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Introduction
Indoor air pollution from cookstoves constitutes a major source 
of morbidity and mortality throughout the world.1,2 Particulate 
matter emitted from stoves can impact respiratory and 

cardiovascular health of household residents, who are typically 
exposed to this household air pollution (HAP) on a daily basis. 
Acute lower respiratory infections (ALRIs) present a significant 
worldwide morbidity burden, particularly for children, that has 
been associated with HAP.3

Replacing biomass burning stoves with other, cleaner-burn-
ing stoves has been proposed as a means to mitigate this health 
burden.4 Multiple studies around the world have been designed 
to assess the health impact of cleaner-burning stoves.5–13 Many 
of these studies have failed to identify evidence of a significant 
impact on respiratory disease risk attributable to stove replace-
ment, and better evidence about the effectiveness of cookstove 
interventions is needed.14–16

While cleaner-burning stoves may reduce indoor particulate 
matter concentrations by a large absolute or relative amount on 
average,17–20 the concentrations can still be quite high compared 
with the World Health Organization (WHO) air quality standard 
of 10 μg/m3 for fine particulate matter (PM2.5).

21 Furthermore, 
the simultaneous use of multiple stove technologies (“stove 

What this study adds
We present two statistical models for analyzing health outcomes 
related to household air pollution and apply them to three stud-
ies of respiratory illness in children in Nepal. The models pro-
vide important advancements for reducing error in exposure 
measurements and estimating complex relationships between 
air pollution and health outcomes. The models provide a novel 
approach to combining data from multiple studies into a single 
analysis. We find that risk of respiratory illness increases with 
higher air pollution concentrations up to a point and then the 
risk plateaus.
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Background: Adverse health effects of household air pollution, including acute lower respiratory infections (ALRIs), pose a 
major health burden around the world, particularly in settings where indoor combustion stoves are used for cooking. Individual 
studies have limited exposure ranges and sample sizes, while pooling studies together can improve statistical power.
Methods: We present hierarchical models for estimating long-term exposure concentrations and estimating a common exposure-re-
sponse curve. The exposure concentration model combines temporally sparse, clustered longitudinal observations to estimate 
household-specific long-term average concentrations. The exposure-response model provides a flexible, semiparametric estimate 
of the exposure-response relationship while accommodating heterogeneous clustered data from multiple studies. We apply these 
models to three studies of fine particulate matter (PM2.5) and ALRIs in children in Nepal: a case-control study in Bhaktapur, a stepped-
wedge trial in Sarlahi, and a parallel trial in Sarlahi. For each study, we estimate household-level long-term PM2.5 concentrations. We 
apply the exposure-response model separately to each study and jointly to the pooled data.
Results: The estimated long-term PM2.5 concentrations were lower for households using electric and gas fuel sources compared 
with households using biomass fuel. The exposure-response curve shows an estimated ALRI odds ratio of 3.39 (95% credible 
interval = 1.89, 6.10) comparing PM2.5 concentrations of 50 and 150 μg/m3 and a flattening of the curve for higher concentrations.
Conclusions: These flexible models can accommodate additional studies and be applied to other exposures and outcomes. The 
studies from Nepal provides evidence of a nonlinear exposure-response curve that flattens at higher concentrations.

Keywords: Bayesian; Exposure-response curve; Hierarchical models; Household air pollution; Measurement error; Particulate 
matter
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stacking”) is widespread,22 so analyses based upon actual 
concentrations, rather than assigned stoves types, are needed. 
Additionally, short-term (24- or 48-hour) measurements of HAP 
can be highly variable,18,20 which poses challenges for studies 
assessing health impacts of long-term exposures.

The large range of HAP exposures means that correctly rep-
resenting the nonlinearity in the exposure-response relationship 
is important. Burnett et al23 developed an “integrated” expo-
sure-response (IER) curve for PM2.5 exposure and ALRI risk that 
included data from studies of ambient air pollution, HAP, and 
secondhand smoking. Limitations of the Burnett et al23 IER curve 
were its meta-analysis approach based on combining study-spe-
cific risk ratios rather than directly pooling data, its inclusion of 
only one study of HAP with limited exposure range, and its reli-
ance on a fully parametric curve that restricted the types of rela-
tionships it can represent. In a recent analysis of the Bhaktapur 
study described below, Bates et al24 used flexible splines to esti-
mate a similar curve with fewer assumptions but still included 
data from only one study. Burnett et al25 introduced an expo-
sure-response curve that relaxed some of the assumptions of the 
IER curve and was designed for a combination of individual-level 
mortality data and study-level hazard ratios from multiple stud-
ies of outdoor PM2.5. This curve has several attractive features, 
including monotonicity, but retained a parametric form and only 
covered an exposure range up to 84 μg/m3.

