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Abstract

Fast excitatory neurotransmission in the mammalian central nervous system is mainly mediated by ionotropic glutamate
receptors of the AMPA subtype (AMPARs). AMPARs are protein complexes of the pore-lining a-subunits GluA1-4 and
auxiliary b-subunits modulating their trafficking and gating. By a proteomic approach, two homologues of the cargo
exporter cornichon, CNIH-2 and CNIH-3, have recently been identified as constituents of native AMPARs in mammalian
brain. In heterologous reconstitution experiments, CNIH-2 promotes surface expression of GluAs and modulates their
biophysical properties. However, its relevance in native AMPAR physiology remains controversial. Here, we have studied the
role of CNIH-2 in GluA processing both in heterologous cells and primary rat neurons. Our data demonstrate that CNIH-2
serves an evolutionarily conserved role as a cargo exporter from the endoplasmic reticulum (ER). CNIH-2 cycles continuously
between ER and Golgi complex to pick up cargo protein in the ER and then to mediate its preferential export in a coat
protein complex (COP) II dependent manner. Interaction with GluA subunits breaks with this ancestral role of CNIH-2
confined to the early secretory pathway. While still taking advantage of being exported preferentially from the ER, GluAs
recruit CNIH-2 to the cell surface. Thus, mammalian AMPARs commandeer CNIH-2 for use as a bona fide auxiliary subunit
that is able to modify receptor signaling.
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Introduction

In the mammalian CNS, fast excitatory neurotransmission is

mainly mediated by ionotropic glutamate receptors of the AMPA

subtype (AMPARs). They conduct cation currents under condi-

tions of basal neuronal activity and determine largely the strength

of excitatory glutamatergic synapses. Changes in synaptic AMPAR

density and their gating properties are centrally involved in forms

of synaptic plasticity [1–3].

AMPARs form as heterotetramers of the four pore-lining a-

subunits GluA1–4, which are differentially expressed in the

mammalian brain. Alternative splicing and RNA editing further

enhance their diversity with respect to trafficking and biophysical

properties [4–12]. The GluA subunits co-assemble with transmem-

brane AMPAR regulatory proteins (TARPs) that modulate both the

subcellular distribution and the biophysical properties of native

AMPAR complexes [13–16]. Stargazin (c-2), the prototypical TARP,

enhances surface expression of AMPARs, their synaptic targeting and

recycling by interaction with the postsynaptic scaffolding protein PSD-

95 [17–19]. Moreover, TARPs increase charge transfer through

individual AMPARs as they slow channel deactivation and

desensitization and reduce current rectification by polyamines [20,21].

Recent proteomic approaches identified further auxiliary

subunits: the cornichon homologues CNIH-2 and CNIH-3, as

well as the Cystine-Knot AMPAR Modulating Protein CKAMP44

[22,23]. CKAMP44 displays a very distinct pattern of expression

in the dentate gyrus of the hippocampus, while the two cornichon

isoforms are expressed throughout the brain and are associated

with the majority of AMPARs. Both auxiliary subunits affect the

gating properties of the GluA subunits: CKAMP44 delays

recovery of the receptors from desensitization, CNIH-2/3 slow

deactivation and desensitization kinetics. However, whereas

CKAMP44 has been implicated in hippocampal short-term

plasticity, a physiological role of CNIH-2/3 remains controversial.

The product of the cornichon gene was originally identified as

being required for correct growth factor signaling during oogenesis

[24]. Follow-up studies in drosophila, chicken and transfected

culture cells identified cornichon and its orthologues as endoplas-

mic reticulum (ER) cargo exporters for members of the

transforming growth factor a (TGFa) family [25–27]. In

agreement with these studies, Shi and co-workers have recently

suggested that CNIH-2 may exert a chaperone-like function

facilitating the surface transport of AMPARs; the physiological

relevance of the CNIH-2-mediated effects on receptor gating was

questioned, as the authors failed to detect CNIH-2 on the cell

surface of neurons [28]. In contrast, Kato et al. using an elegant

biophysical approach together with immunocytochemistry dem-

onstrated that CNIH-2 co-assembles into postsynaptic AMPAR
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complexes and modulates channel gating, pharmacology and

association of GluA and TARP subunits [16,29].

In the present study, we have picked up this debate and

investigated the role of CNIH-2 in AMPAR processing in both

heterologous and primary cells. Employing cell biological and

electrophysiological techniques, we demonstrate that interaction

with AMPARs has converted the cargo exporter CNIH-2 usually

cycling in the early secretory pathway into a surface membrane

protein that is able to modify native AMPAR signaling.

