
A Replication Study of GWAS-Derived Lipid Genes in
Asian Indians: The Chromosomal Region 11q23.3
Harbors Loci Contributing to Triglycerides
Timothy R. Braun1., Latonya F. Been1., Akhil Singhal1, Jacob Worsham1, Sarju Ralhan2,

Gurpreet S. Wander2, John C. Chambers3, Jaspal S. Kooner4, Christopher E. Aston1,5,

Dharambir K. Sanghera1*

1Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America, 2 Section of

Cardiology, Hero Dayanand Medical College and Hospital Heart Institute, Ludhiana, Punjab, India, 3Department of Epidemiology and Biostatistics, Imperial College

London, London, United Kingdom, 4National Heart and Lung Institute, Imperial College London, London, United Kingdom, 5Harold Hamm Diabetes Center, University of

Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America

Abstract

Recent genome-wide association scans (GWAS) and meta-analysis studies on European populations have identified many
genes previously implicated in lipid regulation. Validation of these loci on different global populations is important in
determining their clinical relevance, particularly for development of novel drug targets for treating and preventing diabetic
dyslipidemia and coronary artery disease (CAD). In an attempt to replicate GWAS findings on a non-European sample, we
examined the role of six of these loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-ZNF259 rs964184;
ZNF259 rs12286037; CETP rs3764261; APOE-C1-C4-C2 rs4420638) in our Asian Indian cohort from the Sikh Diabetes Study
(SDS) comprising 3,781 individuals (2,902 from Punjab and 879 from the US). Two of the six SNPs examined showed
convincing replication in these populations of Asian Indian origin. Our study confirmed a strong association of CETP
rs3764261 with high-density lipoprotein cholesterol (HDL-C) (p = 2.03610226). Our results also showed significant
associations of two GWAS SNPs (rs964184 and rs12286037) from BUD13-ZNF259 near the APOA5-A4-C3-A1 genes with
triglyceride (TG) levels in this Asian Indian cohort (rs964184: p = 1.74610217; rs12286037: p = 1.5861022). We further
explored 45 SNPs in a ,195 kb region within the chromosomal region 11q23.3 (encompassing the BUD13-ZNF259, APOA5-
A4-C3-A1, and SIK3 genes) in 8,530 Asian Indians from the London Life Sciences Population (LOLIPOP) (UK) and SDS cohorts.
Five more SNPs revealed significant associations with TG in both cohorts individually as well as in a joint meta-analysis.
However, the strongest signal for TG remained with BUD13-ZNF259 (rs964184: p = 1.06610239). Future targeted deep
sequencing and functional studies should enhance our understanding of the clinical relevance of these genes in
dyslipidemia and hypertriglyceridemia (HTG) and, consequently, diabetes and CAD.
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Introduction

Dyslipidemia, with low levels of high-density lipoprotein

cholesterol (HDL-C) and high levels of low-density lipoprotein

cholesterol (LDL-C) and triglycerides (TG), is a well established

risk factor for coronary artery disease (CAD) and a significant

cause of mortality in individuals with type 2 diabetes (T2D) [1].

The risk of developing CAD is 2–3 times higher in diabetic

males and 4–5 times higher in diabetic females compared to

male and female non-diabetics [2]. There is considerable ethnic

difference in the prevalence and progression of T2D and CAD;

the incidences of these diseases are about 3–5 times higher in

Asian Indians compared to Euro-Caucasians [3]. Lipid levels are

widely measured in clinical practice and are used as therapeutic

targets for prevention and treatment of CAD especially in

patients with diabetes [4]. Recent genome-wide association scans

(GWAS) and meta-analysis studies in European populations have

identified common variants in many genes, including previously

known loci that are potentially involved in lipid regulation [5–8].

High heritability (40% to 60%) of lipid traits and strong

association signals among common variants in these genes

involved in lipid metabolism provide a strong rationale to search

for causal variants that may uncover novel pathways crucial for

lipid regulation and eventually lead to treatment or prevention of

CAD [9,10]. Replication of GWAS signals in different ethnic

groups is important as the frequency of the susceptible alleles at

these loci may vary significantly between world populations [11].

Also, these studies can help identify population-specific environ-
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mental factors controlling disease risk or protection associated

with specific demographic and cultural histories [11]. In

particular, replication of GWAS loci associations will have more

relevance in population groups with high disease burdens such as

Asian Indians [12].

A few studies have reported associations of these novel loci with

lipid traits in Asian Indian immigrants living in the UK [6,13,14].

The present investigation was carried out to examine the role of six

of the most strongly associated and extensively replicated GWAS

loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049;

BUD13-ZNF259 rs964184; ZNF259 rs12286037; CETP

rs3764261; APOE-C1-C4-C2 rs4420638) (summarized in Table 1)

in our Asian Indian cohort from the Sikh Diabetes Study (SDS)

[15]. By further expanding our search around a ,195 kb region

within the chromosomal region 11q23.3 surrounding BUD13-

ZNF259, APOA5-A4-C3-A1, and SIK3 gene clusters in 8,530 Asian

Indian individuals, we not only confirmed the strongest signal

associating rs964184 (from the inter-genic region of BUD13-

ZNF259) with TG, but also discovered strong association in several

other SNPs in this region using single-SNP association and

haplotype analysis.

Results

Table 2 summarizes and compares the general characteristics of

the Punjabi and US cohorts used in this investigation. The US

cohort was younger and had an earlier onset of T2D (42.4618.9

years) compared to the Punjabi cohort (47.6611.1 years).

Diabetics in the Punjabi cohort had poorer glycemic control

showing significantly higher fasting blood glucose (FBG ) levels by

,28 mg/dL (p = 0.002), and had a significantly higher waist to hip

ratio (WHR) (by 5 percentage points) (p = 0.001), compared to the

US cohort. As expected, T2D cases had significantly higher fasting

TG (p,0.0001) and significantly lower HDL-C (p,0.0001)

compared to normoglycemic (NG) controls. No SNP genotype

deviated significantly from Hardy-Weinberg expectations (HWE)

in the NG controls. Of these SNPs, no variant revealed any

significant evidence of association with T2D or CAD in this

population after adjusting for age, gender, and body mass index

(BMI) (data not shown).

