∘S resulted in decreased delivery of old DIC-
rich waters to the surface, and hence a weaker increasing trend in
DIC near the surface in 2000s (Figs. 2b and 3e). In the 2010s, the
near-surface DIC trends further decreased and became negative
(Figs. 2c and 3f), while DIC built up (increasing trend) below 1 km

Fig. 1 Dissolved inorganic carbon (DIC) concentrations computed using our deep learning model. a, d, g, j 1993–1999, (b, e, h, k) 2000–2009, (c, f, i, l)
2010-2019. (a–c) Decadal averages of DIC concentrations over top 1 km with contours, zonal means of (d–f) Atlantic, (g–i) Pacific, and (j–l) Indian Oceans.
Black dashed contours correspond to isosurfaces of neutral density γN from B-SOSE averaged zonally and temporally over 2008–2012 (unlabeled contour:
γN= 26.6 kg/m3). a–c were made with Natural Earth. Free vector and raster map data (naturalearthdata.com) using Cartopy77.
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depth at the latitudes of CDW upwelling (Figs. 2f and 3f). The
decreasing DIC trends follow the AAIW and SAMW density
isosurfaces northward, further pointing to weakened upwelling
being responsible, as the upwelled CDW comprises a large portion
of AAIW and SAMW.

Importantly, in addition to buoyancy gain of CDW, buoyancy
loss (through cooling) of poleward-flowing subtropical surface
waters contributes significantly to formation of SAMW39–41. These
surface waters (γn < 26.6 kg/m3) are characterized by lower DIC
concentrations than CDW, which is sourced from deeper ocean
layers (cf. Fig. 1). Previous studies showed that intensification of
the Southern Westerlies lead to increased heat loss and decreased
freshwater input at the surface, resulting in increased SAMW
formation rates42 and deepening of SAMW layer43. As such,
negative trends in the upper portion of the Pacific sector could also
be due to a proportional increase in contribution to SAMW
formation from cooling of subtropical low-DIC waters rather than
freshening of high-DIC CDW waters. Climatologically, these
findings are important because a decrease in near-surface DIC
concentrations can enhance the uptake of atmospheric carbon by
the ocean. These trends correspond to the ocean pCO2 decreasing
relative to the atmospheric pCO2 in the 2000s (cf. Fig. 5e, which
suggests an increase in ocean carbon uptake potential.

However, recent satellite measurements35 found increasing sea
surface temperatures over much of the Pacific sector in the 2010s
(cf. Fig. 5c, l). Although the Westerlies also have weakened over
the Pacific sector in the 2010s (cf. Fig. 5i) so upwelling would be
suppressed, we find that the DIC trends from the 2000s have
reversed in the 2010s and are predominantly positive in the
Pacific. This reversal suggests that buoyancy forcing may play a
relatively more important role than wind forcing in setting the
DIC concentrations in the South Pacific, similar to the previously
suggested thermally-driven trend pCO2 in the Pacific11.

Unlike the Pacific, most of the Atlantic and Indian sectors of the
Southern Ocean, especially between 30 and 60∘S have been
warming and storing heat in the upper 2 km over 1990s and
2000s44,45 (cf. Fig. 5a, b). The larger heat uptake over the Southern
Ocean compared with the northern temperate and high-latitudes is
partially because of the reinforcement of greenhouse gas-induced
heating by ozone-hole forcing46 and low levels of aerosols, which

could have a cooling effect45, in the Southern Hemisphere.
Warming of the upper ocean stabilizes the water column,
weakening the effects of the wind-driven upwelling around
50−55∘S. In the Atlantic sector, these changes are reflected in
decreasing DIC concentrations along the upwelling density
isosurfaces in 1990s and 2000s (Fig. 3a, b). Trends are also
negative between 45 and 60∘S in the 2010s subsurface along the
upwelling density isosurfaces, even though there is cooling at the
sea surface (cf. Fig. 5c, l), suggesting that the trends could be due to
the SAMW/AAIW zonally advected from the Pacific sector (Figs. 2c
and 3c). In the Indian sector, we find similar negative trends south
of 50∘S, but positive trends near the surface to the north (Figs. 2c
and 3h, i). The regions of near-surface positive trends correspond
to areas, where strong SAMW and AAIW formation rates41,43,47

are enhanced by salinity fluxes48 and increased Ekman pumping43,
helping export DIC into the interior (Fig. 3b, c).