In this article, we present an approach for estimating long-
term HAP concentrations and combining data from multiple 
studies to estimate an exposure-response curve. We do this 
by developing two hierarchical models: (1) one for long-term 
exposure concentrations and (2) one for disease risk. We first 
describe three studies from Nepal that investigated the relation-
ship between HAP and ALRI in children and motivated model 
development. We then present our hierarchical models for expo-
sure concentrations and the exposure-response relationship and 
apply the models to the motivating studies.

Methods

Motivating studies

The first study is a case-control study conducted in Bhaktapur, 
Nepal.24,26 The study conducted active surveillance for respira-
tory illness in an open cohort of approximately 4,500 children 
under 3 years of age, from May 2006 to June 2007. There were 
452 cases assessed to have ALRI according to WHO criteria.26 
Immediately after a case occurred, a control subject of the same 
age was selected from the cohort. There were a total of 465 
controls; logistical constraints and some refusals to participate 
prevented exact matching of cases and controls by age. In each 
child’s home, one 24-hour integrated measurement of PM2.5 
concentrations was made using a light-scattering nephelometer, 
the University of California, Berkeley-Particle and Temperature 
Monitoring System (UCB-PATS).27 PM2.5 measurements were 
made within a week of recruitment on a weekday (Sunday to 
Friday). UCB-PATS were validated in the field against stan-
dard gravimetric measurements for each separate fuel type, 
and adjustments were made accordingly in the light-scattering 
efficiencies used to calculate the PM2.5 concentration. Stove 
type was identified by a questionnaire and categorized by fuel 
source: biomass, kerosene, gas, and electricity. HAP measure-
ments are available for 393 cases and 431 controls (Table 1), 
with the remainder missed due to a delay in the start of mon-
itoring or equipment malfunction. Overall, a 10 μg/m3 differ-
ence in PM2.5 was associated with 36% higher odds of ALRI 
(odds ratio [OR] = 1.36; 95% CI = 1.19, 1.56).24 This study 
was approved by the institutional review boards (IRBs) at the 
University of California–Berkeley, the Institute of Medicine, 
Tribhuvan University Teaching Hospital, Kathmandu, Nepal, 
and the Regional Committee for Medical and Health Research 
Ethics (REK VEST), Norway.

The next studies are from a cookstove intervention trial con-
ducted in the Sarlahi district of Nepal.10,28 This trial comprised 
two phases, which we treat here as separate studies. The first 
phase was a stepped-wedge design that studied the impact of 
replacing traditional biomass stoves with improved biomass 
stoves with chimneys. Households were grouped by villages 
and the improved stoves were provided to groups of villages 
in a staged manner between December 2010 and January 
2012 so that by study conclusion, all households were using 
the improved stove. Weekly follow-up, beginning in March 
2010, was conducted to ascertain incidence of ALRI, defined 
as a maternal report of 2 or more consecutive days of rapid 
breathing accompanied by fever.10 Episodes were separated by 
a minimum of 7 symptom-free days. We restricted our analy-
sis to ALRI incidence from the period July 2010 to December 
2012, which includes all times at which both stove types were 
in use. A total of 5,254 children from 3,376 households were 
enrolled and, after exclusion of those with missing covariate, 
exposure, or follow-up information, 4,163 children from 2,460 
households were included in the exposure-response model 
(Table 2). Between March 2010 and July 2012, 21-hour inte-
grated measurements of PM2.5 were made using DataRAM 
pDR-1000 (Thermo Scientific, Franklin, MA) in each household 
twice during the phase I study (one measurement approximately 
6 months before and one approximately 6 months after stove 
installation).29 A total of 3,276 households that had available 
PM2.5 measurements were included in the exposure concentra-
tion model analysis (Figure  1). The second phase used a tra-
ditional parallel design, covering a shorter period from April 
2013 to April 2014 and a smaller cohort of 1,312 households, 
to compare the improved biomass stoves against liquid pro-
pane gas (LPG) stoves. Weekly outcome ascertainment was 

Table 1.