Association of CETP Variant with HDL and Triglyceride
Levels
We investigated the association of all six variants with

quantitative traits associated with obesity, blood glucose and

serum lipids in NG and T2D individuals from both the Punjabi

and US cohorts. None of the investigated SNPs showed any

significant association with obesity (BMI, WHR), or glucose traits

(FBG, 2 h glucose, fasting insulin, insulin resistance [HOMA-IR]

and b-cell function [HOMA-B]) (data not shown). Multiple linear

regression analysis revealed a strongly significant association of the

‘A’ allele of rs3764261 (CETP) with HDL-C in the NG (b=0.09,

p = 1.1461026), T2D (b=0.07, p = 0.014) and combined

(NG+T2D) (b=0.09, p = 1.2161024) groups in the Punjabi

cohort was observed. Similar strong association of this SNP with

HDL-C was seen in the NG (b=0.11, p = 0.006) and NG+T2D
(b=0.10, p= 1.7261029) groups from the US cohort (Tables 3, 4).

Further meta-analysis using the Punjabi and US cohorts revealed

a strong association of this variant with HDL-C in both fixed-effect

(b=0.14, p = 2.03610226) and random-effect (b=0.15,

p = 4.8461024) models. Interestingly, the same ‘A’ allele carriers

of CETP also showed a significant decrease in TG (b=20.12,

p = 1.0261024) in the T2D Punjabi cohort (Table 3).

Association of BUD13-ZNF259 Variants with Triglyceride
Levels
A strong and consistent association of an inter-genic variant

near BUD13-ZNF259 (rs964184) with TG in both the Punjabi and

US cohorts in all additive, dominant, and recessive genetic models,

even after controlling for covariates of age, gender, BMI and

disease status, where necessary. As shown in Table 3 and 4, TG

levels were consistently raised among minor ‘G’ risk allele carriers

in the NG group in Punjabi (b=0.10, p = 0.001) and US (b=0.12,

p = 0.005) cohorts, the T2D group in the Punjabi (b=0.16,

Table 1. Details of the investigated loci.

Gene SNP Chr. Position Trait Allele
Ref.
Freq.

SDS
Freq. p-value Effect

Population/
Study References

CELSR2-PSRC1-SORT1 rs599839 Chr 1:109623689 LDL A/G* 0.21 0.26 1.7610215 20.1 Caucasian Sandhu et al, 2008, Lancet

LDL A/G 0.77 6.1610233 5.5 FUSION Willer et al, 2008, Nat Genet

LDL A/G 0.08 3.1610211 24.7 Japanese Nakayama et al, 2009, J Med Genet

CDKN2A-2B rs1333049 Chr 9:22115503 CAD C/G 0.47 0.50 1.2610213 0.4 WTCCC Burton et al, 2007, Nature

MI C/G 0.50 0.02 0.1 Hispanics Qi et al, 2011, Circulation

BUD13-ZNF259 rs964184 Chr 11:116648917 TG C/G 0.14 0.20 4610262 0.3 FHS Kathiresan et al, 2008, Nat Genet

TG C/G 0.13 76102240 16.9 Caucasian Teslovich et al, 2010, Nature

TG C/G 0.14 5.4610224 – Caucasian Johansen et al, 2010, Nat Genet

HDL C/G 0.14 1610212 20.2 FHS Kathiresan et al, 2008, Nat Genet

ZNF259 rs12286037 Chr 11:116157417 TG C/T 0.94 0.96 1.0610226 25.8 FUSION Willer et al, 2008, Nat Genet

CETP rs3764261 Chr 16:55550825 HDL C/A 0.69 0.64 2.3610257 3.5 FUSION Willer et al, 2008, Nat Genet

HDL C/A 0.32 76102380 3.4 Caucasian Teslovich et al, 2010, Nature

APOE-C1-C4-C2 rs4420638 Chr 19:50114786 LDL G/A 0.82 0.89 3.0610243 6.6 FUSION Willer et al, 2008, Nat Genet

LDL G/A 0.16 4610227 0.3 FHS Kathiresan et al, 2008, Nat Genet

LDL G/A 0.17 96102147 7.1 Caucasian Teslovich et al, 2010, Nature

*fonts in bold indicate risk allele.
doi:10.1371/journal.pone.0037056.t001
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p= 9.6361027), and in the NG+T2D groups in the Punjabi

(b=0.15, p = 5.94610210) and US (b=0.19, p= 1.1261025)

cohorts. Moreover, the effect sizes indicated by regression

coefficients (b) were consistently higher in T2D cases compared

to NG controls (e.g. for rs964184, b=0.16; p= 9.6361027 in T2D

cases vs. b=0.10, p = 0.001 in NG controls). A similar significant

increase in VLDL-C was seen among the NG and T2D groups

from the Punjabi and US cohorts (data not shown). The

association of this variant with TG also was statistically significant

in meta-analysis for both the fixed-effect (b=0.16, 1.74610217)

and random-effect (b=0.16, 1.74610217) models (Table 5). The

other intronic variant (rs12286037) in ZNF259 was also strongly

associated with TG in the Punkabi T2D group (b=0.09,

p = 0.004) and the NG+T2D groups (b=0.07, p= 0.003;

0.14 p= 0.002) in both the Punjabi and US cohorts, as well as

in meta-analysis (b=0.09, p = 1.5861022) using either fixed- or

random-effect models. This variant also revealed a strong

association with total cholesterol in US cohort both in the NG

(b=0.11, p = 0.009) and NG+T2D (b=0.18, p = 3.5861025)

groups (Table 4).