Results

CNIH-2 increases functional surface expression of GluAs
Sparked by our initial observation that co-expression of CNIH-

2 enlarges the surface population of GluAs [22], we sought to

characterize this effect in more detail. First, the amount of surface

GluA1o protein was quantified in the presence and absence of

CNIH-2 expression using both an extracellular epitope tagging

approach and surface membrane biotinylation. In the first

approach, a haemagglutinin epitope, inserted into the extracellular

N-terminal domain of GluA1o, was immunostained in HeLa cells

without membrane permeabilization. As shown in Figure 1A, co-

expression of CNIH-2 increased the steady-state amount of

GluA1o protein on the cell surface by a factor of 13.661.0

(n = 24; p,0.01). This effect was specific for GluA, as surface

expression of the non-interacting potassium channel Kir2.1 was

not affected by co-expression of CNIH-2 (data not shown). For the

second experimental approach, all surface membrane proteins of

HeLa cells expressing GluA1o in the presence or absence of

CNIH-2 were biotinylated, affinity-purified by streptavidin-coated

beads, and finally target proteins were detected and quantified by

immunoblot analysis. Figure 1B shows a representative Western

blot revealing a significant increase in GluA1o surface protein

upon co-expression of CNIH-2. Intriguingly, also the total amount

of GluA1o increased in CNIH-2 co-expressing cells.

Next we tested whether the CNIH-2-mediated increase in GluA

surface protein observed in heterologous expression systems is also

true for native AMPARs in neurons. CNIH-2 was over-expressed

in CA1 pyramidal neurons of organotypic hippocampal slice

cultures and functional AMPAR surface expression was evaluated

by quantifying glutamate-evoked currents in somatic outside-out

patches in the presence of the desensitization blocker trichlorme-

thiazide. Compared to sham-infected control neurons

(0.9660.12 nA; n = 14), CNIH-2 over-expression doubled current

amplitudes (2.1260.25 nA; n = 11; p,0.0001) (Fig. 1C). These

results demonstrate that CNIH-2 promotes functional surface

expression of AMPARs in both heterologous cells and primary

neurons most likely due to a gain in the amount of surface protein.

In addition, AMPAR currents could increase by CNIH-2-

mediated modulation of their biophysical properties, i. e. an

increase in single channel conductance [28].

Subcellular distribution of CNIH-2
To understand how CNIH-2 increased the surface population

of AMPARs, we analyzed its subcellular distribution upon

heterologous expression in HeLa cells and over-expression in

dissociated hippocampal neurons and glial cells. Both in HeLa

cells and hippocampal neurons (DIV 17), exogenously expressed

CNIH-2 accumulated in a perinuclear compartment (Fig. 2A,

upper and middle panel), while it exhibited a more punctate

peripheral distribution in glial cells (Fig. 2A, lower panel). The

compartment, in which CNIH-2 concentrated, could be identified

as the Golgi complex by co-localization with the cis- or trans-Golgi

marker proteins GM130 or galactosyltransferase (GalTase),

respectively. In addition, incubation with the fungal toxin

Brefeldin A (10 mg/ml, 30 min), which fuses Golgi membranes

with those of the ER, resulted in a reversible redistribution of

CNIH-2 into the ER (data not shown). With higher expression

levels, we also observed CNIH-2 immunoreactivity that was

homogenously distributed throughout the cells in a network-like

pattern, most likely resembling the ER.

While so-called Golgi-resident proteins like galactosyltransferase

show highest dwell times within the Golgi complex, they are in fact

known to cycle within the early secretory pathway between ER

and Golgi compartments [30,31]. Microtubule depolymerization

by nocodazole disrupts such cycling and induces the formation of

multiple satellite Golgi stacks in close proximity to ER exit sites

[30]. Figure 2B illustrates that in HeLa cells heterologously

expressed CNIH-2 behaves like galactosyltransferase as it co-

distributes into satellite Golgi stacks upon nocodazole treatment

(10 mM, 4 hrs). Thus, exogenously expressed CNIH-2 localizes

predominantly to the Golgi complex and behaves similar to other

Golgi-resident proteins that cycle continuously between ER and

Golgi complex.