Furthermore, Atlantic Meridional Overturning Circulation
(AMOC) has been weakening since the 1990s49–51. AMOC
transports dense water sinking in the North Atlantic to the
upwelling region in the South Atlantic. The slowdown of AMOC
has been attributed to increased uptake of heat by the North
Atlantic in response to rising atmospheric greenhouse gas levels49

and weakening of North Atlantic Oscillation since the early
1990s45,52. As a result, meridional transport has weakened and
due to buoyancy gain, surface waters in the North Atlantic have
been sinking to shallower depths, where DIC content is lower.
These changes in the circulation dynamics, which diminish the
connectivity between the ocean interior and surface layers, are
consistent with our results: progressively decreasing trends along
the upwelling density isosurfaces from the 1990s to the 2000s.
Notably, in the 2010s, the decreasing trend in the Atlantic
strengthens in the subsurface (cf. Fig. 3c) compared with 2000s,
whereas near the surface DIC concentrations increase (cf. Fig. 2c)
consistent with the decrease in ocean carbon uptake potential in
the Atlantic (cf. pCO2 trends in Fig. 5f). Since the 2010s,
increased AMOC transport has been recorded in the subtropics in
the Northern Hemisphere52,53. However, because of the long
temporal scales in ocean circulation, there will be a lag in
response of the Southern Ocean upwelling and DIC concentra-
tions to such changes in the North Atlantic.

Fig. 2 Linear trends in dissolved inorganic carbon (DIC) concentration. a–c averaged over top 500m, (d–f) averaged over 2−4 km depth. Values are
calculated over: (a, d) 1993–1999, (b, e) 2000-2009, and (c, f) 2010–2019. Linear trends outside the 5% significance level (p≥ 0.05) are excluded. Areas
shaded in gray indicate regions of insufficient data for trend calculations. Panels to the left of each colored trend plots show zonal averages for the entire
Southern Ocean (black solid line), and the Atlantic (dashed green line), Pacific (dash-dot cyan line), and Indian sectors (dotted magenta line). Figures were
made with Natural Earth. Free vector and raster map data (naturalearthdata.com) using Cartopy77.
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Discussion
Our results show some decreasing trend in DIC concentrations in
the Southern Ocean over the period from 1993 to 2010, in parti-
cular in the Pacific sector. This trend is congruent with the previous
findings of decreasing CO2 uptake in this region in the 1990s and
increasing uptake in the 2000s11,54, and indicate the continuation of
the increasing uptake potential at the ocean surface into the 2010s.
Our findings are also in line with previous works on ocean uptake
of anthropogenic carbon for the 1990s and 2000s15,55. While the
upper layers of the Southern Ocean continued to uptake anthro-
pogenic carbon, carbon accumulation rates have been lower than
predicted based on the increase in anthropogenic CO2 in the
atmosphere15. Furthermore, previous analysis55 showed negative
trends in total and natural DIC in the upper Southern Ocean,
similar to our findings, despite an increase in anthropogenic DIC.
As such, previous studies attribute changes in DIC concentrations
primarily to changes in ocean circulation15,40, which we address
through the lens of watermass transformation in our study.

The overall increasing DIC trends in the 2010s that we find are
qualitatively consistent with the results from a recent study16, which
computed the decadal changes by comparing the spatially-

interpolated data only from biogeochemical floats over the
2014−2019 period with shipboard measurements prior to 2005.
Comparing with the DIC trends in the previous decades, it is pos-
sible that the Southern Ocean took up more carbon at the surface in
the 2010s, thus increasing DIC near the surface, because it was
undersaturated in carbon in the previous decade. Importantly, we
find subsurface decreasing trends in DIC in the 2010s, in particular
in the Atlantic sector, that are only weakly present in this previous
study. Floats can augment shipboard data, in particular because of
superior wintertime coverage. As carbon uptake in the Southern
Ocean has strong seasonal signature7,8,56, in part due to biological
activity, shipboard measurements, which are predominantly taken in
the summer, may be affected by small scale processes that drive local
primary production rates to be spatially and temporally variable.
Furthermore, it has been found that models using only data from
floats produce Southern Ocean carbon uptake values that are one-
third of those from models using only using shipboard data22. As
such, combining both shipboard and float measurements in models
provides more accurate estimates of carbon flux and carbon
concentrations22. Considering such differences between shipboard-
only and float-only estimates, we integrated data from both