Characteristics of the Bhaktapur cohort

Characteristic Cases (n = 393); n (%) Controls (n = 431); n (%)

Stove type
 Biomass 109 (28) 109 (25)
 Kerosene 104 (26) 83 (19)
 Gas 110 (28) 128 (30)
 Electricity 70 (18) 111 (26)
Sex
 Female 166 (42) 197 (46)
 Male 227 (58) 234 (54)
Age (months)
 0–6 111 (28) 122 (28)
 7–12 98 (25) 92 (21)
 13–18 81 (21) 84 (19)
 19–24 52 (13) 77 (18)
 25–36 51 (13) 56 (13)

Table 2.

Characteristics of the Sarlahi cohorts

Characteristic
Phase I  

(n = 4,163); n (%)
Phase II—LPG arm  

(n = 786); n (%)
Phase II—biomass  

arm (n = 782); n (%)

Sex
 Male 2,102 (50) 411 (52) 400 (51)
 Female 2,061 (50) 375 (48) 382 (49)
Age at study entry, months
 0–3 2,075 (50) 267 (34) 270 (34)
 4–7 320 (8) 136 (17) 123 (16)
 8–12 390 (9) 134 (17) 122 (16)
 13–24 891 (21) 249 (32) 267 (34)
 25–36 487 (12) — —

The dash indicates no individuals, since the Phase II study restricted to children 2 years of age 
or younger.
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conducted similar to phase I. PM2.5 measurements were made 
once per household in phase II between May 2013 and February 
2014, following the same procedures as phase I. In the primary 
analysis for phase I, the improved biomass stove intervention 
was associated with a small but nonsignificant reduction in 
ALRI incidence of 13% (risk ratio [RR] = 0.87; 95% CI = 0.67, 
1.13).30 The intervention effect from phase II, which has not 
been previously published, is presented below. The Sarlahi stud-
ies were approved by the IRBs of the Johns Hopkins Bloomberg 
School of Public Health and the Institute of Medicine, Tribhuvan 
University, Kathmandu, Nepal. All study households and adult 
individuals provided informed verbal consent. The trials are reg-
istered at ClinicalTrials.gov (NCT 00786877).

Overview of statistical models

We present two statistical models: an exposure concentration 
model for estimating long-term concentrations of HAP and 
an exposure-response model for estimating the relationship 
between HAP exposure and health outcomes. The exposure 
concentration model is study-specific, while the exposure-re-
sponse model is designed to pool data from multiple studies. We 
present these models in the context of the motivating studies of 
PM2.5 and ALRIs, but they can be applied to other types of HAP, 
outdoor air pollution, and other health outcomes.

Exposure concentration model

The exposure concentration model is designed to estimate long-
term household HAP concentrations and can accommodate any 
of the following study features:

 1) groups with different stove types, whether due to inter-
vention or differing practices,

 2) cross-over in group membership over time,
 3) irregularly spaced repeated measurements of HAP 

concentration,
 4) a small number of measurements per household or study 

unit,
 5) clustering of study units within neighborhoods or other 

groups,
 6) an underlying temporal trend in HAP concentrations, and
 7) a large amount of variability in individual measurements.

The hierarchical Bayesian structure of the model shrinks 
observed concentrations towards cluster- and group-means. The 
shrinkage towards the group mean reduces the error that results 
from using highly variable single-day measurements to repre-
sent a long-term average, which can attenuate point estimates 
and reduce power. Importantly, the shrinkage is only partial, 
and so some individual-level and temporal variation remains, 
providing benefit over an analysis that averages solely by stove 
type.

We model wgkit , the log-transformed measured pollutant 
concentration in household i of cluster k in stove group g on 
day t, as samples from the normal distribution N gkit

E
wµ σ, 2( ). The 

mean µgkit
E  has the form:

µ η α αgkit
E

g k i
Tf t df;= + + + ( )0 1 qq  (1)

The group mean ηg  accounts for different average concentra-
tions for each stove type. The cluster random effect α0k  accounts 
for neighborhood-level effects, which can reflect differences in 
practices and long-term local climate. If there is no clustering 
in the study design, this term can be dropped from the model. 
The household random effect α1i  accounts for correlation in 
repeated observations within the same household. The tempo-
ral trend f t df T;( ) qq  is a linear combination of natural cubic 

Figure 1. Measured PM2.5 concentrations (in μg/m3) from the three motivating studies.
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splines with degrees of freedom (df). The group mean, cluster 
random effect, household random effect, and spline coefficients 
are each given Normal prior distributions: η η σg GN~ ,0

2( ), 
α σ0

20k KN~ ,( ), α σ1
20i HN~ ,( ), and qq ~ ,N 0 2σθ I( ), respectively.