Additional Variants Associated with Serum Lipids
Among other variants, an association for CELSR2-PSRC1-

SORT1 (rs599839) showed a marginally significant decrease in

Table 2. Clinical characteristics of study subjects (Mean 6 SD).

Punjabi Cohort
n=2,902 p valueY

US Cohort
n=879 p valueY

Combined Cohorts
n =3,781 p valueY

Age (yrs.) 53.8613.0 48.0613.5 52.5613.3

% Males 55.8 51.7 54.9

Age at Diagnosis (yrs.) 47.6611.1 42.4618.9 47.4611.6

Duration of Diabetes (yrs.) 7.766.8 6.867.2 7.666.8

BMI (kg/m2) 26.565.0 26.864.3 25.367.3

Waist (cm) 93.1612.1 92.5613.4 92.9612.4

WHR 0.9560.07 0.90611.0* 0.9460.10

Blood Pressure (mm/Hg)

Systolic 137.6623.6 129.6620.9 135.7623.2

Diastolic 81.8612.8 81.3611.2 81.7612.5

FBG (mg/dL)

Non-Diabetic 95.3612.1 ,0.0001 95.7610.1 ,0.0001 95.4611.5 ,0.0001

Diabetic 179.9673.7 152.4646.6** 177.2672.0

2 h glucose (mg/dL)

Non-Diabetic 105.2619.2 ,0.0001 109.3617.1 ,0.0001 107.0618.4 ,0.0001

Diabetic 190.1673.1 239.6674.6¥ 201.0676.2

Cholesterol (mg/dL)

Non-Diabetic 171.2654.2 0.283 188.8645.0 0.001 177.6652.1 0.047

Diabetic 173.6648.4 174.7645.9 173.7648.1

Triglyceride (mg/dL)

Non-Di1abetic 147.8671.8 0.001 121.8671.1 ,0.0001 137.0673.2 ,0.0001

Diabetic 159.3684.1 167.5694.8 160.2685.3

HDL Cholesterol (mg/dL)

Non-Diabetic 38.1615.4 0.001 42.2614.2 0.001 39.5615.2 ,0.0001

Diabetic 36.1612.8 37.8616.4 36.3613.1

LDL Cholesterol (mg/dL)

Non-Diabetic1 100.9637.2 0.522 122.8634.8 0.003 108.1638.2 ,0.0001

Diabetic 99.9637.7 110.6638.0 100.7637.8

NG{ (%) 43.5 64.7 48.2

T2D{ (%) 51.9 16.0 43.6

CHD (%) 27.3 2.5 21.5

IGT/IFGNN (%) 4.6 19.2 8.0

{Normoglycemic;
{Type II Diabetes;
NNImpaired glucose tolerance, Impaired fasting glucose,
YDifference between non-diabetic and diabetic.
*p,0.001;
**p = 0.002;
¥p = 0.02 (showing significant difference in the Punjabi and US cohorts).
doi:10.1371/journal.pone.0037056.t002
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LDL-C (online Table S1). A SNP near APOE-C1-C4-C2

(rs4420638) showed a moderate association with decreased

HDL-C Punjabi cohort and US cohort (online Table S2). Our

data could not confirm the association of CDK2A-2B (rs1333049)

with lipid traits or T2D (online Table S1, S2).

Association Analysis of Variants in the LD Region (the
chromosomal region 11q23.3) Spanning BUD13-ZNF259,
APOA5-A4-C3-A1, and SIK3 Genes with TG
After seeing strong and consistent association of two variants,

rs964184 (BUD13-ZNF259) and rs12286037 (ZNF259) with TG,

we analyzed a further 45 SNPs from the chromosomal region

11q23.3 spanning these two SNPs using genotyping data from our

ongoing North Indian (SDS) GWAS and genome-wide data

available from 6,530 participants in the London Life Sciences

Population (LOLIPOP) study. As shown in Figure 1 and Table 6,

six of 45 SNPs revealed a strong association with TG levels in both

SDS and LOLIPOP cohorts. Meta-analysis of these variants in the

combined sample of 8,530 individuals revealed significant p values

in both fixed- and random-effect models. The effect size of each

SNP for affecting TG in fixed-effect meta-analysis was (b=0.20,

p = 7.52610226; b=0.14, p= 8.15.610221; b=0.21,

p = 1.06610239; b=20.08, p = 3.061024; b=0.08,

p = 1.8761028; b=20.09, p= 9.2861029), respectively for

rs7350481, rs180326, rs964184, rs618923, rs10047459, rs533556

(Table 6) showing the strongest p value (1.06610239) for rs964184.

To further characterize the relationship between genotypes of

these variants and their impact on TG levels, we considered the

predictive value of the genotype score by counting the number of

risk alleles among these seven significant SNPs. As shown in

Figure 2, the genotype score of these seven SNPs showed a dose-

related increase in TG levels ranging from 140.066.9 mg/dL with

2–3 risk alleles to 229.2644.0 mg/dL with 9 risk alleles. There

was an overall increase of 89 mg/dL from 2 to 9 risk alleles (linear

regression p= 1.6261026). Individuals carrying more than 4 risk

alleles on average had fasting TG levels greater than the currently

acceptable level of TG (150 mg/dL) which would substantially

increase their risk for CAD and T2D, and raising implications for

early development of complications [16].

Two GWAS SNPs, rs964184 and rs12286037, were in tight LD

(D’ = 0.92) with each other in this sample (online Figure S3). We

performed step-wise regression to examine the independence of

the SNP effects including all significant SNPs along with age,

gender, and BMI. Only two SNPs, rs964184 and rs10047459,

remained significant in the final model. Interestingly, the strongest

signal (b=0.16, p = 2.5761025) remained associated with

rs964184 for TG (Table 7).