Fig. 3 Linear trends in dissolved inorganic carbon (DIC) concentration with depth. a, d, g 1993–1999, (b, e, h) 2000–2009, (c, f, i) 2010–2019. Zonal
means of (a–c) Atlantic, (d–f) Pacific, and (g–i) Indian Oceans. Black dashed contours correspond to isosurfaces of neutral density γN from B-SOSE
averaged zonally and temporally over 2008–2012 (unlabeled contour: γN= 26.6 kg/m3).
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shipboard and Argo float measurements into our model to make the
estimations of DIC concentrations more robust.

Our results demonstrate that there are long-term (possibly
decadal) changes in ocean DIC concentrations and thus carbon
uptake. We find similar effects of weakening upwelling and
connectivity between the deep and surface waters, which possi-
bly inhibit export of carbon from the surface into the ocean
interior, in different sectors of the Southern Ocean. Although
these trends are in line with the expected changes in ocean
circulation, what drives these changes varies zonally. The dif-
ference in the underlying mechanisms implies that responses to
future changes in the circulation dynamics may also not be
zonally uniform. In the current model, we are unable to separate
changes in DIC concentrations due to uptake of anthropogenic
carbon and due to natural variability in the ocean circulation; it

may be pertinent to include methods from previous studies15,16

into future analysis. Here, we found a period of the decrease in
DIC concentrations near the surface, which allowed for
increased uptake of carbon from the atmosphere, followed by a
period of increase in near-surface DIC concentrations, possibly
due to weakened export into the interior. Continued monitoring
efforts are necessary to assess the long-term impacts of DIC
accumulation on storage of anthropogenic CO2 in the deep
ocean. These changes are important not only from a climato-
logical point of view, but also for the management of marine
ecosystems, which are sensitive to acidification57. The model
presented here can serve as a useful tool for such future studies
as it is able to estimate DIC concentrations in the ocean interior
up to 4 km depth from new satellite measurements as they
become available.

Fig. 4 Schematic of the mechanisms affecting dissolved inorganic carbon (DIC) trends in the 2000s and 2010s between 30 and 75∘S broken down by
ocean sectors. Solid colored lines trace out representative density surfaces of each water-mass: Subantarctic Mode Water (SAMW), Antarctic Intermediate
Water (AAIW), Circumpolar Deep Water (CDW), North Atlantic Deep Water (NADW). Blue (red) color shading indicates decreasing (increasing) DIC
trends. Curly arrows mark buoyancy forcing at the surface: blue (red) indicating buoyancy loss, i.e., input of denser water (buoyancy gain, i.e., input of lighter
water). Solid thick arrows mark changes in ocean circulation: blue (red) indicating weakening (strengthening) flow in the indicated direction. Small dotted
arrows mark relative strength of DIC transport: blue (red) indicating weakening (strengthening) transport or transport of lower (higher) DIC concentrations.
Map of Antarctica was made with Natural Earth. Free vector and raster map data (naturalearthdata.com) using Cartopy77.
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Methods
Overview. In this study, we train a deep-learning model that finds non-linear
relationships between the input variables (physical and biogeochemical para-
meters) and ocean DIC concentrations. The model is trained over a three-
dimensional domain over the Southern Ocean confined latitudinally between 30∘S
and 80∘S and vertically between the ocean surface and 4 km depth. Model training
is conducted in two phases. In Phase 1, the model is trained using the three-
dimensional distribution of DIC concentrations (available at least up to 4 km
depth) from the output of B-SOSE (ocean circulation model). Phase 1 is necessary
because B-SOSE output provides a large volume of data for model training,
especially below 2 km, where observational measurements are sparser. In Phase 2,
the model is trained further with DIC concentrations from shipboard measure-
ments (available at least up to 4 km depth) and Argo float measurements (available
up to 2 km depth). Phase 2 training is necessary to correct any biases from the
B-SOSE model by incorporating real ocean measurements. One of the main
advantages of our model is that it uses surface physical and biogeochemical data

