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Simple Summary: The pathophysiology of radiation pneumonitis (RP) after thoracic cancer radiation
treatments is still not completely understood although the identification of underlying RP mecha-
nisms may improve the therapeutic window of thoracic cancer patients. The aim of our retrospective
study was to explore the dose–response patterns associated with RP by a multi-center voxel-based
analysis. In a heterogeneously treated population of 382 thoracic cancer patients, we confirmed
the previously described heart–lung interaction in the development of RP. The empowerment of
VBA with a novel description of dose map spatial properties based on probabilistic independent
component analysis (PICA) and connectograms provided valuable additional and independent
information on the radiobiology of RP.

Abstract: This study investigates the dose–response patterns associated with radiation pneumonitis
(RP) in patients treated for thoracic malignancies with different radiation modalities. To this end,
voxel-based analysis (VBA) empowered by a novel strategy for the characterization of spatial prop-
erties of dose maps was applied. Data from 382 lung cancer and mediastinal lymphoma patients
from three institutions treated with different radiation therapy (RT) techniques were analyzed. Each
planning CT and biologically effective dose map (α/β = 3 Gy) was spatially normalized on a common
anatomical reference. The VBA of local dose differences between patients with and without RP was
performed and the clusters of voxels with dose differences that significantly correlated with RP at a
p-level of 0.05 were generated accordingly. The robustness of VBA inference was evaluated by a novel
characterization for spatial properties of dose maps based on probabilistic independent component
analysis (PICA) and connectograms. This lays robust foundations to the obtained findings that the
lower parts of the lungs and the heart play a prominent role in the development of RP. Connectograms
showed that the dataset can support a radiobiological differentiation between the main heart and
lung substructures.

Keywords: radiation pneumonitis; thoracic cancer; voxel-based analysis; probabilistic independent
component analysis; connectograms

1. Introduction

Radiation therapy (RT) represents a fundamental treatment strategy in thoracic oncol-
ogy. Radiation-induced morbidities—including radiation pneumonitis (RP)—may, how-
ever, limit the effectiveness of RT [1,2]. The current clinical practice in treatment planning
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relies on safe parameters such as mean lung dose (MLD) and lung volume receiving at least
a certain level of dose (e.g., V20 Gy) to estimate lung toxicity risk by assuming that the entire
lung tissue shares the same radiobiological patterns [3]. Moreover, several other variables
have been shown to be predictive, including the equivalent uniform dose parameter.

Regional difference in lung radiosensitivity is an old story [4–6]. Indeed, while a
commonly accepted pathophysiological picture considers the lungs as parallel organs,
the higher incidence of lung injury in the lower lobes, together with the differences in
regional functionality revealed by nuclear imaging studies, indicates highly heterogeneous
structural composition, functional capacity, and sensitivity to radiation. A greater risk of RP
after irradiation of caudally located lung tumors has been acknowledged in [7]; however,
the underlying local mechanisms still elude a thorough understanding.

The momentum of technological changes, including particle beam therapy [8] or
hypofractionated RT [9], of the last decade in radiation therapy poses new challenges in
outcome modeling and at the same time emphasizes the limit of the traditional dose-volume
histogram (DVH)-based toxicity analysis and the normal tissue complication probability
(NTCP) modeling philosophy [10,11].

In this study, we investigate the thoracic dose–response patterns for RP in patients
treated for thoracic malignancies taking advantage of the pooled data analysis of different
thoracic tumors and different RT modalities. A novel approach based on spatial dose
distribution analysis—namely, voxel-based analysis (VBA)—is performed to evaluate the
significance of dose differences between groups of patients at a voxel level [12,13]. In
addition, we apply an innovative characterization of the spatial properties of the dose
distribution, which allows to assess the robustness of regional VBA inferences based on
probabilistic independent component analysis and dosimetric connectograms [14].

2. Materials and Methods
2.1. Patients

We retrospectively analyzed 382 patients from 4 different groups of patients receiving
thoracic RT with different treatment modalities at different institutions. A group of patients
was treated for Hodgkin lymphoma (HL) at the University “Federico II” of Napoli (Comi-
tato Etico per le Attività Biomediche, IRB 222-10) with 3D conformal RT (3D-CRT) [15,16].
A second group was treated for locally advanced non-small cell lung cancer (NSCLC) at
the University of Texas MD Anderson Cancer Center of Houston (IRB 2008-0133) with
image-guided intensity-modulated RT (IMRT), and a third one with passive-scattering
proton therapy (PSPT) [17,18]. Lastly, a group of patients was treated for NSCLC at the
Memorial Sloan Kettering Cancer Center of New York (IRB #16-142) with stereotactic body
RT (SBRT) [19]. All patients were scored for RP graded according to the National Cancer
Institute’s Common Terminology Criteria for Adverse Events (CTCAE) version 3.