Haplotype Analysis
To further determine whether SNPs other than rs964184 and

rs12286037 account for any additional association with TG when

examined together, we performed haplotype analysis using the

seven most significant SNPs from the SDS GWAS including

rs964184 and rs12286037. As shown in Table 8, the analysis

revealed two haplotypes; ACGCAGA carrying ‘G’ risk allele (in

rs964184) to be associated with significantly raised TG (b=0.13,

4.6261026, empirical p = 9.061024), and GACCAAC carrying

‘C’ protective allele to be associated with significant reduced TG

concentrations (b=20.07, p = 0.025, empirical p= 0.034) in this

population. The least frequent haplotypes (,5%) were not

included in analysis. Note that the association of these haplotypes

with TG remained significant (ACGCAGA, p= 2.3461024 forT
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elevating TG), and (GACCAAC, p= 0.015 for lowering TG) even

after controlling for age, gender, and BMI.

To further understand and interpret these findings, we

performed conditional haplotype analysis by controlling for the

effect of two original SNPs (rs964184 and rs12286037). As shown

in the Table 8, the association of ACGCAGA haplotype with

increased TG (4.6261026) and GACCAAC with reduced TG

(p= 0.025) levels disappeared after including rs964184 in the

model. However, the same haplotypes remained linked with

increased TG (ACGCAGA, p= 2.8361026) and reduced TG

(GACCAAC, p= 0.047) levels after controlling for rs12286037.

These results further confirm the putative role of rs964184 for

independently affecting TG concentrations.

Discussion

Our study has convincingly replicated the associations of two of

the six most associated GWAS SNPs with blood lipid phenotypes

in a non-European population. We previously reported a strong

association of rs3764261 from the promoter region of CETP gene

with HDL-C in our Punjabi cohort (n = 2,431) [17]. Our current

data also provide strong evidence of association of rs3764261 with

HDL-C in our expanded cohort (Punjabi+US) separately (Punjabi:

n = 2,902, b=0.09, 6.3161025; US Asian Indians: n = 879,

b=0.10, 1.7261029), and combined in a meta-analysis

(n = 3,781, b=0.14, 2.03610226). The serum HDL-C levels

increased 13% in ‘AA’ carriers over those of common ‘CC’

carriers. These results are in agreement with this ‘A’ allele being

associated with raised HDL-C levels reported in previous GWAS

and meta-analysis studies in Caucasians [13,18]. The other

important confirmation in our findings was the robust association

of TG concentrations in this cohort with rs964184 from the inter-

genic region between BUD13 and ZNF259, and rs12286037 an

intronic variant from ZNF259 near APOA5-A4-C3-A1. The

APOA5-A4-C3-A1 locus is associated with plasma TG and

VLDL-C levels in several studies including Caucasian GWAS

and meta-analyses [8,18], Chinese [19], Asian Indians from UK

[20], US Whites and Blacks [21], and Middle-Easterns [22].

Notably, in our study, the allelic effects of these variants were

stronger under conditions of dyslipidemia associated with T2D

and the difference in effect size (b=0.16 T2D vs. b=0.10 NG

control) for rs964184 was statistically significant (p = 0.01). These

results agree with earlier studies where the effect size of the loci

contributing to quantitative traits of CAD was magnified under

conditions of diabetes [23,24]. It also was interesting to observe

that not only the same risk alleles, ‘G’ of rs964184 (BUD13-

ZNF259) and ‘T’ of rs12286037 (ZNF259) were involved in raising

TG levels but also the effect sizes for per ‘G’ allele increase in TG

Table 4. Association of SNPs with lipid traits in US Cohort.

NG Controls Combined (NG Controls + T2D Cases)

b p-value b p-value b p-value b p-value b p-value b p-value

BUD13-ZNF259 rs964184 log additive dominant recessive log additive dominant recessive

TG (mg/dL) 0.12 0.005 0.13 0.002 0.03 0.484 0.18 2.4661025 0.19 1.1261025 0.08 0.058

ZNF259 rs12286037 log additive dominant recessive log additive dominant recessive

Cholesterol (mg/dL) 0.11 0.009 0.11 0.014 0.06 0.140 0.18 3.5861025 0.17 1.0961024 0.10 0.030

TG (mg/dL) 0.07 0.087 0.07 0.102 0.04 0.374 0.14 0.002 0.13 0.002 0.06 0.162

CETP rs3764261 log additive dominant recessive log additive Dominant recessive

Cholesterol (mg/dL) 0.09 0.040 0.09 0.051 0.06 0.177 0.03 0.018 0.04 0.025 0.04 0.109

HDL-C (mg/dL) 0.11 0.006 0.09 0.023 0.09 0.024 0.10 1.7261029 0.11 1.9661026 0.14 2.6061026

Table 3b only contains most significant SNPs associated with lipid traits, details of the remaining SNPs can be found in online Table S1b.
doi:10.1371/journal.pone.0037056.t004

Table 5. Association of significant SNPs with lipid traits in the SDS cohort.

Punjabi Cohort US Cohort

Chr SNP Trait Risk Allele b (95%CI) p-value b (95%CI) p-value

11 rs964184 TG G 0.15 (0.09–0.18) 5.94610210 0.18 (0.09–0.23) 2.4661025

11 rs12286037 TG T 0.07 (0.05–0.23) 3.0061023 0.14 (0.08–0.36) 2.0061023

16 rs3764261 HDL-C A 0.09 (0.05–0.14) 1.2161024 0.10 (0.07–0.13) 1.7261029

Primary Meta-analysis (Punjabi and US Cohort)

SNP Trait Risk Allele b
(Fixed Effect)

p-value
(Fixed Effect)

b
(Random Effect)

p-value
(Random Effect)

p-value
(Heterogeneity)

rs964184 TG G 0.16 1.74610217 0.16 1.74610217 0.52

rs12286037 TG T 0.09 1.5861022 0.09 1.5861022 0.49

rs3764261 HDL-C A 0.14 2.03610226 0.15 4.8461024 0

doi:10.1371/journal.pone.0037056.t005
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was also similar in our sample (19.3 mg/dL Punjabi), (20.1 mg/dL

US) and (19.3 mg/dL pooled) (Figure 3) when compared to

European populations (18.12 mg/dL) [18]. After further explora-

tion of this region 11q23.3 using 45 SNPs from this locus, other

SNPs in LD with the lead SNP (rs964184) were also associated

with TG showing high significance in the SDS and LOLIPOP

cohorts individually and in meta-analysis (Table 6). In the

presence of LD across the region, the precise causal variant

remains to be identified.