Exposure-response model

The exposure-response model combines data from multiple 
studies to estimate an exposure-response curve and is designed 
to accommodate any of these study features:

 1) one or more studies with the same binary outcome and 
continuous exposure, variable, although the exposure 
ranges need not overlap between studies,

 2) repeated outcome ascertainment for individuals,
 3) different time periods and temporal effects by study, and
 4) different measured confounders and adjustment variables 

by study.

Let Ysit  and Tsit  denote the case count and total time at risk 
for individual i in study s during time period t. For most stud-
ies, Tsit  will be 1 and Ysit  will be either 0 or 1 depending on 
whether or not an individual becomes a case during time period 
t. However, the model allows for studies in which an individ-
ual may have multiple episodes of being a case. The period t 
may be a day, week, month, or other duration. Importantly, t in 
this exposure-response model does not need to be identical to 
the timestep t in the exposure concentration model. We assume 
Ysit  follows a Binomial ( Tsit, µsit

O ) distribution where the prob-
ability of being a case is modeled as:

logit h t g xsit
O

s si si
T

s s s
T

s sit
Tµ ψ υ( ) = + + + + ( )( ),ξ z gg dd bb  (2)

The ψ s  term models differences in disease risk between study 
populations, whether due to underlying factors or differences in 
study designs. The ξsi  term is a subject-level random effect that 
accounts for differences between individuals. The vector zsi   
represents adjustment variables with coefficients  gg s . The 
h ts s,υ( )  term accounts for temporal variation in disease risk via 
natural cubic splines with υs  degrees of freedom. By allowing 
hs  to vary between studies, the model accommodates both dif-
ferent trends in risk between studies and data from different 
time periods. PM2.5 exposure is denoted by xsit  and g xsit( )  rep-
resents a transformation of exposure that we describe in the fol-
lowing paragraphs. We use an improper uniform prior for ψ s   
and model the other parameters using Normal prior dis-
tributions: ξ σξsi N~ ,0 2( ), gg ~ ,N 0 2σΓ( ), ~ ,dd s N 0 2σ ∆( ), and 
bb ~ ,N 0 2σβ( ).

For the exposure concentration xsit  in Equation 2, we use the 
estimated long-term average concentration from the exposure 
concentration model. Specifically, we set xsit  to be the exponen-
tiated posterior mean of the long-term average log-concentration 
for the household of individual i over the last �T  time periods:

x T gkitt t T
t exp Esit g k i= = − + + ( )∑1 0 1/ ’’

|�
�I η α α ws  (3)

where ws  is the vector of all observed exposure data for study 
s and Igkit’  is an indicator of subject i being in stove group g 
and cluster k at time t’. The averaging period controlled by �T  
captures changes in group and cluster in cross-over studies. By 
excluding the time trend in Equation 3, we obtain an estimate 
of long-term exposure concentration. In general, no informa-
tion is lost through this approach because any smooth temporal 
variation in the exposure would be captured by the temporal 
trend h ts s,υ( ).

We use monotonic I-splines, denoted by the transformation 
g(),⋅  to represent a nonlinear exposure-response relationship. 

When their coefficients are restricted to be nonnegative, 
I-splines can be used to estimate a nondecreasing exposure-re-
sponse function.31 I-splines have been used before for outdoor 
air pollution by Powell et al,32 but not for HAP studies. eFigure 
1 (http://links.lww.com/EE/A109) shows the I-Spline basis func-
tions used in the pooled analysis of the Nepal studies.

Model implementation

Sampling for both models is done via the Stan modeling frame-
work.33 We implement this in the R package “bercs” (Bayesian 
Exposure-Response Curves via Stan), which is free and publicly 
available at www.github.com/jpkeller/bercs.

Application of models to cookstove studies

We fit the exposure model separately to each study. The hyper-
parameters and hyperpriors for each model are provided in eAp-
pendix1 and eTables 1 and 2 (http://links.lww.com/EE/A109). 
We conducted two sensitivity analyses that explored the impact 
of varying prior specifications for the Bhaktapur study. The 
first used prior distributions favoring small household random 
effects, which is expected to lead to greater shrinkage since there 
is only one measurement per household. The second sensitivity 
analysis used a prior distribution that favored larger household 
random effects than the primary model, which is expected to 
give results closer to the measurements. For Sarlahi phase I, we 
included all households with available PM2.5 measurements, 
including those that were excluded from the exposure-response 
model due to missing covariate or follow-up information.