2.1.1. 3D Conformal Radiation Therapy

Ninety-eight patients received supradiaphragmatic involved-site RT with a median
total dose of 30.6 Gy (range: [20.8, 45.0] Gy) in daily fractions of 1.5 to 1.8 Gy. Treatment
plans were designed in XiO (Elekta AB, Stockholm, Sweden) using the multigrid super-
position dose calculation algorithm. Dose maps were obtained with a dose grid size of
3.0 mm × 3.0 mm × 5.0 mm.

2.1.2. Intensity-Modulated Radiation Therapy

A group of 114 patients was treated for locally advanced non-small cell lung cancer
(NSCLC) at the University of Texas MD Anderson Cancer Center of Houston according to
an institutional review board-approved protocol (2008-0133) with image-guided intensity-
modulated RT (IMRT). Patients received a prescribed dose of 66 or 74 Gy, given in 33 or
37 conventional daily fractions (2 Gy). Plans were designed in Pinnacle3 (Philips Medi-
cal Systems, Andover, MA, USA) using the convolution/superposition dose calculation
algorithm. Dose maps were obtained with a dose grid size of 2.0 mm × 2.0 mm × 2.5 mm.
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2.1.3. Stereotactic Body Radiation Therapy

One hundred and six patients were treated at the Memorial Sloan Kettering Cancer
Center of New York with stereotactic body RT (SBRT) for NSCLC. Patients received a
median total dose of 50 Gy (range: [40, 54] Gy) in median 4 fractions (range: [3, 5]).
Plans were designed in Eclipse v.13 (Varian Medical Systems, Palo Alto, CA, USA) using
the AAA dose calculation engine. Dose maps were obtained with a dose grid size of
1.0 mm × 1.0 mm × 2.0 mm.

2.1.4. Passive-Scattering Proton Therapy

A group of 64 patients was treated for locally advanced NSCLC at the University
of Texas MD Anderson Cancer Center of Houston according to an institutional review
board-approved protocol (2008-0133) with image-guided passive-scattering proton therapy
(PSPT). All patients received a prescribed dose of 66 or 74 Gy, given in 33 or 37 conventional
daily fractions. Relative biological effectiveness (RBE) was set to 1.1. Plans were obtained
by using the proton convolution superposition algorithm implemented in the Eclipse
proton therapy planning system (Varian Medical Systems, Inc., Palo Alto, CA, USA). Dose
maps were obtained with a dose grid size of 2.0 mm × 2.0 mm × 2.5 mm.

More details on the protocols and treatment characteristics for each cohort are pub-
lished elsewhere [3,13,18,19].

Physical dose maps were corrected for different fractionation schemes by computing
the biologically effective dose (BED) according to an α/β ratio of 3 Gy.

2.2. Spatial Normalization

To allow for voxel-wise comparison of the BED distributions given to different pa-
tients, the 382 BED maps were spatially normalized on the common anatomical reference
provided by the extended cardiac torso (XCAT) synthetic CT phantom [20]. Briefly, for
each patient, the planning CT was registered onto the synthetic CT provided with XCAT
after tumor masking [21] via the B-spline elastic image registration algorithm implemented
in Elastix [22]. Then, the obtained deformation field was applied to the BED map [23].

2.3. Characterization of Spatial Properties of Dosimetric Data

The homogeneity of the VBA statistical power in the analyzed anatomical region (i.e.,
the thorax) strongly depends on the uniformity of voxel-wise dose moments. In principle,
homogeneous mean (µ) and standard deviation (σ) maps rule out the hypothesis that
relevant radiosensitive regions were dampened in the VBA results due to the non-uniform
variability of the dose maps. Consequently, µ and σ maps of normalized BED distributions
were computed voxel by voxel over the patients and their uniformity was quantitatively
evaluated by the Michelson contrast, which for a function I can be computed as:

CM =
Imax − Imin

Imax + Imin
(1)

where Imax and Imin are the highest and lowest values of the function. For a positive-valued
function I (such as µ and σ maps), 0 ≤ CM ≤ 1. For a given fraction 0 < f ≤ 1 of the
volume V of the support (i.e., the analyzed organ or anatomical apparatus) of I, CM[I]( f )
can be defined as the minimum CM assumed by the restrictions of I over the subsets of V
{Si | ‖ Si ‖= f ‖ V ‖}. Since CM[I]( f ) is a monotonically increasing function, a summary
description of the uniformity of I is provided by its area under curve (AUC). The AUC
value of CM[I]( f ) is 0 for the constant maps and tends to 1 for highly inhomogeneous maps.