CNIH-2 promotes ER export of GluAs
Cornichon and its orthologues have previously been described

as cargo transporters, exporting soluble growth factors of the

epidermal growth factor (EGF) family from the ER [25–27]. Based

on our finding that exogenously expressed CNIH-2 cycles between

ER and Golgi, we next addressed the question whether CNIH-2

might also serve as an ER cargo exporter for AMPA receptors. For

this purpose, we used a heterologous expression system as the

molecular mechanisms of selective ER export are conserved in all

eukaryotic cells from yeast to mammalian cells including neurons

[32–35]. Moreover, heterologous cells can be transfected at much

higher rates than neurons allowing us to manipulate ER export of

proteins and consecutively quantify their average surface expres-

sion in a representative number of cells. In opossum kidney (OK)

cells stably expressing CNIH-2, ER export was blocked by

transfection with a dominant-negative mutant of the small Ras-like

GTPase Sar1 (Sar1 H79G) [36]. This constitutively active mutant

of Sar1 prevents un-coating of transport vesicles, blocking ER

export by inhibiting recycling of COPII components [37]. In OK

cells expressing mutant Sar1 H79G, CNIH-2 was retained in the

ER, while in neighboring non-transfected cells expressing

endogenous wildtype Sar1, the accumulation of CNIH-2 in the

Golgi remained unchanged (Fig. 3A). Thus, CNIH-2 is selectively

exported from the ER in a COPII-dependent manner.

We then asked whether selective ER export of CNIH-2 is a

prerequisite for increasing surface expression of GluAs. GluA1o

and CNIH-2 were co-expressed in HeLa cells with either wildtype

Sar1 or the H79G mutant and surface expression was quantified

using the extracellular epitope tagging approach. As shown in

Figure 3B, CNIH-2 increased the surface expression of GluA1o by

a factor of 1.760.1 (n = 12; p,0.001) in the presence of wildtype

Sar1, while this increase was effectively prevented in cells co-

expressing Sar1 H79G (1.060.04; n = 12; p = 0.732). Surface

expression of GluA1o alone was not affected by co-expression of

Sar1 H79G (1.0160.07; n = 9, p = 0.234; data not shown). For

reasons of cell toxicity brought about by the Sar1 mutant, data had

to be acquired 16 hrs post transfection leading to significantly

lower overall expression of GluA1o than observed in previous

experiments (Fig. 1). Within the time frame of 16 hrs, we did

neither observe changes in cell morphology nor a reduction in

GluA1 total protein expression. As the amount of surface protein is

not only determined by the rate of anterograde transport, but also

by the rate of removal from the plasma membrane, we probed a

AMPARs Recruit CNIH-2 as an Auxiliary Subunit
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possible role for CNIH-2 in GluA endocytosis. Blocking of

clathrin-dependent endocytosis via expression of a dominant-

negative mutant of dynamin-1 (K44A; [38]) increased GluA1o

surface expression by a factor of 2.3 (n = 6; p,0.01) in the absence

of CNIH-2 and by a factor of 2 (n = 6; p,0.001) in the presence of

CNIH-2 (data not shown). However, the CNIH-2-mediated

relative increase in GluA1o surface expression was not affected

by inhibition of endocytosis (Fig. 3C).

Taken together, these results clearly support the idea that

CNIH-2 promotes the anterograde transport of GluAs by acting as

an ER cargo exporter rather than a mere folding assistant in the

ER.

CNIH-2 affects glycosylation of surface GluA
GluAs are N-glycosylated at several consensus sites within their

extracellular domains [39]. The degree of complexity of this

posttranslational modification, as reflected by differential resis-

tance against glycosidase digestion, is often used as an indicator of

protein maturation during transport along the secretory pathway.

Here, we analyzed the effect of CNIH-2 co-expression on the

glycosylation pattern of GluA2 instead of GluA1, as the extent of

N-glycosylation of GluA2 was more prominent in HeLa cells than

the one of GluA1.

As shown in Figure 4A, co-expression of CNIH-2 reduced the

apparent molecular weight of surface GluA2i isolated by surface

biotinylation. To investigate whether the shift in mass was due to

differences in glycosylation, we tested surface GluA2 receptors

assembled in the absence or presence of CNIH-2 for their

sensitivities to treatment with endoglycosidase H (Endo H) and

PNGase F. While Endo H selectively cleaves high-mannose

oligosaccharides, PNGase F removes all glycosylations [40]. As

shown in Figure 4B, surface GluA2 receptors formed upon co-

expression with CNIH-2 ran at smaller apparent MW and

retained sensitivity to Endo H, while the surface population of

homomeric GluA2 was only sensitive to treatment by PNGase F.