Upon analyzing these variants together in haplotype analysis,

two frequent haplotypes- ACGCAGA (frequency 10%) and

GACCAAC (frequency 18%) revealed a strongly significant

association with TG concentrations. The major effect appears to

be driven by rs964184 as the association of this haplotype

(ACGCAGA) with TG was no longer significant after analyzing

this haplotype combination conditional upon rs964184 (b=0.06,

p = 0.204). However, the same haplotype (ACGCAGA) showed

strong association with raised TG levels (b=0.16, p= 2.8361026)

when analysis was controlled for rs12286037 (Table 8).

Our data show a weak association of rs599839, representing

CELSR2-PSRC1-SORT1, with reduced LDL-C levels in the

Punjabi cohort (b=20.06, p = 0.011) and a non-significant trend

in the US cohort (b=20.03, p= 0. 572) (online Tables S1 and

S2). This same variant was associated with LDL-C in Chinese

(p,0.001), Asian Indians (p = 0.003), and Malays (p = 0.004) from

Singapore [8] and showed a strong association with LDL-C in

a large-scale replication study in Japanese (p = 3.1610211) [25].

Our study could not replicate the association of the remaining

variants, especially the APOE-CI-C4-C2 cluster variant rs4420638

with LDL-C as reported in a Caucasian GWAS [26], and meta-

analysis [7]. Instead, our data showed a similar minor (at risk)

allele-associated decrease in HDL-C in both the Punjabi

(b=20.06, p = 0.007) and US (b=20.09, p = 0.032) cohorts.

Our data did not confirm associations of CDKN2A-2B (rs1333049)

with T2D, CAD, FBG, fasting insulin, or lipids as reported in

earlier studies [27]. We previously reported negative association of

another variant in CDKN2A-2B (rs10811661) with T2D and other-

related traits in this population [15] contrary to associations seen

in Caucasian populations [28,29]. The negative association of

these loci could be due to population stratification, phenotype

heterogeneity, evolutionary pressures, demographic and cultural

histories or a lack of power in our study to detect these small effects

Figure 1. Location of genetic markers in chromosomal region (11q23.3) (195 Kb) encompassing BUD13-ZNF259, APOA5-A4-C3-A1, and
SIK3 gene cluster. Exons are shown in black vertical rectangles separated by introns. Significant SNPs (associated with increased triglyceride
concentrations) detected in BUD13, ZNF259 and SIK3 are shown in large rectangles on disequilibrium (LD) matrix with their position on the genes
indicated by lines. The direction of transcription of genes is shown in arrows. Pair-wise LD between SNPs (D’) is indicated by diamonds shaded in
white-grey-black show the range of LD matrix from D’ = 0 in white to D’ = 1 in black. LD block 1 contains 5 most significant SNPs including two top
SNPs (rs964184 and rs7350481) of the total 45 analyzed. LD block 2 shows all SNPs from the SIK3 gene and the presence of a strong LD among these
SNPs containing two strong signals associated with triglycerides in rs10047459 and rs533556.
doi:10.1371/journal.pone.0037056.g001
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as significant. Perhaps gene x gene interactions and gene x

environment interactions, or phenotypic variability due to

differences in biological adaptation or other factors are the cause

for the poor replication [11]. Many times the high risk variant may

be restricted to certain populations, for instance, the restricted

association of KCNQ1 SNPs (rs2237892, rs2237897) with T2D in

East Asians because of the significant variation of allele frequency

across ethnic groups [30]. On the other hand, if the same variant is

showing association with disease or traits in diverse populations,

validation studies enable more generalizable estimates of effect

sizes in the general population [31].

It is interesting to observe that the variants identified by GWAS,

especially those related to lipid regulation also are associated with

CAD. A CAD risk locus associated with rs599839 in the CELSR2-

PSRC1-SORT1 region was not only associated with elevated LDL-

C concentrations, but also with CAD [32]. These findings suggest

that the locus association with CAD may be mediated though its

effect on LDL-C levels, although we could not confirm the role of

this variant (rs599839) with CAD in this sample. On the other

hand, many times the relationship of a SNP with a trait may be

direct but not with the main disease due to the multifactorial

nature of the disease. For instance, within the 11q23.3 region,

although our findings revealed a direct causal relationship between

the SNP and the trait (TG), none of the variants from this locus

was associated with T2D or CAD as has been observed for the

LDL-CAD locus on chromosome 1. The ‘less common’ variants

possibly reveal a ‘common’ association with TG and disease

(T2D/CAD). A recent targeted resequencing study conducted on

patients with severe hypertriglyceridemia (HTG) for APOA5

detected an abundance of rare variants in HTG patients with

T2D in comparison to those without T2D (25% vs. 6.1%,

p= 0.037) [33]. These findings suggest the co-inheritance of TG

raising alleles with other physiological factors operating together in

the common pathway leading to T2D. Even in this investigation,

the allelic contribution of the SNP rs964184 was increased from

b=0.10 in non-diabetics to b=0.16 in diabetics (p = 0.01)

(Table 3).

Most of these GWAS variants belong to inter-genic or non-

coding regions. These may have influence on the transcriptional

binding sites of the adjacent genes or may interfere with the

transcriptional mechanisms without being directly involved in

protein regulation. The ZNF259 gene is located ,1.6 Kb

upstream of the APOA5-A4-C3-A1 gene cluster, and the top

ranking SNP influencing TG levels (rs964184) resides in the

intergenic region between BUD-13 and ZNF259. ZNF259 is

a regulatory protein involved in cell proliferation and signal

transduction and may have multiple physiological functions [34].