To quantify the relationship between HAP and ALRIs, we fit 
separate exposure-response models for each study and a model 
that pools the data from all three studies. All models included 
adjustment for age and sex. To illustrate the impact of differ-
ent choices of exposure values, we fit three sensitivity analysis 
for the Bhaktapur study: two using the concentrations from the 
exposure concentration model sensitivity analyses and one using 
the observed measurements directly. We conducted additional 
sensitivity analyses for the Bhaktapur and combined models 
that restricted to nondecreasing exposure-response curves. 
The values of hyperparameters and hyperpriors for each expo-
sure-response model are provided in eAppendix 2 and eTables 
3–5 (http://links.lww.com/EE/A109).

We plot the exposure-response curves g x T( ) β  using the pos-
terior means of β and include pointwise 95% credible intervals 
that incorporate the uncertainty in the study-specific intercepts. 
To aide comparison, we center all of the estimated exposure-re-
sponse curves to have odds ratios of 1 at 50 μg/m3.

We also present the estimated intervention effect for phase 
2 of the Sarlahi study, computed from a log-linear model with 
offset for total time at risk, a fixed effect for stove, and a random 
effect for cluster.

Results

Exposure model—Bhaktapur

In the Bhaktapur study, the geometric mean PM2.5 concentrations 
were 382 μg/m3 for households with biomass stoves (n = 218), 117 
μg/m3 for kerosene (n = 187), 72 μg/m3 for gas (n = 238), and 55 
μg/m3 for electricity (n = 181) (Table 3 and Figure 1). The expo-
nentiated posterior group means estimated from the exposure 
concentration model are similar: 388 μg/m3 (95% credible interval 
[CI] = 346, 435 μg/m3) for households with biomass stoves, 119 
μg/m3 (106, 1,134 μg/m3) for kerosene, 72 μg/m3 (65, 81 μg/m3) 
for gas, and 55 μg/m3 (49, 62 μg/m3) for electricity (Table 4).

The posterior mean concentration for each household 
for the primary Bhaktapur exposure model results are plot-
ted in Figure  2A, including the time trend. The long-term 
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concentrations, which omit the time trend and are used in the 
exposure-response models, are summarized in eAppendix 3, 
eTable 6, and eFigure 2 (http://links.lww.com/EE/A109). For 
comparison, Figure 2B shows the model results from sensitivity 
model 1, when strong prior information is not included, lead-
ing to a small estimated σH

2  and near-complete shrinkage to 
the group means. Alternatively, Figure 2C shows the modeled 
means from sensitivity model 2, when an informative prior is 
used to encourage even greater variation in the household ran-
dom effects and less shrinkage towards the group mean. eTable 
7 (http://links.lww.com/EE/A109) provides all parameter esti-
mates for these models.

Exposure model—Sarlahi studies

For Sarlahi phase I, the geometric mean measured concentra-
tion was 1,003 μg/m3 in homes using traditional stoves (n = 
3,075) and 626 μg/m3 in homes using improved biomass stoves 
(n = 2,836) (Table 3 and Figure 1). The exponentiated posterior 
mean PM2.5 concentrations from the exposure model fit were 
1,134 μg/m3 and 571 μg/m3 for the traditional and improved 
biomass stove, respectively (Table 4). The posterior means from 
the exposure model fit for phase I of the Sarlahi study are shown 
in Figure 3A. The posterior means of the standard deviations of 
σK

2 and σH
2  were similar in magnitude, 0.21 and 0.30, respec-

tively (eTable 9; http://links.lww.com/EE/A109), reflecting a 
moderate amount of between-cluster and between-household 
variation.

In phase II, the geometric mean measured concentrations 
were 558 μg/m3 (n = 659) in biomass-stove households and 
264 μg/m3 (n = 661) in LPG stove households (Table  3 and 
Figure  1). The exponentiated posterior mean PM2.5 concen-
trations from the exposure model fit were 392 μg/m3 and 
185 μg/m3 for the improved biomass and LPG stove groups, 

respectively (Table  4, Figure  3B, and eTable 10; http://links.
lww.com/EE/A109).