This suggested that in HeLa cells CNIH-2 promotes export of

GluA2 protein with an immature glycosylation pattern.

CNIH-2-mediated trafficking of GluAs is isoform-specific
Several studies have demonstrated that ER export of GluAs

critically depends on isoform and flip/flop splice variant [9,41,42].

We therefore addressed the question whether the increase in GluA

surface population by CNIH-2 was similarly affected by using the

extracellular epitope tagging approach. As shown in Figure 5A,

the ability of GluA1 and GluA2 subunits to reach the cell surface

of HeLa cells varied markedly with GluA2i being the subunit that

Figure 1. CNIH-2 increases surface expression of AMPARs. A Quantification of GluA1o surface expression levels by extracellular epitope
tagging in HeLa cells expressing GluA1o alone (CTRL) or co-expressing GluA1o and CNIH-2 (CNIH-2). Representative micrographs show an increase in
extracellularly HA-tagged GluA1o on the cell surface of HeLa cells when CNIH-2 is co-expressed, visualized by anti-HA immunocytochemistry in non-
permeabilized cells. Histogram data are mean surface expression levels 6 SEM normalized to CTRL. Asterisk marks a significant difference from CTRL
(p,0.01, unpaired Student’s t-test; n = 24 for CTRL and CNIH-2, respectively). B Surface biotinylation of HeLa cells expressing GluA1o (CTRL) or co-
expressing GluA1o and CNIH-2 (CNIH-2) (n = 6). Note that CNIH-2 co-expression increases both total and surface AMPAR levels. T = total, S = surface,
I = internal. Protein load for S is concentrated 10fold. Depletion of the ER-resident lectin calnexin in S serves as a control for specificity of surface
membrane biotinylation. C (Top) Representative current traces from somatic outside-out patches evoked by 0.5 mM glutamate (+250 mM TCM to
block receptor desensitization) in sham-infected control and CNIH-2 over-expressing CA1 pyramidal neurons of organotypic hippocampal slice
cultures DIV 7–10. (Bottom) Quantification of steady-state currents. Data are mean 6 SEM. Asterisk marks a significant difference from control
(p,0.0001, unpaired Student’s t-test; n = 14 and n = 11 for CTRL and CNIH-2, respectively).
doi:10.1371/journal.pone.0030681.g001
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was expressed most and GluA1o the one being expressed least on

the cell surface in the absence of CNIH-2. In the presence of

CNIH-2, the increase in surface expression of indicated GluA

subunits was exactly opposite (Fig. 5B). It was largest for the flop

variant of GluA1 (GluA1o; 13.661.0; n = 24) and smallest for the

flip isoform of GluA2 (GluA2i; 1.460.1; n = 12). GluA1i and

GluA2o showed intermediate increases in surface expression when

co-expressed with CNIH-2 (3.260.2 (n = 8) and 2.260.1 (n = 12),

respectively). These data demonstrate that CNIH-2 can at least

partially compensate for splice form-dependent differences in the

ER export rates of GluA isoforms.

Interaction with AMPARs converts CNIH-2 into a surface
membrane protein

CNIH-2 has been shown to considerably modify the gating

properties of heterologously expressed AMPARs - an observation

rather unexpected for a cycling cargo exporter as it implies

association of CNIH-2 with GluAs at the plasma membrane

[16,22,28]. We, therefore, investigated surface localization of

CNIH-2 in both heterologous cells and hippocampal neurons.

Surface biotinylation revealed that heterologously expressed

CNIH-2 could only be found on the cell surface when GluA

subunits were co-expressed (Fig. 6A). In the absence of GluA

subunits, even high expression levels of CNIH-2 were not sufficient

to drive detectable amounts of CNIH-2 to the plasma membrane.

Thus, only upon interaction with AMPARs, CNIH-2 leaves the

ER-to-Golgi cycle and is rendered a surface membrane protein. In

line with this result, both endogenous and exogenously over-

expressed CNIH-2 was detected on the cell surface of dissociated

hippocampal neurons, which express endogenous GluAs (Fig. 6B).