Moreover, the spatial resolution of the VBA results (maps of general linear model—
GLM—coefficients and their significance) may be affected by the correlation between the
doses delivered to different anatomical substructures (i.e., pericardium, heart chambers and
walls, and lung segments and lobes). Indeed, small-scale radiobiological patterns—anyway
larger than the nominal resolution of the dose grid—could be captured by a VBA provided
that the correlation length in the different dose distributions is accordingly short. The spa-
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tial independence of the doses delivered to each substructure was investigated by means of
probabilistic independent component analysis (PICA) [24] and connectogram analysis [25].
The PICA blindly infers the model order of the analyzed dataset, which corresponds to the
number of statistically significant independent spatial maps that generate the input. When
applied to a dose distributions dataset (in the form of n [patient] × M [voxel]), a PICA
model order comparable to the cohort size n points out a significantly mutual indepen-
dence between patients’ dose distributions and allows for a valuable VBA inference. The
connectograms, instead, highlight the most relevant associations between each pair of sub-
structures according to the pairwise significance of the Spearman correlation between the
mean doses related to the substructures: the VBA will have more chance to discriminate the
GLM properties arising from each substructure in correspondence of a weaker correlation.
In the connectogram rings, outwards from the center, the average and standard deviation
across patients of the mean doses within each substructure and the average across patients
of the dose standard deviations within each substructure were presented.

2.4. Voxel-Based Statistical Analysis

The performed VBA involved the following statistical analysis at a voxel level [26]:
a non-parametric permutation test based on the threshold free cluster enhancement of a
maximum-T statistics for GLM was used to assess the regional dose differences between
patients who developed any-grade RP and who did not. The significance map obtained
by the VBA was, thus, implicitly corrected for multiple comparisons. In addition, non-
dosimetric variables, which correlated with the considered outcome at a backward stepwise
multivariable (MVA) logistic regression model [27], were included in the GLM as nuisance
variables. Clusters of voxels with significance level p < 0.05 (S0.05) were generated from the
VBA significance map and the mean doses in these clusters were computed.

3. Results

The dose µ and σ maps computed voxel by voxel over the patients for each separate
group and for the entire cohort are displayed in Figure 1. The analysis of the uniformity of
µ and σ (Figure 2) shows that the entire cohort overall exhibits consistently lower CM[µ]
values and a satisfactorily low AUC value of CM[σ] compared with each separate group
of patients.

The PICA detected increasing model orders (Figure 3) for PSPT (23, corresponding
to 36% of the number of patients), IMRT (31, 27%), SBRT (35, 33%), and 3D-CRT (36, 37%)
groups. The model order for the whole cohort was 66, which corresponds to 17% of the
patient number. While we can observe that the PICA components are spread throughout
the heart and lungs, they exhibit apparent patterns specific to the irradiation modalities,
most clearly highlighted by the patches associated with a unique combination of supra-
threshold PICA components (Figure 4). In particular, the 3D-CRT modality for Hodgkin
lymphoma patients is visually characterized in the axial view by a strong antero-posterior
field direction, with a massive coverage of the mediastinum, which appears indeed to be
covered by a few patches layered in the cranio-caudal direction. Notably, the number of
patches sensibly increases moving from the single groups to the entire cohort, and the
resolution inhomogeneities, specific to the irradiation modalities, are largely washed out
throughout the field-of-view in the merged dataset.
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Figure 1. Axial (columns 1 and 3) and coronal (columns 2 and 4) CT views of the reference anatomy fused with mean
(columns 1 and 2) and standard deviations (columns 3 and 4) of BED maps computed voxel by voxel over the patients for the
Hodgkin lymphoma group (row a), non-small cell lung cancer (NSCLC) patients treated with intensity-modulated radiation
therapy (row b), NSCLC patients treated with stereotactic body RT (row c), NSCLC patients treated with passive-scattering
proton therapy (row d), and the whole cohort of patients (row e).