that is readily available from satellites as input variables. Hence, once the model is
trained (using DIC measurements both at the surface and in the ocean interior), it
can then be applied to new satellite data to estimate Southern Ocean DIC faster and
in a less computationally expensive manner than other models (e.g., ocean circu-
lation models or interpolated models).

Deep-learning model. Our deep-learning model58 is a type of neural network that
we adapted from the U-net model introduced in a previous study aimed to predict
atmospheric ozone concentrations17. Similar architectures are also applied in other
earth science studies59. The schematic diagram of the U-net model is shown in
Fig. 6. The model consists of both convolutional neural networks and recurrent
neural networks60. The first three convolutional blocks are used as an “encoder” to
extract the hidden features about the spatial patterns in the input data and con-
dense their information into so-called latent vectors. Each convolutional block
consists of two convolutional layers and one max pooling layer. Outputs from the
convolutional layers are activated by the Rectified Linear Unit (ReLU) function to
enhance non-linearity of the deep-learning model. The trainable parameters in
each convolutional layer are the convolutional filters in the convolutional layers.
The output from the third convolutional block is then forwarded into a long short-
term memory61 (LSTM) cell with 1024 units to capture the temporal dynamics in
the latent vectors. After the LSTM cell, the latent vectors are projected back onto
the DIC fields by a “decoder", which contains three up-convolutional blocks with
descending depths. Similar to the encoding process, the up-convolutional layers are
also activated by the ReLU function. Three residual learning connections are added
from the encoder to the decoder, in order to stabilize the training62. The con-
volutional layers are all using convolutional filters with 3 × 3 size. The up-
convolutional layers are using 2 × 2 filters. The max-pooling layers are also 2 × 2.
We used the mean squared error loss function to train the deep-learning model on
a NVIDIA T4 Tensor graphics processing unit (GPU). We applied the ADAM
optimization algorithm to boost the speed of training63.

In this U-net model, we used sea surface temperature, sea surface height
anomalies, ocean surface velocities, 10 m wind speeds, total heat flux at the ocean
surface, ocean surface chlorophyll-a, and ocean surface partial pressure of CO2

(pCO2) as the input variables (predictors). The U-net model predicts DIC
concentrations south of 30∘S in the upper 4 km of the ocean. These input variables
attempted to capture physical (e.g., ocean circulation and mixing), biological (e.g.,
uptake of CO2 by photosynthetic organisms), and chemical (e.g., uptake of
atmospheric CO2 at ocean surface) processes that may affect DIC distribution.
While there are many other factors (e.g., sinking rates of organic matter, organic
matter remineralization rates, total alkalinity, calcification) that could change DIC
concentrations, we chose variables that could be easily measured at the ocean
surface, as these measurements were better constrained and available at higher
spatial and temporal resolutions than measurements in the ocean interior. We
trained the U-net model to capture the relationship between surface predictors and
DIC fields at different depths. In total, we trained 22 U-net models to cover the 48
vertical levels from ocean surface to the 4 km depth. We conducted the training of
each U-net model in two phases: first augmenting the volume of data using a
biogeochemical ocean circulation model, and then correcting for biases of this
model using observational data. We detail the datasets that we used in each of the
training phases in the following sections.