The observation of CNIH-2 protein on the cell surface of

primary neurons was further corroborated by functional record-

ings using somatic outside-out patches from dissociated hippo-

campal neurons that were virally transduced with CNIH-2. As

Figure 2. Subcellular localization of exogenously expressed
CNIH-2. A Representative confocal images of HeLa cells, dissociated
hippocampal neurons and glial cells over-expressing CNIH-2. Note the
perinuclear accumulation of CNIH-2, which co-localizes with the Golgi
markers GalTase-GFP and GM130. B CNIH-2 behaves similar to other
Golgi-resident proteins cycling between Golgi and ER, as it co-
distributes with GalTase into peripheral Golgi remnants upon nocoda-
zole treatment (10 mM, 4 hrs).
doi:10.1371/journal.pone.0030681.g002

Figure 3. CNIH-2 facilitates ER export of AMPARs. A Represen-
tative confocal images of OK cells stably expressing CNIH-2. Co-
expression of dominant-negative Sar1 H79G prevents ER export of
CNIH-2 leading to its redistribution into the ER. B Quantification of
GluA1o surface expression levels by extracellular epitope tagging in the
presence of CNIH-2 and either wildtype (WT) Sar1 (white bar) or mutant
Sar1 H79G (grey bar). Data are mean increases in surface expression
levels by CNIH-2 6 SEM normalized to GluA1o+Sar1 WT or GluA1o+Sar1
H79G without CNIH-2, respectively. Asterisk marks a significant increase
in surface expression of GluA1o by co-expression of CNIH-2 (p,0.001,
unpaired Student’s t-test; n = 12 for both experimental groups). C
Quantification of GluA1o surface expression levels in the presence of
CNIH-2 and either wildtype dynamin-1 (white bar) or dominant-
negative dynamin-1 K44A (grey bar) inhibiting clathrin-dependent
endocytosis [38]. Data are mean increases in surface expression levels
by CNIH-2 6 SEM normalized as in B (n = 6 for both experimental
groups).
doi:10.1371/journal.pone.0030681.g003
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shown in Fig. 6C, the currents elicited by fast application of

10 mM glutamate displayed a significantly slower time course of

desensitization (tdesens = 11.161.9 ms; n = 8; p,0.01) than those

obtained from sham-infected neurons (tdesens = 7.563.4 ms;

n = 19). Deactivation kinetics were not affected by over-expression

of CNIH-2 (Fig. 6C).

Taken together, these data indicate that the interaction with

AMPARs has converted CNIH-2 from a sole cargo exporter

promoting anterograde trafficking into a surface membrane

protein modifying the signaling of the receptors.

Discussion

In the present study, we have investigated the role of the

mammalian cornichon homologue CNIH-2 in AMPAR process-

ing in both heterologous as well as primary cells. We show that

CNIH-2 interacts with GluAs early in the secretory pathway and

promotes COPII-dependent ER export of the receptors. As a

consequence, CNIH-2 increases the density of functional AM-

PARs on the cell surface of heterologous cell lines and neurons.

Moreover, our study demonstrates for the first time that

mammalian CNIH-2 escapes from its evolutionarily conserved

subcellular localization behavior that is cycling between the ER

and Golgi complex and reaches the cell surface when accompa-

nied by GluA subunits. Thus, AMPA receptors commandeer the

cargo exporter CNIH-2 for use as a bona fide auxiliary subunit,

which is then able to modify both AMPAR trafficking and gating.

The cargo exporter CNIH-2
The prototype of the cornichon protein family CNIH-1 and its

orthologues throughout the eukaryotic phylogenetic tree have

been described as ER cargo exporters for soluble growth factors of

the TGFa family and the integral membrane protein Axl2p [25–

27,43,44]. Our initial observation that co-expression of the

mammalian cornichon homologue CNIH-2 robustly increased

the functional AMPAR surface density suggested a functional role

very similar to the one of CNIH-1 and prompted us to

characterize its subcellular distribution in more detail.

Upon exogenous expression in HeLa cells and over-expression

in hippocampal neurons and glial cells, we find CNIH-2 to

accumulate in the early secretory pathway with a preferential

localization to the trans-Golgi complex. Just like other Golgi-

resident proteins, however, CNIH-2 is not literally Golgi-resident.

