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Abstract: Stratum corneum (SC) represents the outermost layer of the skin, being an effective barrier
against the entry of molecules and pathogens. Skin research has given particular focus to SC as it
hampers effective drug delivery for cosmetical and therapeutical purposes. Following recommen-
dations to develop alternative models to animals, the SC isolated from skin obtained from medical
procedures or from pigs has gained extensive attention. Yet, there is still missing a standard and
simple procedure accepted within the scientific community to avoid application of different isolated
SC methodologies, a fact that may hamper progress in skin research. Considering this challenge,
the present study evaluated different experimental conditions aiming to establish a useful and
sustainable solvent-free procedure for the obtention of a realistic SC model. The studied trypsin
digestion parameters included concentration, incubation period and temperature. Isolated SC was
characterized using histological analysis and calcein’s permeability, after the procedure and during
a 6-week storage period. Data recommend trypsin digestion at 4 ◦C for 20 h as the most effective
procedure to isolate SC from pig ear skin. This work contributes to standardize the SC isolation
procedure, and to obtain a valuable and reliable SC mimetic model for skin drug development.

Keywords: histology; permeation; pig ear skin; skin mimetic models

1. Introduction

Transdermal drug delivery is assumed as one of the most attractive routes for admin-
istration of active ingredients. Consequently, the need to evaluate skin permeability has
triggered the development of realistic skin mimetic models, mainly due to the rising of
ethical questions and the establishment of new rules for human and animal tests.

To answer these challenges, many skin mimetic models have been developed, varying
in complexity and mimetic properties. Different approaches have been considered, from
the most simplistic non-lipid models to more complex in vitro lipid-based systems, as well
as cell-based approaches, or even ex vivo human or animals skin mimetics. Some models
mimic just epidermis or both dermis and epidermis, while more complex approaches
include the hypodermis components and also comprise the incorporation of various skin
components in the models [1].

Even though the skin is a complex organ composed by several layers [2], many stratum
corneum (SC)-based models have been proposed (reviewed in [1]). These approaches
are simpler than full-thickness skin mimetic models, however they represent a valuable
approximation for the prediction of drugs´ permeation across the skin. This barrier
represents a real challenge for the drug delivery processes due to its importance for selective
permeation of drugs and protection of the skin [3–6]. Healthy SC plays a critical role in
many physiological processes since it is the first line of contact between the environment
and the body. The functions of SC include the prevention of excessive water loss from the
skin, maintenance of body temperature, hinder the entry of xenotoxic chemicals as well
as the invasion of pathogens [7]. In line with this facts, many in vitro and ex vivo models
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mimic mainly the SC since it is commonly considered the most important barrier for the
study of the permeation of the drugs and thereby, understanding the drug permeation
process across this layer is usually the most relevant step in drug discovery.

Due to the lipid nature of the SC, some in vitro models [1] considered the use of
lipids or liposomes as main constituents of the mimetic membranes, respectively, known
as PAMPA [8,9] (Parallel Artificial Membrane Permeability Assay) or PVPA (Phospholipid
Vesicle-based Permeation Assay) [10] systems. Alternatively, another approach has been
introduced, the Permeapad® model [11]. In contrast to PAMPA or PVPA barriers, this
model does not comprise a filter support, but it includes two cellulose membranes enclosing
a layer of dry phospholipids between them. More recently, a modified version has been
proposed, the Permeapad® Plate, which allows permeation studies in a 96-well plate [12].

The firstly reported PAMPA system is composed by SC lipids [13] and later another
PAMPA model has been proposed based on cellophane and n-octanol membranes deposited
in a nitrocellulose matrix [14]. Afterwards, a skin-PAMPA system using SC lipid analogues
has been designed and tested to inspect the permeability of different drugs [8]. Later,
a modified version has also been reported [15].

Concerning PVPA models, the original system was developed to mimic intestinal
barrier [16,17] but later a modified version has been designed aiming to mimic the SC [10].
Some other works reported the application of similar models to study the permeability of
drugs [18–23]. In 2019, other two lipid-based systems have been developed [24], one with
a lipid composition closer to Human SC (PVPASC) [25,26].