Ocean carbon sink has been previously estimated using different methods.
However, these methods may either produce indirect bulk estimates over an entire
ocean basin (i.e., inverse models64), be numerically expensive (i.e., ocean
circulation models14), or have limited temporal coverage (i.e., interpolations of
direct measurements15,16). Our deep-learning approach attempted to address these
issues. In our model, because of the high spatio-temporal availability of the
satellite-based input variables, we were able to create a dataset of DIC
concentrations at 1∘ horizontal resolution in the upper 4 km of the ocean at 5-day
intervals between 1993 and 2019. It allowed us to create a timeseries and compute
DIC trends at each individual grid cell over this time period. As a result, we were
able to explore spatial patterns in temporal trends, rather than only comparing
aggregate decadal averages as in previous studies15,16. Using neural networks is also
advantageous, as they can capture non-linear relationships between the predictor
variables, in contrast to the linear regression models used in previous studies15. In
addition, this deep-learning model can compute DIC concentrations over the entire
Southern Ocean domain very quickly, i.e., on the order of 1−2 T4 GPU
computational hours required for one year of DIC calculations, which makes it
ideal for future monitoring of the ocean carbon sink using new satellite data as it
becomes available. Finally, it is important to note that a previous study22 showed
that errors of neural network predictions are reduced when the domain is
constrained to a single basin rather than the global ocean, and our model was
developed and trained specifically over the Southern Ocean basin only.

Data sets. B-SOSE14 is a data-assimilating model that incorporates Biogeochem-
istry with Light, Iron, Nutrients, and Gases model65 into a data-constrained general
circulation model of the Southern Ocean (SOSE)66. The model has uniform hor-
izontal resolution of 1/3∘ over 30−78∘S; spacing of 52 vertical layers varies with
depth from 4.2 m near the surface to 400 m in the deepest layers. The output data
contains both physical (e.g., temperature, salinity, flow velocity) and biogeo-
chemical (e.g., concentrations of DIC, dissolved oxygen, pH, and chlorophyll a). It

Fig. 5 Annual trends of selected environmental variables used as inputs
in the deep learning model. Annual trends for (a–c) sea surface temperature
(SST), (d–f) difference between ocean and atmosphere pCO2, (g–i) near sea-
surface zonal wind speed (U10), and (j–l) net sea surface heat flux. Trends are
divided into three temporal periods: (a, d, g, j) 1993–1999, (b, e, h, k)
2000–2009, (c, f, i, l) 2010–2019. Satellite data sources for each of the
environmental variables are given in “Methods”. Figures were made with
Natural Earth. Free vector and raster map data (naturalearthdata.com)
using Cartopy77.
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is available at 3-day intervals over the 2008−2012 period. The biogeochemical
portion of the model includes carbon, nitrogen, and phosphorus cycling, phyto-
plankton population dynamics, and iron chemistry. The model assimilates in-situ
observational data of the carbon system, oxygen, and nutrients from bgc-Argo,
GLODAPv219, and Surface Ocean CO2 product version 4 (SOCATv4)67 in addition
to physical constraints from hydrographic and satellite observations.

We used data from the following sets produced based on satellite observations.
All data were available between 1993 and 2019 over the Southern Ocean (i.e., south
of 30∘S), with the exception of chlorophyll a (chl-a), which was only available north
of 60∘S between 1993 and 1997. Horizontal ocean surface velocities (u, v) were
obtained from Ocean Surface Current Analysis Real-time (OSCAR)68, which uses
satellite sea surface height, wind, and temperature for computations69. Data are
available at 1/3∘ and 5-day resolutions between 1992 and 2020. Sea surface height
(SSH) was obtained from Copernicus Marine Environment Monitoring Service
(CMEMS) dataset70 that merges altimetry data from available missions for a more
consistent and homogeneous product. It is available at 1/4∘ and 5-day resolution
between 1993 and 2020. SSH was used to compute vertical velocity (w) at the ocean
surface to be consistent with calculations in B-SOSE. Zonal and meridional
components of 10m wind speed, sea surface temperature (SST), and total heat flux at
the ocean surface were obtained from ERA571, which is a comprehensive reanalysis
dataset that assimilates available observations in the upper air and near surface.
Data72 are available at an hourly temporal resolution and 31 km spatial resolution
from 1979 to 2020. Total heat flux was computed as the sum of net shortwave and
longwave radiation and sensible and latent heat, using the hourly accumulation
values (in J/m2) converted to flux units (W/m2). Surface chl-a concentrations were
obtained from GlobColour dataset73 by the European Space Agency, which merges
data from four satellite sources. Data used here is available at 1/4∘ and 8-day
resolution from 1997 to 2020. An estimate from neural network18 was used for
pCO2. This neural network uses primarily satellite observations as inputs to
interpolate the available shipboard measurements of pCO2 over 1∘ grid at a monthly
resolution from 1982 to 2020. Using this neural network-based dataset is
advantageous compared to simply spatially-interpolated observations because it
accounts for spatial and temporal heterogeneity of observational data availability.