It cycles between the trans-Golgi and the ER compartments as

demonstrated by co-segregation with b-1,4-galactosyltransferase

into satellite Golgi stacks, when ER-to-Golgi transport was

disturbed [30,31]. The predominant probability of CNIH-2

localization to the Golgi complex depends on its selective export

from the ER initiated by COPII coat protein complex formation

Figure 4. CNIH-2 changes glycosylation of GluAs. A Western blot
analysis of total and surface populations of GluA2i extracted from HeLa
cells by surface biotinylation in the absence (CTRL) or presence of CNIH-
2 (CNIH-2) (n = 4). Extensive glycosylation of surface GluA2i during
maturation increases its apparent molecular weight. Note the smaller
increase upon co-expression of CNIH-2. B Enzymatic deglycosylation
analysis of GluA2i surface populations in the presence (+) or absence
(2) of CNIH-2. Surface GluA2i remained either untreated (C) or was
incubated with either endoglycosidase H (H) or PNGase F (F). Note that
upon CNIH-2 co-expression, the GluA2i surface population remains
sensitive to endoglycosidase H (n = 2).
doi:10.1371/journal.pone.0030681.g004

Figure 5. Surface trafficking of GluAs by CNIH-2 is splicing-dependent. A Quantification of GluA surface expression levels by extracellular
epitope tagging in HeLa cells expressing the indicated GluA subunits. Data are mean 6 SEM normalized to GluA1o (GluA1o: n = 24; GluA1i: n = 9;
GluA2o: n = 12; GluA2i: n = 12). B Increase in GluA surface expression mediated by CNIH-2 in HeLa cells. Data are mean 6 SEM normalized to surface
expression of respective GluA subunits without CNIH-2 (GluA1o: n = 24; GluA1i: n = 8; GluA2o: n = 12; GluA2i: n = 12).
doi:10.1371/journal.pone.0030681.g005
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[45], as interference with COPII function by co-expression of a

dominant-negative Sar1 mutant redistributed CNIH-2 into the

ER. Simultaneously, the increase in surface expression of co-

expressed GluA receptors was abolished showing that COPII-

dependent trafficking of CNIH-2 is also a prerequisite for its

function in cargo transport. Thus, our results are fully consistent

with a role for mammalian CNIH-2 as an ER cargo exporter: it

could take up cargo proteins within the ER, mediate their

preferential export by interacting with the COPII coat, then might

release their cargo in the Golgi complex and finally cycle back to

the ER to take up new cargo. Additional evidence for the

hypothesis that mammalian CNIH-2 increases the surface density

of GluA receptors by facilitating their ER export is provided by the

observation that CNIH-2 co-expression did not only increase the

amount of GluA on the cell surface but also in total cell lysates.

Protein homeostasis in the ER can be modeled as a balance

between three interacting pathways: ER-assisted protein folding,

export of proteins from the ER and their ER-associated

degradation [46]. Thus, if ER export of GluA is enhanced by

CNIH-2, its ER-associated degradation will be less engaged

explaining the reported increase in total amount of GluA protein.

Finally, we could exclude the retrograde transport of GluA

subunits being affected by CNIH-2, as dominant-negative

inhibition of clathrin-dependent endocytosis of GluA did not

preclude the increase in surface expression by CNIH-2 co-

expression.

The cargo exporter becomes an auxiliary AMPAR subunit
Using surface biotinylation assays in HeLa cells, we demonstrate

that CNIH-2 can escape from the cycle within the early secretory

pathway between ER and Golgi compartments. If assembled with

GluA subunits, CNIH-2 is transported to the cell surface. In line

with these observations from heterologous expression systems,

both endogenous and over-expressed CNIH-2 is readily detected

in the plasma membrane of dissociated hippocampal neurons that

express native AMPARs (Fig. 6). Moreover, electrophysiological

recordings indicate that over-expressed CNIH-2 is able to modify

AMPAR gating in these neurons. Thus, we propose that the

interaction with GluA subunits let CNIH-2 evolve from an ER

cargo exporter into a bona fide auxiliary subunit of AMPARs.

Unlike other cargo, GluA subunits are not disengaged from

CNIH-2 during early anterograde traffic, but stay together for

surface transport. This might be a novel property in the

evolutionary diversification of the mammalian cornichon family

of proteins. In this respect, it is noteworthy that CNIH-1, which

has the highest sequence homology to the cornichon orthologues

in yeast and drosophila, was not found as a constituent of native

AMPARs [22].