Amongst the several reported ex vivo skin mimetic models, pig skin models are proba-
bly the most utilized due to their biological similarities with the human skin, as extensively
discussed in [1]. Pig ear models have great similarities with the human skin particularly
regarding the anatomical, physiological, and histological characteristics, mainly the layers’
thickness, similarity in hair follicle, blood vessel density and lipid, collagen, and elastin
content of SC. Moreover, the permeability of pig skin was found to be similar to that of
human skin, while being different from that of other animals, especially dog or rodents,
as referred in [25,27]. Particularly due to the analogy with human skin layers, the central
outside part of the ear is the most suitable for mimetic purposes from different parts of the
pig body. Moreover, the permeability of both human and pig skin is quite similar, mainly
for hydrophobic drugs (reviewed in [1]). Ex vivo SC mimetic models usually comprise
the isolation of this layer from human or animal (pig) skin samples, however the isola-
tion protocols are very distinct thus might hamper data correlation between publications.
One of the first reports dates from 1963 [28] and describes that human skin samples are
subjected to ammonia fumes or a heating at 60 ◦C, followed by an incubation of the skin
portion, overnight, in a trypsin solution at 37 ◦C. Many other reports considered the iso-
lation process of the SC from human or animal samples at 37 ◦C, using variable trypsin
concentrations from 0.05 to 0.5% (w/v) [29–36]. Some of the works also refer the use of
additional chemical or physical pre-treatments previous to the trypsin digestion [34,35,37],
or even trypsin digestion at room temperature or at 4 ◦C, for long periods of time [38–42].
Other methods consider the isolation of SC keratinocytes by a two-step enzymatic digestion
using dispase and type I collagenase [43] or a protein kinase inhibitor, aiming to produce
a cell-based SC mimetic models [44]. More recently, other methods have been described,
namely the so-called “tape stripping method” [45–47]. This procedure is considered a
simple method for the evaluation of the permeability of drugs and comprises the removal
of each SC layer by the successively use of adhesive films. In this method it is expected
that each tape strip may contain the anucleate cells from the SC and the compound admin-
istrated in the skin, for further quantification by analytical methods [48,49]. Of note, most
of these methods consider human skin and not animal skin sources, such as pig ear skin,
which may present some advantages mainly since it is usually considered as a waste from
the slaughters.

Due to the variety of reported isolation processes, some poorly detailed, it is crucial to
standardize the isolation method and define the best experimental parameters to acquire
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the isolated SC with its typical structure and composition thus allowing the obtention of a
model closer to this human skin layer. The present work focus on the solvent-free, sustain-
able isolation of the SC layer from pig ear skin using different trypsin digestion conditions,
since it is one of the most accepted ex vivo skin mimetic model [26]. Evaluation of these
experimental setups allowed to establish a fully detailed, valuable, and simple method
for the SC isolation. The SC samples isolated using different conditions were investigated
regarding their visual aspect, histological characteristics, and calcein permeability. The
obtained results were discussed by comparison with other skin mimetic models, namely
the full-thickness pig ear skin and the recently reported SC mimetic model (PVPASC) [25].

2. Materials and Equipment

Porcine ears were purchased in a local slaughter (Porto, Portugal). Trypsin (from
porcine pancreas), calcein and Dulbecco’s phosphate buffered saline (PBS) (10×) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). Double-deionized water was pro-
vided by an ultra-pure water system (Arium Pro, Sartorius AG, Gottingen, Germany).
The reagents were weighted in a digital analytical balance Kern ACJ/ACS 80-4 (Kern and
Sohn; Balingen, Germany). pH measurements were achieved using a JENWAY 550 pH
meter (UK). Histological samples have been processed in the histological service of ICBAS,
University of Porto.