We trained the model with DIC data from two observational datasets. The first
one was GLODAPv219,20, which is a compilation of inorganic carbon data collected
during research cruises. We used in-situ data from the original shipboard
measurements rather than a globally remapped product. The second dataset was
collected by SOCCOM21 project Argo floats equipped with biogeochemical sensors.
Here we only use data with “good” quality flag. We used GLODAPv2 shipboard
measurements available between 1998 and 2019 and Argo float measurements
available between 2014 and 2019. Over the period where the two datasets overlap,
the number of Argo float measurements was much larger than that of the
shipboard measurements (cf. Supplementary Fig. 1). Argo float data also had better
temporal coverage, whereas wintertime shipboard measurements were limited22.
However, data from Argo floats was only available above 2 km depth, whereas there
were shipboard measurements below this depth, though far less numerous than
above (cf. Supplementary Fig. 1). Furthermore, it has been shown using both Argo
float and shipboard measurements in neural network training minimizes the root
mean square error between the model predictions and observations22, so we used
both datasets for training our model.

Model training. The high spatial and temporal resolutions of B-SOSE over a three-
dimensional domain made it a good training set for a deep-learning model.
B-SOSE data was also more evenly distributed spatially and temporally than the
observations. In particular, it had significantly more data points available below
2 km, where observations were especially sparse. Thus, including B-SOSE dataset
into training was important to prevent overfitting of the deep-learning model to the
observational data. To correct for any inherent errors of the B-SOSE model and to

account for its short availability period (only 5 years), it was also necessary to
further train a model with observed data (i.e., shipboard and Argo float mea-
surements). However, because of the vast difference in the number of available data
points between B-SOSE (~10 million data points per timestep over 609 timesteps)
and observations (~450, 000 data points in total), it was necessary to train the
model in two phases; otherwise, the deep-learning model output would have been
heavily biased towards B-SOSE. Finally, because the near-coastal processes in
shallow waters may be significantly different from the dynamics of the open ocean,
we excluded regions with less than 1 km depth from our model training.

In the first training phase of the deep-learning model, we used SSH, ocean
surface velocities (u, v,w), ocean surface heat flux, pCO2, and chl-a concentrations
from B-SOSE output and SST and 10 m wind speed velocities from ERA5. We
chose to use these two predictors from ERA5 rather than B-SOSE output because of
the higher spatio-temporal resolution of the ERA5 data, which would be
advantageous for matching to the in-situ measurements in Phase 2 of the model
training. The hourly ERA5 data was averaged over 3-day period to have the same
temporal resolution as B-SOSE. DIC concentrations from B-SOSE were taken as
the target for model training. We randomly sampled 85% of the B-SOSE outputs
over the 2008−2012 period for model training, while reserving a randomly-
sampled 10% of it for in-sample validation to prevent overfitting. The remaining
15% of the data set was then used as out-of-sample validation set for the model.

The comparison with model-predicted DIC from Phase 1 training and B-SOSE
DIC is shown in Supplementary Fig. 2 for the out-of-sample validation set averaged
over 1 km depth intervals. The deep-learning model (middle) generally reproduced
the B-SOSE DIC (left) for each depth interval. Errors (right) were mostly less
than ±10 μmol/kg and patterns in error distribution did not show any
apparent bias.

Box-plot of errors binned by 1 km depth intervals shows that the errors were
centered and symmetrically distributed around approximately zero at all depths (cf.
Supplementary Fig. 3a). The errors showed overall no systematic bias towards high
or low values, and the errors were within ± 15 μmol/kg with the IQR less than
±5 μmol/kg. The spread was larger in the upper 1 km, possibly related to a greater
degree of noise associated with small-scale near-surface processes that was more
difficult to capture with the model. Horizontally-averaged profile of model-
predicted DIC concentration also showed very small deviation (less than 2 μmol/kg
deviation from B-SOSE data across different depth levels (cf. Supplementary
Fig. 3c, d)).