CNIH-1 has been assigned not simply a facilitating but a

regulatory role on ER export of TGF-a, crucially depending on its

expression level [27]. Immature TGF-a was prevented from

anterograde traffic by high expression levels of CNIH-1. The

authors explained their finding by preferential interaction of

Figure 6. CNIH-2 is rendered a surface membrane protein by assembly with AMPARs. A Total (T), surface (S) and internal (I) populations of
CNIH-2 in HeLa cells expressing either CNIH-2 alone (CTRL) or together with GluA1o or GluA2i, respectively. S is concentrated 10fold. Note that in the
absence of GluAs, CNIH-2 cannot be detected in the surface fraction. However, it is robustly observed in the plasma membrane when co-expressed
with GluAs (n = 4). B Total (T), surface (S) and internal (I) populations of CNIH-2 in dissociated hippocampal neurons (DIV 17) transduced with CNIH-2
(+) or GFP (2). S is concentrated 10fold. Both endogenous (2) and over-expressed (+) CNIH-2 can be detected on the cell surface (n = 5). C (Top)
Representative current traces recorded in somatic outside-out patches excised from dissociated hippocampal neurons (DIV 16–21) over-expressing
either GFP (CTRL, black) or CNIH-2 (CNIH-2, red) upon 1 ms (left panel) and 100 ms applications (right panel) of 10 mM glutamate. (Bottom)
Quantification of deactivation and desensitization kinetics. Data are given as mean 6 SD. Asterisk denotes a significant difference from control
(p,0.01, unpaired Student’s t-test; deactivation: n = 10 and 8 for CTRL and CNIH-2, respectively; desensitization: n = 19 and 8 for CTRL and CNIH-2,
respectively).
doi:10.1371/journal.pone.0030681.g006
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CNIH-1 with the less glycosylated forms of TGF-a, while implying

a definite localization of CNIH-1 in the early secretory pathway.

Intriguingly, we also found less complex glycosylation of GluA2i

when co-expressed with CNIH-2. However, those immature

receptors were not retained in the ER as might be expected, but

reached the plasma membrane efficiently. We did also not observe

any negative effect on GluA surface expression when increasing

the cDNA transfection ratio of CNIH-2:GluA2i (data not shown).

Hence, we interpret our results on GluA maturation by sterical

hindrance that is imposed on putative N-glycosylation sites in the

glutamate receptor by its interaction with the extracellular loop of

CNIH-2 [16]. Whether this is of physiological relevance for

AMPAR stability on the cell surface or for their biophysical

properties, e.g. their ligand affinity [47], needs to be investigated.

Conclusion
In summary, our cell biological experiments demonstrate that

the mammalian cornichon homologue CNIH-2 has an evolution-

arily preserved function as a cargo exporter promoting COPII-

dependent export from the ER. Interaction with AMPARs,

however, significantly extends the physiological role of CNIH-2:

while still exploiting CNIH-2 as a cargo exporter for adjustment of

imbalances in splice form-dependent trafficking, AMPARs wrest

CNIH-2 from its cycle between ER and Golgi complex and

integrate them into their functional complexes on the cell surface.

Thus, they commandeer CNIH-2 for use as a bona fide auxiliary

subunit.

Materials and Methods

Molecular biology
Genebank accession numbers of cDNAs used are:

NM_001025132 (CNIH-2), M38060.1 (GluA1i), NM_031608.1

(GluA1o), NM_017261.2 (GluA2i), NP_001077280.1 (GluA2o). All

cDNAs were verified by sequencing. Dynamin-1 K44A [38] was a

gift from S. L. Schmid, b-1,4-galactosyltransferase fused to GFP-

A206K (GalTase-GFP; [30]) was generously provided by J.

Lippincott-Schwartz.

Cell culture
HeLa cells (DSMZ) were grown in DMEM (Invitrogen)

supplemented with 10% fetal calf serum (Biochrom), 1% HEPES

(Invitrogen) and 1% penicillin/streptomycin (Invitrogen) at 37uC
and 5% CO2. At ,80% confluence, cells were transfected with the

respective cDNAs using Fugene HD Transfection Reagent

(Roche, Promega) following the supplier’s directions. Opossum

kidney cells (American Type Culture Collection) were grown in

DMEM-F12 (Invitrogen) supplemented with 10% fetal calf serum

(Biochrom) and 1% penicillin/streptomycin (Invitrogen). At

,80% confluence, cells were transfected with the respective

cDNAs using Lipofectamine 2000 (Invitrogen) following the

supplier’s directions. Brefeldin A (BFA; Sigma) and nocodazole

(Sigma) were applied at 10 mg/ml and 10 mM, respectively.