3. Experimental Design
3.1. Study Aims

The main aim of the present study is the establishment of optimal set of experimental
conditions to obtain a simple and effective protocol for the obtention of a reliable human
SC mimetic model. For this, specific objectives have been defined:

i. Design and evaluation of different experimental parameters, varying the trypsin
concentration, the temperature, the time of digestion and the freezing of the skin prior
to digestion;

ii. Study of the influence of each set of conditions on the isolated SC regarding the visual
aspect, histological features and permeability properties;

iii. Characterization of the SC model isolated in the selected optimal conditions by
assessment of the histological morphology and storage stability.

3.2. Preliminary Steps: Preparation of Pig Ear Skin

The process of SC isolation started by the preparation of pig ear skin. The porcine
ears were obtained from different animals and were purchased in a local slaughter (Porto,
Portugal). Initially the ears were cleaned with tap water and dried with soft paper. If
needed, remaining hairs were removed with the help of a regular shaving blade. Then the
external part of the pig ear skin was removed from the underlying cartilage using a scalpel.
Only the central outside part of the ear has been utilized. The subcutaneous fat tissue was
carefully removed, thus ensuring the integrity of the skin. The areas presenting visible
capillary veins or marked with stamps have been discarded.

3.3. Design of the Methodologies and Visual Inspection of the Skin after Trypsin Digestion

The experimental conditions chosen for the trypsin enzymatic digestion can influence
the efficacy of the process thus altering the integrity of the SC and consequently the
permeation of the drugs across the skin layer.

Thus, different conditions were tested varying the: (a) time of digestion; (b) temper-
ature of incubation; (c) concentration of the trypsin solution; and (d) pre-freezing of the
skin. All conditions (A–D, Table 1) have been studied based on (i) visual observations
(Figure 1); (ii) calcein permeation through the isolated SC (Figure 2); and (iii) histological
characterization (Figure 3).
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Table 1. Experimental conditions considered for the trypsin digestion of the pig ear skin to obtain SC layer.

Condition Incubation Time Temperature Trypsin Concentration Pre- Freezing

A 4 h + O/N 1 (total ~ 20 h) 4 ◦C 0.1% No
B 4 h + O/N 1 (total ~ 20 h) 4 ◦C 0.1% Yes, 48 h
C 3 h 37 ◦C 0.1% No
D 3 h 37 ◦C 0.05% No

1 O/N—overnight.
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for Kruskal-Wallis test among the studied SC isolation conditions. Black, dark grey, medium grey
and light grey bars correspond to isolation conditions A, B, C and D, respectively.
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Figure 3. Histological appearance of SC after exposure to different isolation conditions ((A–D),
according to the designations defined in Table 1). HE staining; Scale: (A1–D1) (4×), bar 500 µm;
(A2–D2) (10×), bar 100 µm.

Based on Becker studies [42], the routinely used protocol in the lab involves the
trypsin digestion of the skin sections at 4 ◦C [26,50]. The adopted procedure considers
skin obtained from pig ear and excludes the final step of incubation at 37 ◦C as well as
the use of trypsin inhibitor. In addition, the trypsin solution was renewed after the first
4 h of incubation at 4 ◦C. These parameters were considered as the reference condition
(Condition A, Table 1). Additionally, other set of conditions were studied, namely the
effect of a pre-freezing of the skin, since it is common to receive pig ears from slaughter
houses, isolate the external skin portion and freeze it until the skin is required for studies
(for a maximum of 2 months). Thus, a set of conditions was defined in which the skin
portion was frozen for 48 h prior to the trypsin digestion (Condition B, Table 1). Before the
immersion in the trypsin solution for digestion, the skin was let to totally defrost at room
temperature. Temperature and time of trypsin digestion was maintained equally to the set
of conditions A (Table 1).