Exposure-response model—Bhaktapur

The estimated exposure-response curve for the Bhaktapur study 
is plotted in Figure 4A and all parameter estimates are reported 
in eAppendix 4 and eTable 11 (http://links.lww.com/EE/A109). 
The estimated relative odds of ALRI doubles from 50 μg/m3 to 
100 μg/m3, before the curve flattens out for higher concentra-
tions. This difference corresponds to subjects in the gas, kero-
sene and biomass stove groups relative to those in the electricity 
group. Below 50 μg/m3, the estimated odds are lower but there 
is considerable uncertainty such that a flat exposure-response 
curve cannot be ruled out for that range (Figure 4A).

For the sensitivity analyses using alternative exposure values, 
the exposure-response curves are plotted in Figures 4B and C 
and eFigure 4 (http://links.lww.com/EE/A109). The curve esti-
mated using the direct observations (Figure 4C) spans the larg-
est range but has large uncertainty at the highest and lowest 
concentrations due to the small numbers of values far from the 
center of the data. The curve using exposures from sensitivity 
model 1 (Figure  4B) has a limited exposure range because it 
effectively uses only the stove group mean exposures (eTable 
8; http://links.lww.com/EE/A109). The sensitivity analysis using 
the modeled values with less shrinkage (eFigure 3; http://links.
lww.com/EE/A109) yielded an estimated exposure-response 
curve that is similar to that of the primary analysis. Figure 4D 
shows the estimated exposure-response curve from the model 
that restricts the curve to be nondecreasing. At lower concentra-
tions, this curve resembles the primary curve (Figure 4A), but it 
does not plateau at higher concentrations.

Exposure-response model—Sarlahi studies

In Sarlahi phase I, there were 571 and 212 ALRI cases among 
the traditional and improved biomass stove groups, respectively, 
yielding unadjusted rates of 28.6 and 10.1 cases per 100 per-
son-years. However, these differences are impacted by strong 
temporal trends in ALRI incidence (eFigure 4; http://links.lww.
com/EE/A109) that must be accounted for due to the stepped-
wedge design.10 In the exposure-response model, there was little 
evidence of an exposure-response relationship (Figure 5A).

Sarlahi phase II had a limited number of ALRI cases, 24 and 
20 in the biomass and LPG stove groups, respectively. This cor-
responds to rates of 5.60 and 4.62 cases per 100 person-years 
and an intervention effect of a 14% reduction in ALRI incidence 
(RR = 0.86; 95% CI = 0.47, 1.56). But the limited amount of 
information yields no evidence of an exposure-response rela-
tionship (Figure 5B).

Full parameter estimates for the phase I and phase II mod-
els are reported in eTables 12 and 13 (http://links.lww.com/EE/
A109), respectively.

Table 3.

Summary statistics of the household PM2.5 measurements (μg/m3) in each study, by primary stove type (Bhaktapur) and assigned 
stove type (Sarlahi studies)

Study Stove type N Geometric mean Minimum Q25 Median Q75 Maximum Mean SD

Bhaktapur Biomass 218 381.7 63.1 177.7 349.6 787.5 7,979 656.5 923.8
Kerosene 187 117.2 30.9 73.0 99.8 178.0 1,442 168.6 207.1
Gas 238 72.0 18.7 45.6 63.4 97.0 1,007 100.6 129.6
Electricity 181 55.2 11.7 33.9 53.0 79.6 775 79.9 103.3

Sarlahi phase I Traditional biomass 3,075 1,003 40 608 1,082 1,766 20,842 1,384 1,271
Improved biomass 2,836 626 9 350 652 1,166 19,410 937 1,113

Sarlahi phase II Improved biomass 659 558 9 299 618 1,104 10,642 884 975
Gas 661 264 10 128 268 594 4,115 442 513

Q25 indicates 25th percentile; Q75, 75th percentile.

Table 4.