Figure 2. Plots of CM[µ] (a) and CM[σ] (b) as function of the fractional volume V for the different groups of patients and the
entire cohort.
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Figure 3. Probabilistic independent component analysis (PICA) order estimation for the analyzed
groups of patients. (a,b) show the explained variance and the model evidence as a function of the
included number of components; (c) shows the eigenvalue of each component.
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Figure 4. Probabilistic independent component analysis (PICA) of the dose distributions of Hodgkin lymphoma patients
(first row), non-small cell lung cancer (NSCLC) patients treated with intensity-modulated radiation therapy (second row),
NSCLC patients treated with stereotactic body RT (third row), NSCLC patients treated with passive-scattering proton
therapy (fourth row), and the whole cohort of patients (fifth row). For each row, the first four PICA components are
displayed anchored to the underlying patient anatomy, as well as the axial (fifth column) and coronal (sixth column) views
of the PICA component patches exceeding the 95% confidence interval of the normal distribution (sets of patch intersections
marked with the same color are connected in the 3D domain).

On the other hand, the connectograms identified different dosimetric connectivity
patterns depending on the RT techniques and the diseases, providing a valuable tool to
visually assess the spatial properties of dose distribution. The connectograms for different
anatomical districts of the thorax (Figure 5) show that the weakest (possibly negative)
spatial correlations are found in PSPT and IMRT groups, with slightly higher correlations in
SBRT dose distributions. Conversely, the 3D-CRT group exhibits—as expected—positively
correlated dose values throughout the heart and lungs. A similar trend is found in the
connectograms dedicated to the smallest cardiac substructures (Figure 6), while the smaller
irradiation fields of SBRT plans enable a valuable disentanglement of most small lung
segments (Figures 7 and 8). When the groups of dose maps are combined in the analysis
of the whole cohort, the connectograms reveal an overall improvement in dose resolution
over the considered anatomical substructures (Figure 9).
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Figure 5. Connectograms in heart and lung substructures for the four groups of patients: Hodgkin lymphoma group—
3DCRT (a), non-small cell lung cancer patients treated with intensity-modulated radiation therapy—IMRT (b), NSCLC
patients treated with stereotactic body RT—SBRT (c), NSCLC patients treated with passive-scattering proton therapy—PSPT
(d). The pairwise Spearman correlation coefficients between mean biological effective dose (BED) values to the reported
substructures are represented by the lines within the rings. From inside to outside, the rings represent the average of the
substructure mean BEDs, standard deviation of the substructure mean BEDs, and average of the dose standard deviations
within the substructure. BED is expressed in Gy. Abbreviations: LLL: left lung lobe; LUL: left upper lobe; RLL: right lower
lobe; RML: right middle lobe; RUL: right upper lobe; LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle;
PC: pericardium.
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Figure 6. Connectograms in heart substructures for the four groups of patients: Hodgkin lymphoma group—3DCRT
(a), non-small cell lung cancer patients treated with intensity-modulated radiation therapy—IMRT (b), NSCLC patients
treated with stereotactic body RT—SBRT (c), NSCLC patients treated with passive-scattering proton therapy—PSPT (d). The
pairwise Spearman correlation coefficients between mean biological effective dose (BED) values to the reported substructures
are represented by the lines within the rings. From inside to outside, the rings represent the average of the substructure
mean BEDs, standard deviation of the substructure mean BEDs, and average of the dose standard deviations within the
substructure. BED is expressed in Gy. Abbreviations: LA: left atrium; LAW: left atrium wall; LV: left ventricle; LVW: left
ventricle wall; RA: right atrium; RAW: right atrium wall; RV: right ventricle; RVW: right ventricle wall; PC: pericardium.
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Figure 7. Connectograms in left lung substructures for the four groups of patients: Hodgkin lymphoma group—3DCRT
(a), non-small cell lung cancer patients treated with intensity-modulated radiation therapy—IMRT (b), NSCLC patients
treated with stereotactic body RT—SBRT (c), NSCLC patients treated with passive-scattering proton therapy—PSPT (d).