For the optimization of the isolation, a 0.1% and 0.05% (w/v) trypsin (Sigma-Aldrich,
St. Louis, MO, USA) solution in phosphate-buffered saline (PBS, 1×) (diluted from PBS
10×, Sigma-Aldrich, St. Louis, MO, USA) was prepared and the pH adjusted to 7.4.
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Then, the isolated pig ear skin was placed in a plastic Petri dish (Tissue Culture Dish 150,
147.8 cm2, TPP), placing the internal part facing the bottom of the dish, allowing the skin to
be immersed in enough trypsin solution (0.1% or 0.05% (w/v), Table 1) to cover the tissue.
The Petri dish was incubated at the selected temperature (4 or 37 ◦C, Table 1). During the
incubation time, at defined intervals of approximately 1 h, the skin was removed from the
Petri dish and it was scraped with the help of a scalpel, to detach the viable epidermis and
the dermis from the SC. For experimental condition A and B (Table 1), the trypsin solution
was replaced with fresh solution for a better digestion and the skin was let to incubate
overnight at 4 ◦C.

The other experiments considered the incubation of the skin with the trypsin at
37 ◦C for 3 h (Condition C, Table 1). Those conditions were selected as many reports
in the literature described the use of similar experimental conditions, particularly the
digestion at 37 ◦C [29–34]. As the digestion process is based on an enzymatic digestion
and usually the optimal temperature is around physiological values, a temperature of
37 ◦C was considered to increase the yield of the enzymatic reaction. Keeping the latter
conditions, the concentration of the trypsin solution was decreased to 0.05% (w/v) since it is
expected that at higher temperature values, the digestion may be fasten, the efficacy of the
process may be increased and therefore the amount of enzyme needed can be diminished
(Condition D, Table 1).

After the total digestion period, the SC was rinsed with ultrapure water to stop trypsin
digestion and the remaining dermis tissue was removed with the help of a scalpel.

At the end of each defined incubation time, the visual aspect of the skin portions
subjected to the different experimental conditions was registered in photography as sum-
marized in Figure 1A–D. It was possible to understand by the handling of the skin portions
and by the visual observation (Figure 1A–D) that the skin portions subjected to conditions
A and B presented less amount of residues from dermis and the cleaning process was
easier since the dermis has been detached better from the epidermis than from the skin
subjected to experimental conditions C and D. These findings pointed out the importance
of the temperature during the isolation process and revealed that the incubation of the
skin portions at 4 ◦C for a longer period of time seems to be advantageous. Of note,
preliminary tests have been made considering the incubation of the skin portions at 4 ◦C
for a shorter period, particularly 3–4 h, however it was possible to understand by visual
observation (data not shown) that these conditions were not enough for the dermis to be
totally detached. This point was also confirmed in the subsequent studies, as depicted
in Figure 4(B1,B2). Considering this, conditions A and B included the replacement of the
trypsin solution after 4 h of incubation at 4 ◦C and the following overnight incubation.

Comparing conditions A and B, no major differences were detectable with the naked
eye and by the handling in the SC isolation process, a fact that suggests that the pre-
freezing of the skin does not influence the isolation process of the SC layer. For this reason,
pre-freezing of the skin was not considered for the following studies of trypsin digestion
at 37 ◦C.

Regarding conditions C and D, for identical time and incubation temperature, the
concentration of the trypsin solution seems not to be relevant within the studied range,
since the appearance of the skin was quite similar and the detaching of the dermis occurred
in a similar way.

The slower rate of digestion conferred at 4 ◦C (conditions A and B) allowed a better
control of the ideal point to stop the process. The reactions at 37 ◦C (conditions C and D)
are quicker but, if the process is not stopped in the adequate timepoint, it may conduce to
a scenario of excessive digestion of the skin layers.

Finally, the SC was left to dry in a silica-containing desiccator at atmospheric pressure
until completely dried. This process occurred up to one week.
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Figure 4. Histological sections of skin portions collected during the SC isolation process. (A)—
samples collected prior to trypsin digestion (0.1% w/v) (A1–A4); (B)—after 4 h incubation at 4 ◦C;
(C)—after overnight digestion. Asterisks represent vacuoles derived from adipocytes; d—dermis;
e—epidermis; h-hipodermis. HE staining; Scale: (A1–C1) (4×), bar 500 µm; (A2–A4,B2,C2) (10×),
bar 100 µm.

The different conditions selected during the optimization of the procedure, particularly
regarding trypsin concentration, temperature of the incubation process and pre-freezing of
the skin, are summarized in Table 1.