The most relevant transcription factors that bind to the promoter

site of ZNF259 include proxisome proliferator activated receptor

gamma (PPARG1 and PPARG2), and hepatocyte nuclear receptor

alpha (HNF4a1 and HNF4a2). Nuclear receptors PPARG 1 and 2

are expressed in diverse tissues and have been used as targets for

improving insulin sensitivity and are widely studied for their role in

insulin sensitivity and obesity together with influencing the

transcription of several target genes [35,36]. HNF4a 1 and 2

nuclear receptors are linked to several human diseases and are

known to activate a variety of genes involved in glucose, fatty acid,

and cholesterol metabolism in the liver, kidney, intestine, and

pancreas [37]. Therefore, an in-depth study of the remotely

controlled regulatory mechanisms is needed to clarify which SNPs

are functional and how these genes actually influence circulating

TG concentrations.

Although none of the six SNPs most associated with TG actually

belong to the APOA5-A4-C3-A1 gene cluster the presence of two

top signals (rs964184, p = 1.06610239 and rs7350481,

p = 7.52610226) within this LD region (stretching up to

,65.9 Kb interval in block 1) (Figure 1 and Table 6) suggests

the possible presence of rare or less frequent causal variants in this

region. Confirmation of positive associations in some of the

strongest GWAS signals, CETP (rs3726461) with HDL-C and

Table 6. Association of six most significant SNPs within BUD13-ZNF259, A5-A4-C3-A1, and SIK3 with TG.

Punjabi (SDS) Cohort n =2,000 LOLIPOP Cohort n =6,530

SNP Risk allele CEU Allele Frq. b SE p-value Allele Frq. b SE p-value

rs7350481 A 0.08 0.2 0.12 0.03 9.1861026 0.21 0.27 0.03 3.91610225

rs180326 C 0.33 0.35 0.06 0.02 0.009 0.35 0.23 0.02 5.01610226

rs964184 G 0.12 0.21 0.11 0.02 3.4261026 0.22 0.36 0.02 3.06610245

rs618923 A 0.76 0.82 20.08 0.03 0.002 0.84 20.07 0.03 0.013

rs10047459 G 0.16 0.38 0.06 0.02 0.007 0.39 0.11 0.02 4.6361027

rs533556 A 0.3 0.34 20.06 0.02 0.005 0.36 20.12 0.02 1.5761027

Joint Meta-analysis n= 8,530

SNP Risk
allele

b
(Fixed
Effect)

p-value
(Fixed
Effect)

b
(Random
Effect)

p-value
(Random Effect)

p-value
(Heterogeneity)

rs7350481 A 0.2 7.52610226 0.19 8.0061023 2.0061024

rs180326 C 0.14 8.15610221 0.15 0.09 0

rs964184 G 0.21 1.06610239 0.23 5.8061022 0

rs618923 A 20.08 3.061024 20.08 2.0061024 0.851

rs10047459 G 0.08 1.8761028 0.08 7.0061024 0.094

rs533556 A 20.09 9.2861029 20.09 0.001 0.059

Genotyping on rs12286037 was not available in LOLIPOP sample.
doi:10.1371/journal.pone.0037056.t006
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BUD13-ZNF259 (rs964184) with TG, in these independently

ascertained non-European populations of Indian origin validate

the strength of GWAS studies and their usefulness and potential to

find disease loci affecting complex chronic disorders. However, the

identified genes and inter-genic variants most likely represent just

the tip of the iceberg for cardiovascular risk as the overall residual

variance contributed by these SNPs is ,5% and even the meta-

analysis ORs do not exceed 1.22. These findings suggest that rarer

or less common variants which are currently invisible in GWAS

may exist within these regions. Further fine mapping and targeted

resequencing in these gene regions in different ethnicities, as well

as functional studies, would help detection of putative loci of

therapeutic significance.

Methods

Human Subjects- Punjabi and US Cohorts
DNA and serum samples from a total of 3,781 individuals

(2,902 Punjabi Cohort [52% T2D]; 879 US Cohort [16%T2D])

were studied. The healthy control participants from the Punjabi

cohort were random unrelated individuals recruited from the same

Asian Indian community as the T2D patients and matched for

ethnicity and geographic location. The US subjects were recruited

through public advertisement as part of a population-based study

involving free health screening for cardiovascular risk factors. The

individuals with mixed ancestry or non-Asian Indian ancestry were

not enrolled. Two third of the participants from the US cohort

were originally from the state of Punjab, and the remaining one

third were from other western and southern states of India. Men

and women aged 25–79 years participated. The diagnoses of T2D

were confirmed by reviewing medical records for symptoms, use of

medication, and measuring FBG levels following the guidelines of

the American Diabetes Association (2004) [38], as described in

detail previously [39]. A medical record indicating either (1) a FBG

$126 mg/dL or $7.0 mmol/L after a minimum 12 h fast or (2)

a 2 h post-glucose level (2 h oral glucose tolerance test) $200 mg/

dL or $11.1 mmol/L on more than one occasion, combined with

symptoms of diabetes, confirmed the diagnosis. Impaired fasting

glucose (IFG) was defined as a fasting blood glucose level

$100 mg/dL (5.6 mmol/L) but #126 mg/dL (7.0 mmol/L).

Impaired glucose tolerance (IGT) was defined as a 2 h OGTT

.140 mg/dL (7.8 mmol/L) but ,200 mg/dL (11.1 mmol/L).

Participants with IFG or IGT were considered pre-diabetics and

were analyzed separately. The 2h OGTTs were performed

following the criteria of the World Health Organizations (WHO)

(75 g oral load of glucose). BMI was calculated as (weight [kg]/

Figure 2. Figure 2 shows the distribution of serum triglyceride levels in Punjabi, US and entire cohort stratified by rs964184
genotypes. Multiple linear regression analysis was performed using age, BMI and gender in individuals cohorts and age, BMI, gender and place of
birth as combined cohorts. P-values in the bars show statistically significant association of ‘G’ risk allele with triglycerides.
doi:10.1371/journal.pone.0037056.g002
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height [meter]2). Participants with type I diabetes, or those having

a family member with type I diabetes, or rare forms of T2D sub-

types (maturity onset diabetes of young [MODYs]), or secondary

diabetes (from e.g. hemochromatosis, pancreatitis) were excluded

from the study.