Posterior mean (95% credible interval) for the parameters repre-
senting the average PM2.5 concentrations by stove type ( hhg)

Stove group Modeling scale (natural log) Original scale (μg/m3)

Bhaktapur
 Biomass 5.96 (5.85, 6.08) 388 (346, 435)
 Kerosene 4.78 (4.66, 4.90) 119 (106, 134)
 Gas 4.28 (4.18, 4.39) 72 (65, 81)
 Electricity 4.01 (3.89, 4.13) 55 (49, 62)
Sarlahi phase I
 Traditional biomass 7.03 (6.87, 7.19) 1,134 (960, 1,326)
 Improved biomass 6.35 (6.22, 6.49) 571 (501, 657)
Sarlahi phase II
 Improved biomass 5.97 (5.73, 6.22) 392 (308, 503)
 LPG 5.22 (4.99, 5.47) 185 (147, 237)

Values are presented on the modeling scale (natural-log transformed) and back transformed to the 
original scale (μg/m3), which represents a geometric mean.
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Exposure-response model: three-study results

Figure 6 shows the estimated exposure-response curve from the 
model that combines all three studies and the corresponding 

parameter estimates are provided in eTable 14 (http://links.lww.
com/EE/A109). The overall shape is similar to the Bhaktapur 
study curve (Figure 4A), but the inclusion of the Sarlahi studies 

Figure 2. Modeled PM2.5 concentrations for the Bhaktapur study. Results from (A) the primary exposure concentration model, (B) the sensitivity analysis with 
small household random effects, and (C) the sensitivity analysis with prior distributions favoring larger household random effects.

Figure 3. Modeled PM2.5 concentrations for the Sarlahi studies. (A) Phase I and (B) Phase II.
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extends the horizontal axis to 2,200 μg/m3. eTable 15 (http://
links.lww.com/EE/A109) provides sets of odds ratios for differ-
ent exposure combinations and the publicly available R package 
“PMerc” (www.github.com/jpkeller/PMerc) provides a tool for 
calculating the odds ratio from the curve in Figure 6 between any 
user-specific concentrations. At 150 μg/m3, the estimated odds of 
ALRI are more than three-times those at 50 μg/m3 (OR = 3.39; 
95% credible interval = 1.89, 6.10). The estimated exposure-re-
sponse relationship plateaus for concentrations above about 150 
μg/m3 and then drops at the highest concentrations where there 
is less data. This curve is consistent with the lack of evidence for 
an exposure-response relationship in the Sarlahi study models 
since those studies only included PM2.5 concentrations of approx-
imately 120 μg/m3 and higher.

When forcing the exposure-response curve to be nondecreas-
ing, we obtain the curve shown in Figure 7. This follows the 
same basic trend as the unrestricted curve at low exposure lev-
els but continues to increase at higher exposure concentrations. 
However, the uncertainty around this curve is consistent with 
an increase in risk at low levels, followed by constant risk for 
concentrations above 150 μg/m3.

Discussion
We have presented exposure concentration and exposure-out-
come models that provide a flexible framework for combining 
highly variable data from multiple studies to estimate a common 
exposure-response curve. These models allow for irregularly 
collected exposure measurements and outcome ascertainment. 

The spline-based approach to estimating the exposure-response 
curve avoids restrictive assumptions required for a parametric 
curve and allows for varying uncertainty across the range of 
exposure values. The framework can easily accommodate differ-
ent approaches to defining long-term exposures (e.g., including 
the time trend or modifying the averaging period) for different 
applications.

In our analysis that combined data from three studies, we 
found evidence of a tripling in risk of ALRI among children 
exposed to long-term PM2.5 concentrations of 50 μg/m3 com-
pared with 150 μg/m3. Above 150 μg/m3, there was little evi-
dence of higher risk at higher PM2.5 levels. Below 50 μg/m3, 
there was evidence suggestive of lower risk, but a large amount 
of uncertainty precludes strong conclusions for that exposure 
range using the data available in this analysis. Compared with 
the IER curve of Burnett et al,23 the curve estimated here covers 
a wider range of HAP concentrations but does not provide as 
much information at the lowest concentrations. The Burnett et 
al23 curve showed a similar increase in risk between 50 and 150 
μg/m3 but did not show the plateau in risk at higher levels that 
is a key feature of the estimated curve in Figure 6.

For studies that seek to reduce health burdens associated with 
household PM2.5, these results suggest that considerable reduc-
tions in PM2.5 concentration need to be achieved to have mea-
surable impacts on health outcomes. In particular, the reduction 
in HAP achieved by the replacement of traditional biomass 
stoves with improved biomass stoves, like what was observed in 
Sarlahi phase I, is unlikely to be sufficient to achieve measurable 
health impacts.