The heatscatter plot of DIC concentrations predicted by the deep-learning
model over the three-dimensional domain for 2012 is shown in Supplementary
Fig. 3b in comparison with B-SOSE DIC concentrations. The vast majority of the
points were along the one-to-one line with a high linear correlation coefficient
(r2= 0.97) between the model-predicted and B-SOSE DIC concentrations and
relatively small RMSE of 5.4μmol/kg.

In the second training phase, we transferred the U-net model weights obtained
from Phase 1 to the satellite-based observational data described above and further
trained the model to minimize the RMSE between the model predictions and
shipboard and Argo float measurements. When chl-a measurements were not
available (primarily due to presence of sea ice), values within those cells were set to
zero to be consistent with B-SOSE instead of setting it to a non-zero minimum chl-
a concentration value like in some previous pCO2 models74. The observational DIC
data was re-mapped to the same depth levels as the B-SOSE dataset to be consistent
with Phase 1 training output. We randomly sampled 20% of the observational data
as an out-of-sample test dataset and used the remaining 80% as the training
dataset. Again, a randomly-sampled 10% of the training set was used for in-sample
testing. To compare the two observational DIC datasets, we trained the model with
(1) only shipboard data, and (2) with shipboard and Argo float data.

The distributions of relative errors of the model prediction (cf. Supplementary
Fig. 4a) were again mostly symmetric around zero. Spread of the errors is larger
than in Phase 1 training, which could be the result of model prediction errors, the

Fig. 6 Schematic diagram of the U-net model. The green circle with a tilde in the middle denotes the long-short-term memory (LSTM) cell with 1024 units,
which connects the encoder (the 9 layers on the left hand side) with the decoder (the 13 layers on the right hand side). The 3 × 3 convolutional layers are in
light orange followed by the ReLU activations in dark orange. The 2 × 2 max pooling layers are in red. Light blue layers are the 2 × 2 up-convolutional layers,
which are concatenated (shown as the gray boxes) with the forwarded features (shown as the dark blue layers) from the encoder. The arrows denote the
residual learning connections that forward from the encoder to the decoder. To improve computational efficiency, x vertical layers are trained
simultaneously. x= 2 from the ocean surface to 2 km depth and x= 3 for 2–4 km.
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variability in data collection from different cruises, and any systematic differences
between shipboard and Argo float measurements. As expected, the correlation
between predicted and observed DIC concentration values improved when the
model is trained with more data points by including the Argo float measurements
(compare Supplementary Fig. 4a,c). When the model was trained with both
shipboard and Argo float data, considerably more model-predicted points fell along
the one-to-one line and RMSE improved. This result is consistent with previous
analysis of neural networks used for to compute pCO2, concluding that both
shipboard and Argo float data were necessary for more accurate model
predictions22. However, because of the much more limited number of observations
compared with the number of available B-SOSE data points, the linear fit (e.g.,
correlation coefficient) was worse compared with Phase 1 training (cf.
Supplementary Fig. 3b) and RMSE is higher (~13 μmol/kg). This demonstrated
that performance of a deep-learning model improved with more data points
available for training and why it was important to pre-train the model with a large
volume of B-SOSE data in Phase 1.