3.4. Evaluation of the Calcein Permeability

The integrity of the SC layer isolated in each set of conditions (Table 1) was evalu-
ated using a calcein permeation assay. Calcein was taken as a model compound [25,26].
The permeation profile of this molecule has been already documented for other skin
models [10,19,20,25,26], mainly the full skin pig ear and the PVPASC mimetic systems and
these findings allow us to compare the data obtain herein with those previously reported.

The permeation studies were performed according to the permeability studies using
full-thickness pig ear skin [25]. Briefly, the dried isolated SC portions from the 4 studied
conditions were cut in circles (approximately 2.5 cm diameter) which were then placed
between donor and acceptor compartments of Franz diffusion cells (9 mm unjacketed Franz
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Diffusion Cell with 5 mL receptor, O-ring joint, clear glass, clamp and stir-bar; PermeGear,
Inc., Hellertown, PA, USA) [51]. The acceptor chamber was filled with 4.7 mL of PBS
(pH 7.4) and the calcein (Sigma-Aldrich, St. Louis, MO, USA) solution (3.11 × 10−4 g,
0.5 mL of 1 mM solution in PBS, pH7.4) was added to the donor compartment, covered
with parafilm. During the study, the Franz cells were stirred, maintained at 37 ◦C and
protected from the light. Aliquots of 0.2 mL were collected from the acceptor chamber at
the timepoints 1, 2, 3 and 6 h. The quantification of the calcein concentration in all collected
samples was estimated by the apparent permeability (Papp) (3 h) which was determined
accordingly to the following equation [25]:

Papp(cm/s) = ∑ ma

md·A·t (1)

The Papp was estimated by the ratio of the sum of the mass of calcein (ma/g) permeated
across the SC and the product of the initial mass in donor chamber (md/g), the diffusion
area between cells in Franz diffusion system (0.63585 cm2) and the time (3 h = 10,800 s).

Permeation results were analysed using GraphPad Prism Software (Version 6.0 for
Windows; GraphPad Software Inc., San Diego, CA, USA). The results are expressed as
mean ± SD for at least three independent experiments. Levene’s and Shapiro-Wilk tests
showed that data is not normally distributed. The nonparametric Kruskal Wallis test was
perform and significance was accepted when p value < 0.05 was obtained.

The apparent permeability of calcein at 3 h (Figure 2A) through the SC isolated in
experimental conditions A and B is higher than those obtained for SC isolated in conditions
C and D. Two subsets of results were obtained as no big differences were found between
conditions A vs. B or also comparing SC isolated in conditions C vs. D, which correlate with
the temperature of the trypsin digestion. Comparing the Papp values of calcein through
the isolated SC in different conditions and those previously obtained in PVPASC model,
the values determined for conditions A and B are more similar than those obtained in
conditions C and D. These facts pointed out that conditions A and B should be preferred for
the isolation of the SC as they allow the obtention of values in accordance with the expected
magnitude for this skin layer (10−5 cm·s−1) [26] and distinct from the values reported for
an ex vivo full-thickness skin pig ear model (10−6 cm·s−1) [25]. The obtained values for
the calcein permeation at 3 h regarding the SC portions obtained in conditions C and D are
in the same magnitude order of those previously reported for the full skin pig ear model
(10−6 cm·s−1) [25]. These facts may evidence that the digestion process was not so effective
than the verified for conditions A and B. The percentage of calcein permeated along the
time (Figure 2B) confirms the differences between the samples obtained by conditions C
and D vs. the SC isolated in conditions A and B.

The comparison of the permeability of the SC obtained by the isolation methods herein
discussed with other ex vivo SC mimetic models isolated by other methodologies described
in the literature [28–42] is not possible since the alternatives approaches mainly focus on
analysis of the structural features and lipid composition of the isolated models and do
not deeply explored the permeation profile and the integrity of the obtained layers. Few
studies explored the permeation of other molecules, but no information has been reported
regarding calcein permeation [31,38,40].