Controls, clinically free of T2D, IGT, or IFG, were selected

based on a fasting glycemia ,100.8 mg/dL (,5.6 mmol/L) or

a 2 h glucose ,141.0 mg/dL (,7.8 mmol/L). Participants with

IFG or IGT were excluded when data were analyzed for

association of variants with T2D. All blood samples were obtained

at the baseline visits. All participants signed a written informed

consent for the investigations. The study was reviewed and

approved by the University of Oklahoma Health Sciences Center’s

Institutional Review Board, as well as the Human Subject

Protection Committees at the participating hospitals and institutes

in India.

Metabolic Assays
Insulin was measured by radio-immuno assay (Diagnostic

Products, Cypress, USA). HOMA IR (fasting glucose x fasting

insulin)/22.5 and HOMA B (fasting insulin x 20/FBG23.5), were

calculated as described [40]. Serum lipids [total cholesterol, LDL-

C, HDL-C, VLDL-C, and TG] were measured using standard

enzymatic methods (Roche, Basel, Switzerland) as described

previously [41].

SNP Genotyping
We genotyped six SNPs from GWAS derived loci (CELSR2-

PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-

ZNF259 rs964184; ZNF259 rs12286037; CETP rs3764261;

APOE-C1-C4-C2 rs4420638). Details of the investigated loci, their

previously reported association with lipid phenotypes (traits), allele

frequency, effect size, population studied etc. are summarized in

Table 2. Genotyping for these six SNPs was performed using

TaqMan pre-designed or TaqMan made-to-order SNP genotyp-

ing assays from Applied Biosystems Inc. (ABI, Foster City, USA).

Genotyping reactions were performed on an ABI 7900HT genetic

analyzer using 2 uL of genomic DNA (10 ng/uL), following

manufacturers’ instructions. For quality control, 8–10% replicate

controls and 4–8 negative controls were used in each 384 well

plate to match the concordance, and the discrepancy rate in

duplicate genotyping was ,0.2%. Genotyping call rate was 97%

or more in all the SNPs studied.

LOLIPOP Cohort (UK)
Assessment of LOLIPOP participants was carried out by trained

research nurses, according to a standardized protocol and with

regular quality control (QC) audits as described previously [42].

T2D cases were selected based on physician diagnosis of diabetes

on treatment, with onset of diabetes after the age of 18 years and

without insulin use in the first year after diagnosis, or FBG

.126 mg/dL on 2 or more occasions [38]. Controls were selected

based on no history of diabetes, and FBG ,110 mg/dL. An

interviewer-administered questionnaire was used to collect data on

medical history, family history, current prescribed medication

(verified from the practice computerized records), cardiovascular

risk factors, alcohol intake, physical activity, and socio-economic

status. Country of birth of participants, parents, and grandparents

was recorded together with language and religion for assignment

of ethnic subgroups. Physical assessments including blood pres-

sure, anthropometric measurements (height, weight, and WHR),

fat mass (bio-impedance), urinalysis, and 12 lead ECG. FBG,

insulin, total, HDL-C and LDL-C, TG, were measured on all

participants as described previously [6]. At the time of this analysis

genotype and phenotype data on 6,530 individuals comprising

1,774 T2D cases and 4,756 controls were available from this

study.

GWAS
Genome-wide association scans in LOLIPOP and SDS samples

were performed using Illumina Infinium Beadchips genotypes

Table 7. Test of independence: step-wise multiple linear
regression showing association of SNPs with TG using full
model{.

Included in the model

Model Effect P-value

1 BMI 0.02 (0.01–0.03) 1.3361024

2 BMI 0.02 (0.01–0.03) 5.2561025

rs964184 0.12 (0.05–0.19) 4.7361024

3 BMI 0.02 (0.01–0.03) 1.1561024

rs10047459 0.15 (0.04–0.26) 0.01

rs964184 0.16 (0.08–0.23) 2.5761025

Excluded from the model

Model Effect p-value

1 Sex 20.02 0.65

Age 0.00 0.98

Disease 0.05 0.26

rs7350481 0.14 3.0561023

rs180326 0.12 0.01

rs964184 0.16 4.7361024

rs12286037 0.10 0.04

rs10047459 0.07 0.16

rs533556 20.11 0.02

rs618923 20.07 0.16

2 Sex 20.03 0.54

Age 0.00 0.96

Disease 0.05 0.27

rs7350481 0.10 0.04

rs180326 0.09 0.05

rs12286037 0.05 0.34

rs618923 20.13 0.01

rs10047459 0.13 0.01

rs533556 20.08 0.11

3 Sex 20.04 0.43

Age 20.01 0.88

Disease 0.06 0.22

rs7350481 0.08 0.10

rs180326 0.07 0.16

rs12286037 0.02 0.64

rs618923 – –

rs533556 20.04 0.48

{Includes age, BMI, gender, disease, and rs7350481, rs180326, rs12286037,
rs964184, rs618923, rs10047459, rs533556 in the model.
doi:10.1371/journal.pone.0037056.t007
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Table 8. Haplotype association of seven significant SNPs from BUD13- ZNF259, A5-A4-C3-A1, and SIK3 cluster with TG.