The pairwise Spearman correlation coefficients between the mean biological effective dose (BED) values to the reported
substructures are represented by the lines within the rings. From inside to outside, the rings represent the average of the
substructure mean BEDs, standard deviation of the substructure mean BEDs, and average of the dose standard deviations
within the substructure. BED is expressed in Gy. Abbreviations: LLAM: left lung lower lobe anteromedial; LLL: left lung
lower lobe lateral; LLP: left lung lower lobe posterior; LLS: left lung lower lobe superior; IL: inferior lingula; SL: superior
lingula; LUA: left lung upper lobe anterior; LUAP: left lung upper lobe apicoposterior.
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Figure 8. Connectograms in right lung substructures for the four groups of patients: Hodgkin lymphoma group—3DCRT
(a), non-small cell lung cancer patients treated with intensity-modulated radiation therapy—IMRT (b), NSCLC patients
treated with stereotactic body RT—SBRT (c), NSCLC patients treated with passive-scattering proton therapy—PSPT (d).
The pairwise Spearman correlation coefficients between the mean biological effective dose (BED) values to the reported
substructures are represented by the lines within the rings. From inside to outside, the rings represent the average of the
substructure mean BEDs, standard deviation of the substructure mean BEDs, and average of the dose standard deviations
within the substructure. BED is expressed in Gy. Abbreviations: RLA: right lung lower lobe anterior; RLL: right lung lower
lobe lateral; RLM: right lung lower lobe medial; RLP: right lung lower lobe posterior; RLS: right lung lower lobe superior;
RML: right lung middle lobe lateral; RMM: right lung middle lobe medial; RUA: right lung upper lobe anterior; RUAP:
right lung upper lobe apical; RUP: right lung upper lobe posterior.
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Figure 9. Connectograms for the whole cohort of patients in different sets of substructures: (a) heart and lung substructures,
(b) left lung substructures, (c) heart substructures, (d) right lung substructures. The pairwise Spearman correlation
coefficients between the mean biological effective dose (BED) values to the reported substructures are represented by the
lines within the rings. From inside to outside, the rings represent the average of the substructure mean BEDs, standard
deviation of the substructure mean BEDs, and average of the dose standard deviations within the substructure. BED is
expressed in Gy. Abbreviations: (a) LLL: left lung lobe; LUL: left upper lobe; RLL: right lower lobe; RML: right middle
lobe; RUL: right upper lobe; LA: left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle; PC: pericardium. (c)
LA: left atrium; LAW: left atrium wall; LV: left ventricle; LVW: left ventricle wall; RA: right atrium; RAW: right atrium
wall; RV: right ventricle; RVW: right ventricle wall; PC: pericardium. (b) LLAM: left lung lower lobe anteromedial; LLL:
left lung lower lobe lateral; LLP: left lung lower lobe posterior; LLS: left lung lower lobe superior; IL: inferior lingula; SL:
superior lingula; LUA: left lung upper lobe anterior; LUAP: left lung upper lobe apicoposterior. (d) RLA: right lung lower
lobe anterior; RLL: right lung lower lobe lateral; RLM: right lung lower lobe medial; RLP: right lung lower lobe posterior;
RLS: right lung lower lobe superior; RML: right lung middle lobe lateral; RMM: right lung middle lobe medial; RUA: right
lung upper lobe anterior; RUAP: right lung upper lobe apical; RUP: right lung upper lobe posterior.

The incidence of any-grade RP on the entire dataset was 28%. Of the 382 patients,
37 developed grade 1 RP and 50 developed clinically symptomatic RP (i.e., grade ≥ 2).
On the whole dataset, age (median: 64 y; range: [13, 93] y) was the only clinical vari-
able significantly correlated with RP (p = 0.004) that survived at the MVA analysis and
was consequently included in the VBA. VBA highlighted (Figure 10) two largely over-
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lapping S0.05 clusters (total volume: 551 cc) significantly associated with RP in the lungs
(lungs-S0.05 = 346 cc) and in the heart (heart-S0.05 = 205 cc). The most represented substruc-
tures in the S0.05 clusters were the right lower and middle lung lobes, the left and right
atrium with their walls, and the pericardium. The mean BED in heart-S0.05 for RP patients
was 33.3 Gy, and for patients without RP it was 25.2 Gy. The mean BED in lungs-S0.05 for
RP patients was 38.5 Gy, and for patients without RP it was 25.2 Gy.