Figure 4. Estimated exposure-response curves (posterior mean with pointwise 95% credible intervals) for the relationship between exposure to PM2.5 and ALRI 
in children from the Bhaktapur study. (A) the primary model using estimated long-term exposures with moderate household random effect, (B) sensitivity model 
1, which uses exposures with large amount of shrinkage to group means, (C) sensitivity model 3, which uses the direct observations as the exposure, and (D) 
sensitivity model 4, which contains a nondecreasing exposure-response curve.
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Although the combined analysis incorporated individual-level 
data from three different studies, the majority of the information 
about ALRI risk came from the Bhaktapur study. When analyzed 
individually, the Sarlahi studies both failed to show evidence of 
an exposure-response relationship. For phase I, this was likely 
a combination of an insufficient reduction in the exposure con-
centrations and a strong temporal trend in the overall ALRI inci-
dence rate (eFigure 4; http://links.lww.com/EE/A109). In Sarlahi 
phase II, the LPG stoves lead to lower PM2.5 concentrations, but 
there was still no discernable exposure-response relationship 
(Figure 5B) due to the overall low numbers of cases.

A major strength of the exposure-response model presented 
here is its ability to combine data from different time periods 
and contexts, including studies with different designs. The 
Bhaktapur study had a matched case-control design, which 

necessitated including age in the exposure-response model. In 
contrast, the Sarlahi studies were stepped-wedge and parallel 
randomized trials. The study-specific intercepts,  account for 
the differences in background ALRI rates in the randomized 
trials and for the fixed risk in the case-control design. In con-
trast to the multistudy PM mortality curve of Burnett et al,25 this 
work benefits from directly using all individual-level data in a 
single model and the flexibility of a spline basis.

By using flexible splines for the exposure-response curve, this 
model can estimate many different shapes for the relationship 
between exposure and disease risk. By not forcing a paramet-
ric form for the curve, we avoid a priori forcing structure into 
the exposure-response relationship. In plotting the exposure-re-
sponse curve, we have included the uncertainty from the model 
intercepts. This better reflects the total information about the 

Figure 5. Estimated exposure-response curve (posterior mean with pointwise 95% credible intervals) for the Sarlahi study. (A) Phase I and (B) Phase II.

Figure 6. Estimated exposure-response curve (posterior mean with pointwise 95% credible intervals) for the relationship between exposure to PM2.5 and ALRI 
in children, for all three studies combined.



Keller et al. • Environmental Epidemiology (2020) 6:e119 www.environmentalepidemiology.com

9

exposure-outcome relationship, which is impacted by both the 
spline coefficients and their correlation with the intercept terms. 
By plotting the curve with a fixed reference concentration in the 
middle of the observed values, rather than at the extreme low end, 
we avoid spurious interpretations of overly large effects impacted 
by large amounts of uncertainty at the edges of the data.

The exposure model presented here provides several advan-
tages over using observed concentrations directly in analyses of 
HAP and health. First, the model provides estimates of exposure 
for times and settings that might not have been observed, which 
can be important when only a limited number of measurements 
are possible. Second, the shrinkage towards the group mean 
reduces error in using highly variable single-day measurements 
to represent a long-term average. The Bhaktapur exposure-re-
sponse curve estimated using the measurements directly showed 
large amount of uncertainty and nonmonotonic behavior, par-
ticularly at the extremes of the data range.

A limitation of the analyses presented here is the limited 
amount of covariate adjustment included. For all three stud-
ies, we adjusted only for child age and sex, which were the 
only variables available for this pooled analysis. In particular, 
socioeconomic status may be a confounding factor and ideally 
would be adjusted for in these models. We note, however, that 
the results obtained for the Bhaktapur study in this minimally 
adjusted analysis were consistent with the results obtained by 
Bates et al,24 who explored adjustment for many additional fac-
tors. An additional limitation of the spline-based approach we 
use is that when forcing monotonicity, it is possible for the curve 
to plateau before increasing again at higher levels. We see this 
in Figure  7, although the uncertainty at those concentrations 
remains consistent with a flat curve. If desired, this behavior 
could be mitigated through modification or elimination of the 
basis functions (eFigure 1; http://links.lww.com/EE/A109) that 
span the highest concentrations.

The modeling framework we have presented can flexibly 
include multiple studies for estimating a pooled exposure-re-
sponse curve and estimating long-term exposures. Future 
applications to cookstove intervention studies can incorporate 
more than just the three studies presented here to advance our 
understanding of the relationship between HAP exposures and 
adverse health outcomes. This information can then be used to 
target future interventions to reduce ALRI risk.
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