3.5. Histological Characterization

To proceed with the selection of optimal experimental conditions for the SC isola-
tion, the histological analysis has been performed. Samples from the SC layer isolated
from pig ear skin in different experimental conditions have been collected at two stages:
(i) immediately after stopping the digestion and, (ii) after the drying process. All the sam-
ples were processed routinely and embedded in paraffin wax. Sections were stained with
haematoxylin and eosin (HE) for histology analysis [52,53]. The analysis was performed by
light microscopy and representative images are depicted in Figure 3.
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Data demonstrated that the appearance of the SC layer obtained in each set of ex-
perimental conditions (A–D, Table 1) is similar (Figure 3). For the representative images
displayed in Figure 3, the thickness of the section was estimated and for conditions A and B
the SC layer has 434 ± 7 µm and 497 ± 13 µm, respectively. However, the samples obtained
for the isolation under conditions C and D are thinner (274 ± 13 µm and 290 ± 17 µm,
respectively) than those obtained for digestion process considering the experimental set of
conditions A and B. This information can explain the distinct permeability values of the SC
models obtained in conditions A/B vs. C/D, since the thinner layer may be more compact
and therefore less permeable.

For all the conditions studied, it was possible to verify that after the exposure to the
trypsin digestion treatment SC sheets remain intact and the subjacent layer, particularly
the stratum granulosum, was complete removed. There was no evidence of any portion of
dermis in the sections analysed. In addition, no nucleated cell layers usually found on
the epidermis were possible to be detect, assuring complete removal of this viable layer
from the isolated SC. Only the corneocytes sheets are present in SC and the empty spaces
observed between the layers may be due to the lipid’s removal upon the preparation of the
histological sections.

4. Results
4.1. Characterization of the Model Obtained in the Selected Conditions: Histological Analysis

Despite the fact that no major differences have been detected in the morphology of
the SC layer isolated considering the different experimental conditions, the permeation
results described above evidenced that condition A represents the most advantageous set
of parameters to obtain a realistic SC mimetic model. Thus, this condition was chosen for
the routine SC isolation and was further characterized.

To better understand the transformation that occurred in the pig ear skin during the
chosen SC isolation protocol (condition A, Table 1), fresh skin portions have been collected
in different timepoints of the procedure for subsequent histological analysis. Samples
have been collected previously to the trypsin digestion process (Figure 4A1–A4). In this
timepoint, it is possible to identify the three major layers of the skin, epidermis, dermis
and hypodermis (e, d and h, respectively, in Figure 4A1)), thus pointing out that the skin
remains intact after the procedure for the detachment of the external part of the skin from
the pig ear. It is also possible to observe empty vacuoles derived from adipocytes, which
are destroyed during the processing of the samples for histological analysis due to their
lipid nature (assigned with asterisks, Figure 4A1,A4.

After 4 h of trypsin digestion at 4 ◦C, another portion of the skin and the histolog-
ical analysis shown in Figure 4B1,B2, where is evident a significative reduction on the
complexity of the skin structure. Some layers have been digested at this time: no evi-
dence of hypoderm is present, the dermis layer revealed some signals of disintegration
(d, Figure 4B2), while the epidermis (e, Figure 4B2) remains intact.

After an overnight incubation with trypsin, the histological analysis revealed the
depletion of the dermis as well as part of the epidermis and uniquely the presence of
the SC layer can be visualized. However, some nucleated cells (stained as purple dots,
Figure 4C1,C2) are still present at this timepoint. It is important to mention that this section
has been analysed prior to the drying process required as the last step of the SC isolation
process. As illustrated in Figure 3A1,A2, after the drying of the skin portions, no evidence
of nucleated cells has been detected. Clearly some alterations have been occurred during
the drying step, which is imperative for the obtention for the SC mimetic model and their
use in applications, such as permeation studies.

4.2. Characterization of the Model Obtained in the Selected Conditions Storage Stability

To study the stability of the SC along the time and to define the ideal duration of
the drying process, the SC isolated under condition A were left to dry in a desiccator at
room temperature and atmospheric pressure. Since the isolated SC was complete dried,
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fragments were collected, and the permeability was accessed as described above. The
isolated SC were kept up to 6 weeks in the desiccator under above defined conditions. At
defined timepoints (1, 2, 4 and 6 weeks), calcein permeation through the isolated SC was
examined, as described above.