Figure 10. Coronal view of the XCAT computed tomography fused with: (a) the voxel-wise mean (µ) of the biologically
effective dose (BED, in Gy) maps; (b) generalized linear model coefficient (in kGy−1) associated with BED for the develop-
ment of radiation pneumonitis; (c) the voxel-wise standard deviation (σ) of BED maps (in Gy); (d) significance of the BED
coefficient, expressed as −log p.

4. Discussion

Voxel-based analyses were originally introduced in functional imaging to discriminate
the local morphological or metabolic patterns between groups of subjects.

In the last decade, techniques developed for imaging VBA have been applied in
the field of radiation oncology, and in particular, but not exclusively, to the analysis of
radiation-induced toxicity [28–32]. In particular, local dose–response patterns have been
evaluated via voxel-wise statistical analysis of dose maps, provided that they were spatially
normalized on a common anatomical reference.

VBA applied to both functional imaging and radiobiology typically results in a sig-
nificance map of radiological or dose differences between groups of patients. In principle,
VBA techniques can be formally applied, in a similar way, to both functional imaging and
dosimetric datasets; however, there is a substantial difference between the two fields that
warrants caution during result interpretation. Indeed, in functional imaging, VBA can
identify the metabolic patterns that depend only on the investigated pathophysiology, at
least as long as the chosen image contrast, which is usually given by the contrast medium in
nuclear medicine and by the pulse sequence in MRI, allows for an effective representation
of the underlying functional mechanisms [33,34]. In radiation oncology, on the contrary,
VBA can identify those dose patterns that not only depend on the regional radiosensitivity,
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but are also within the reach of the intrinsic heterogeneity of the dose distributions included
in the analyzed dataset.

When applying the VBA to the outcome analysis of radiation treatments, it is therefore
essential to account for the intrinsic features of the dose map dataset that could, in principle,
limit the very validity of the VBA results. In this study, we tried to preliminarily answer
the question, how much radiobiological detail can we identify from a cohort of patients
treated with a given radiation therapy technique?

Essentially, we identified two main issues: the power homogeneity and the resolution
of VBA, respectively related to the homogeneity of mean and standard deviation of the
dose maps and to the correlation between doses to different anatomical structures [14,35].
They seem particularly relevant in the context of thoracic radiation oncology, due to the
variety of pathologies and the complexity of pathophysiological pathways proposed in the
literature to account for the adverse events in the cardiopulmonary system [15,36,37].

In this context, we exploited for the first time, on a heterogeneously treated population
of thoracic cancer patients, a collection of tools devised to assess the spatial properties
of dose distributions in order to highlight the power and resolution limits related to the
VBAs that can be performed on each dataset [14]. As it has long been expected, it turned
out from a rigorously defined analysis that merging different types of dose distributions
leads to an improved homogeneity of VBA statistical power as well as to dampened spatial
autocorrelation functions. In addition to the straightforward boost of statistical power
granted by the increasing number of analyzed patients, which permitted us to obtain by the
present study an unparalleled accuracy of the dose–response findings associated with RP of
any grade. In particular, it is noteworthy that, despite the valuable independence of the dose
values observed in the different substructures in the whole cohort (Figure 9), previously
claimed interactions between the heart and the lungs in the RP development [38–43] are
hereby confirmed. Indeed, we found, in the whole cohort, extended lung and heart regions
in which the dose appears significantly correlated with the development of any-grade
RP. In these regions an increased mean dose was found in association with RP status: the
increase, in patients with RP, was measured to be approximately 13 Gy in lungs-S0.05 and 8
Gy in heart-S0.05.

One potential limitation of this work, which may affect both the strictly speaking
VBA and our auxiliary analyses of the intrinsic features of the dose map dataset, is the
dosimetric uncertainties associated with the use of planning dose maps instead of delivered
accumulated dose maps. However, such uncertainties are not group related; consequently
no bias is expected in the analysis described here.

5. Conclusions

The Michelson contrast of voxel-wise dose moments, as well as the dosimetric PICA
and connectograms, represents a valuable toolbox to provide essential insights into the
homogeneity and resolution limits inherent to a given dataset of dose maps in the VBA con-
text. Heterogeneous dose patterns, steeper gradients, and smaller hot spots all contribute
to a more suitable dataset for dosomic inference. We suggest that a spatial characterization
of the dose datasets should constitute an ancillary analysis for every voxel-based analy-
sis in the field of radiation oncology in order to better elucidate the pathophysiological
mechanisms underlying radiation-induced morbidity development such as RP.
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