In order to further validate our results, we also compared annual DIC trends
calculated using shipboard measurements with annual DIC trends calculated using
our deep-learning model predictions in Phase 2. We grouped all available
shipboard measurements by latitude, longitude, and depth (1∘ intervals and depth
intervals corresponding to B-SOSE, which increase with depth) and found the
mean DIC at each location for each time stamp. We then calculated linear trends in
DIC concentrations for all locations where at least three temporal data points were
available. Using our deep-learning model predictions at the same locations and
times, we also calculated linear trends in model-predicted DIC concentrations.
These trends for selected hydrographic transects are shown in Supplementary
Fig. 5. The bottom panels show the ratio of shipboard-based DIC trends to model-
based DIC trends. Overall, this ratio was positive, meaning that our model
predicted DIC trends of the same sign (i.e., increasing or decreasing DIC
concentrations) as the shipboard measurements. Supplementary Fig. 6 shows (a)
the correlation between shipboard-based DIC trends and model-based DIC trends
and (b) the ratio of the two DIC trends. The slope of 0.95 and r2= 0.98 of the
correlation suggest that our model predictions of DIC trends agreed well with the
shipboard measurements. The ratio of the trends was also predominantly positive
centered around 1, suggesting that the model-based trends were of similar value
and sign as the shipboard-based trends. It is important to note that shipboard
measurements are sparse and for each spatial grid point (latitude-longitude-depth),
there are very few temporal values to compute trends. Hence, trends computed
using so few values are subject to bias due to sampling timing (i.e., potentially
sampling during unsual conditions). As a result, DIC trends shown here do not
necessarily agree with the DIC trends shown in Figs. 2, 3, which were computed
using monthly data obtained from the deep-learning model predictions, and
therefore, typically an order of magnitude or more temporal data points.

Linear decadal trend estimations. We applied the trained deep-learning model to
the satellite-based observational datasets to compute DIC concentrations at 1∘

horizontal resolution and at the same vertical levels used in the B-SOSE model.
DIC concentrations were computed at a 5-day resolution over the period between
1993 and 2019, for which the input variables were available. Chlorophyll-a con-
centrations were only available after 1997 and for the prior years, climatologically-
averaged chl-a concentrations computed over 1997−2019 were used. Same tech-
nique was applied to a previous neural network predicting pCO2

11. We then
divided the obtained DIC concentration data into three approximately decadal time
periods: 1993–1999, 2000–2009, and 2010–2019. This division was useful in
comparing the evolution of linear trends across different sectors of the Southern
Ocean and relating our results to the previous findings of a weakening trend of the
Southern Ocean carbon sink in the 1990s9,10 and a strengthening trend in the
2000s11,54.

Timeseries over each decadal segment were then extracted at each (latitude,
longitude, depth) grid cell. In order to fill in the missing data points in the
timeseries, which could result from ice or cloud cover or other problems with
observational data, we used cubic-spline interpolation. However, to prevent over-
interpolation at a location where too much data was missing, we applied criteria
used in a previous study for gap-filling ocean-carbon data75. Namely, we restricted
the interpolations to locations where data was available (1) for at least five years
over each decadal period to ensure that the timeseries was long enough to capture
seasonal and long-term trends, and (2) for at least 2/3 of a year at some point in the
timeseries in order to extract seasonal cycles. Once the missing data was filled
according to these two criteria, we subtracted the seasonal cycle, which we
calculated over each time period individually using the statsmodels statistical
module76. Computing seasonal cycle over each decade rather than using a
climatological seasonal mean better accounted for any changes in the seasonal
cycles over time. Finally, at each grid cell, from the seasonally-detrended data, we
computed linear trends over each decadal period using a linear regression model
and excluded trends that are not statistically significant (i.e., outside of the 95%
confidence level with p ≥ 0.05). The statistically significant linear trends were then
used to produce Figs. 2 and 3 in the main text. The same technique for calculating
linear temporal trends was applied to satellite sea-surface products. Annual trends
for sea surface temperature, difference between ocean and atmosphere pCO2, near-

surface zonal (west-to-east) wind speed, and net surface heat flux are shown for
each time periods in Fig. 5. For (d–f) ΔpCO2, positive values indicate increase in
ocean pCO2 compared with atmospheric pCO2, thus reduced ocean capacity for
uptake of atmospheric carbon. For (j-l) changes in heat flux, positive indicates
warming at the sea surface (heat into the ocean).

Data availability
The dataset of DIC concentrations over 1993-2019 period computed by the deep-
learning model presented in this study have been deposited in the Dataverse database
under accession code https://doi.org/10.5683/SP2/FTQYTV.

Code availability
Codes for Phase 1 and 2 training and testing of the model and for computing DIC from
satellite-based products described in Methods can be found at https://doi.org/10.5281/
zenodo.6569925.
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