Controlling for the
effect of rs964184 Controlling for the effect of rs12286037

Haplotype Frq b (95% CI)
Unadjusted
p Adjusted p* Trait effect b (95% CI)

Adjusted
p b (95% CI) Adjusted p Trait effect

ACGCAGA* 0.10 0.13 (0.06 – 0.20) 4.6261026 2.3461024 q 0.06 (20.03 –
0.15)

0.204 0.16 (0.09 - 0.23) 2.8361026 q

GACCAGC 0.06 0.01 (20.08 –
0.11)

0.826 0.769 0.05 (20.05 –
0.14)

0.333 0.00 (20.10 – 0.09) 0.949

GACCAAA 0.18 20.02 (0.04 –
20.08)

0.137 0.531 0.01 (20.05 –
0.07)

0.786 20.04 (20.09 – 0.02) 0.221

GACCAGA 0.13 20.02 (0.04 –
20.08)

0.350 0.511 20.01 (20.07 –
0.05)

0.813 20.02 (20.08 – 0.04) 0.434

GACCAAC{ 0.18 20.07 (20.01 –
20.12)

0.025 0.015 Q 20.03 (20.08 –
0.03)

0.296 20.05 (20.11 – 0.00) 0.047 Q

GCCCGAC 0.09 20.08 (20.01 –
20.16)

0.110 0.034 20.02 (20.09 –
0.05)

0.562 20.05 (20.13 – 0.02) 0.138

rs7350481; rs180326; rs964184; rs12286037; rs618923; rs10047459; rs533556; *Empirical p = 9.061024; {Empirical p = 0.034; *adjusted for age, gender, and BMI.
doi:10.1371/journal.pone.0037056.t008

Figure 3. Figure 3 shows the combined effect of risk alleles of for elevating triglyceride levels from BUD13 (rs7350481 rs180326),
inter-genic variant from BUD13-ZNF259 (rs964184), and intronic variants from ZNF259 (12286037 and rs618923), and SIK3
(rs100447459, rs533556). Y axis represents mean triglyceride levels and X axis represents number of risk alleles with the number of participants
per risk allele shown in parenthesis below. Rectangles in the plot indicate mean values of triglycerides separated by each risk-allele group and error
bars are 95% CI. Note that the the cumulative gene-score of all significant SNPs showed a dose-related increase in TG concentrations ranging from
(140.066.9 mg/dL with 2–3 risk alleles to 229.2644.0 mg/dL with 9 risk allele carriers with overall effect increased to 89 mg/dL from 2 to 9 risk alleles
(p = 1.6261026 ).
doi:10.1371/journal.pone.0037056.g003
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were called using GenCall or Illuminus algorithms. Samples with

a SNP call rate ,95% were removed, as were SNPs with call rate

,97%, minor allele frequency ,1%, or HWE p,1.061026.

Principal components analysis (PCA) was used in both GWAS

datasets to control for population stratification by comparison to

reference samples from the Hapmap YRI, CHB, JPT and CEU

panels using PLINK (http://pngu.mgh.harvard.edu/̃purcell/

plink/) and Eigensoft [43], and the Indian samples collected by

Reich and colleagues [44]. Samples with eigenvalues inconsistent

with Asian Indian ancestry were removed as described previously

[45].

Statistical Analysis
Data quality for SNP genotyping was checked by establishing

reproducibility of control DNA samples. Departure from HWE in

controls was tested using the Pearson chi-square test. The

genotype and allele frequencies in T2D cases were compared to

those in control subjects using the chi-square test. Statistical

evaluation of genetic effects on T2D risk used multivariate logistic

regression analysis with adjustments for age, gender, and other

covariates. Continuous traits with skewed sampling distributions

(e.g., TG and total cholesterol) were log-transformed before

statistical analysis. However, for illustrative purposes, values were

re-transformed into the original measurement scale. Supplemen-

tary Figure S2 shows the distribution of serum TG levels before

and after transformation. General linear models were used to test

the impact of genetic variants on transformed continuous traits.

Country of birth was used as a covariate when analyzing the

combined sample of the Punjabi and US cohorts. Other significant

covariates for each dependent trait were identified by Spearman’s

correlation and step-wise multiple linear regression with an overall

5% level of significance using SPSS for Windows statistical

package (version 18.0) (SPSS Inc., Chicago, USA). Mean values

between cases and controls were compared by using an unpaired t-

test. To adjust for multiple testing, we used Bonferroni’s correction

(0.05/number of tests performed).

Haplotype analysis of BUD13-ZNF259 rs964184, ZNF259

rs12286037, and other significant SNPs analyzed from the

195 Kb region surrounding these two variants was performed

using HAPLOVIEW (version 4.0) which uses an accelerated

expectation maximization algorithm to calculate haplotype

frequencies (http://www.broadinstitute.org/haploview/

haploview). Effect of seven-site haplotype on quantitative traits

were determined using PLINK. Meta-analysis was performed by

using PLINK for fixed-effects and random-effects models and the

p value for heterogeneity was derived from Cochrane’s Q statistics.

The fixed effect meta-analysis is based on the assumption that

a single common (or fixed) effect underlies each study in the meta-

analysis. Random effect meta-analysis provides information about

the distribution of effects across different studies. Design of the

meta-analysis is described in a flow chart (online Figure S1).

Statistical power was assessed using the Genetic Power

Calculator [46]. The general estimates of power in the Punjabi

and combined sample using an additive genetic model at a=0.05,

K= 0.18 for detecting the effect sizes between 1.12 and 1.58 for

T2D, were 56% and 89% in the Punjabi and 66% and 97% in

combined cohorts, respectively, when the frequency of risk alleles

were 0.82 and 0.35, respectively, in our sample. However, for

quantitative traits, the power was well in excess (90%) to detect the

inter-genotype difference (e.g. for TG levels), assuming an additive

genetic model, (a=0.05, and Bonferroni’s p = 0.008) at allele

frequencies ranging from 0.05–0.89 using, 1,262, 569, and 1,861

controls from the Punjabi, US, and combined cohorts, re-

spectively. This power is associated to detect a difference in

a quantitative trait of TG of as little as 1 mg/dL and accounts for

an effect size of 0.1 which corresponds to detecting significant b’s
outside of the range of 60.05.
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