Results obtained have shown that the permeation profile of calcein is similar for
isolated SC dried for the minimum time (first time complete dried, assigned as “fresh”,
Figure 5A) and after one week. These values are in the same magnitude of the values found
for the PVPASC mimetic model (10−5 cm·s−1) [25,26] and distinct from the values reported
for the ex-vivo full-thickness skin pig ear model (10−6 cm·s−1) [25]. After two additional
weeks of drying, the Papp of calcein clearly decreased to values in the same magnitude
of the previously found for the ex vivo full-thickness skin pig ear model (10−6 cm·s−1)
(Figure 5A). After 4 or 6 more weeks of drying, the calcein permeation significantly de-
creased and reached values characteristics of the whole pig ear skin [25] (Figure 5A). The
analysis of the results depicted in Figure 5B confirmed that after two additional weeks
in the drying process, the percentage of permeability of calcein clearly decreased when
compared to fresh condition. This evidence is notable for drug permeated after 2 h, and
even more declared at 3 and 6 h of permeation. Accordingly, it seems possible to conclude
that in order to acquire a SC model with permeability profile characteristic of this layer, the
isolated SC can remain just one more week in the desiccator after completely dried (fresh
condition). After this time, the drying process should be stopped by maintaining the SC
portions in a Petri dish sealed with Parafilm and stored at room temperature and pressure.
The excessive loss of water expected for higher periods of drying influenced the integrity
of the model and subsequently the decrease in the permeability of hydrophilic calcein.
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Figure 5. Effect of the drying time of the isolated SC on the permeability of calcein. (A) Apparent
permeability coefficient at 3 h; (B) Percentage of permeation of calcein at different timepoints. Error
bars represent the mean ± SD for at least three independent experiments. p < 0.05 for Kruskal-Wallis
test among the storage time.

5. Limitations

The herein proposed methodology does not include the apocrine pore/skin hair holes
assessment. Therefore, the permeation results obtained considering SC mimetic samples
prepared by the present method will not allow the acquire insight on the origin of the
drugs’ diffusion. Thus, it must be considered that the permeation may be caused by the
self-diffusion of the drugs across the skin layer, by passage across porous/hair skin holes,
or by the combination of both events.

6. Concluding Remarks

Among the different SC isolation procedures for the obtention of mimetic models,
the inconsistency of experimental conditions is vast, thus leading to a great variability of
results which difficult the comparison among studies performed using different isolation
strategies. Moreover, some of the already described methods are in general poorly detailed
regarding the experimental conditions or use non-benign solvents and non-sustainable
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isolation conditions [28] as well as the requirement of additional chemical or physical
treatments previously or posteriorly to trypsin digestion.

The present study was determinant to understand the effect of different experimental
conditions and to establish the optimal procedure for the obtention of a realistic SC model
from pig ear skin. Considering the integrity of the skin layer as well as the histological the
optimal conditions for the SC isolation involve skin trypsin digestion (0.1% w/v), at 4 ◦C,
during approximately 20 h, as summarized in the flow chart represented in Figure 6.
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The permeability assay pointed out that this slower digestion process at low temper-
ature is valuable for the obtention of a mimetic model with permeability characteristics
usually found for other SC mimetic models, mainly PVPASC barriers. The isolated SC must
be stored in proper conditions after being completely dried to maintain its permeability
and integrity properties.

At the end, it was possible to establish a simple procedure for SC isolation from pig
ear skin, by trypsin digestion at low temperatures, followed by drying under controlled
conditions. Moreover, in the herein described methodology the number of steps has been
reduced when compared to other methods previously described, namely by avoiding the
use of additional reagents such as trypsin inhibitors. Thus, it was possible to establish
a quicker, less expensive and, more sustainable approach for SC isolation from pig ear
skin. The wide implementation of the herein described protocol will allow the possible
comparison of results obtained by distinct investigations.
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