Primary cultures of hippocampal neurons were obtained from

rats at embryonic age E 18. The entire hippocampus was isolated

and dissociated with trypsin. Cells were plated in a 24-well plate at

a density of 50.000 cells/well on poly-D-lysine coated coverslips.

Cells were grown in glia-conditioned Neurobasal medium

supplemented with 2% B27, 1% Na-pyruvate, 1% glutamax, 1%

penicillin/streptomycin, 1% Fungizone (all Invitrogen) at 37uC
and 5% CO2. At days 12–14 in vitro (DIV 12–14), cells were

transduced with CNIH-2 by high-titer lentiviral preparations or at

DIV 15–20 by semliki forest viral particles.

Standard procedures were used to prepare organotypic

hippocampal slice cultures from rats at postnatal age P 7–9 [48].

In brief, animals were decapitated, hippocampi were rapidly

isolated, and transversally chopped in 400 mm thick slices using a

McIllwain tissue chopper. Isolation was done in dissection medium

containing 100 ml MEM (EBSS, 25 mM HEPES) (Invitrogen),

1 ml penicillin/streptomycin, 1 ml 1 M Tris buffer, pH 7.2. After

30 min recovery at 4uC slices were placed onto Millicell cell

culture inserts (Millipore). Medium contained 100 ml MEM, 1 ml

200 mM L-glutamine, 50 ml HBSS and 50 ml horse serum.

Immunocytochemistry
Cells were fixed in 4% paraformaldehyde in phosphate-buffered

saline (PBS) for 10 min at 4uC and pre-treated with 10% normal

goat serum (NGS, Calbiochem) in PBS with 0.04% Triton X-100

(PBS-T) for 1 hour at room temperature (RT) to prevent

unspecific antibody-binding. Then cells were incubated with the

respective primary antibodies in 2% NGS in PBS-T for 1 hour at

RT (rabbit anti-CNIH-2, 1:250, [26]; mouse anti-GM130, 1:100,

BD Transduction Laboratories; chicken anti-MAP2, 1:10.000,

Abcam). Immunoreactivity was finally visualized by secondary

anti-mouse, anti-rabbit and anti-chicken antibodies conjugated to

cy-2, cy-3, or cy-5 (1:250 in 10% NGS in PBS-T, Dianova).

Imaging
Cells were imaged with a confocal laser scanning microscope

(LSM510, Zeiss) using the following excitation wavelengths and

filter settings. EGFP, cy-2: Ar-laser (488 nm), BP505–530 nm; cy-

3: HeNe-laser (543 nm), LP560 nm; cy-5: HeNe-laser (633 nm),

BP690–750 nm.

Quantification of surface expression of proteins
Extracellular epitope tagging was performed as described

previously [22]. All steps were performed at RT and in the

absence of detergents. Briefly, transfected HeLa cells grown to

confluency in 34 mm dishes were fixed in 4% paraformaldehyde

in PBS for 20 min, pre-treated with 10% NGS in PBS for 1 hour

and incubated with a primary mouse anti-HA-antibody (1:100,

Santa Cruz) followed by goat anti-mouse secondary antibody

conjugated to horseradish peroxidase (1:5000 in 10% NGS in

PBS, Santa Cruz). Immunoreactivity was detected by enzymatic

turnover of SuperSignal ELISA Femto Maximum Sensitivity

Substrate (Thermo Scientific) and quantified in a Glomax 20/20 n

luminometry system (Promega). Test and control dishes were

always processed in parallel to correct for differences in staining

efficiency between experiments. Data are given as mean 6 SEM,

expressed as relative surface expression levels of the respective

control. Statistically significant differences were assessed using the

unpaired Student’s t-test. For surface biotinylation, living conflu-

ent HeLa cells or living dissociated hippocampal neurons were

washed three times with ice-cold PBS and biotinylated for 10 min

on ice using membrane impermeable EZ-link Sulfo-NHS-SS-

biotin (HeLa: 0.1 mg/ml in PBS, neurons: 0.15 mg/ml in PBS;

Thermo Scientific). To quench the remaining unbound biotin,

cells were washed two times with ice-cold PBS supplemented with

50 mM NH4Cl and once with ice-cold PBS alone. Cells were

harvested, lysed by sonification, and crude membrane fractions

were isolated by ultracentrifugation at 125,0006 g for 20 min.

Membrane protein complexes were solubilized in ComplexioLyte

buffer 91 (LOGOPHARM GmbH) for 30 min at 4uC followed by

ultracentrifugation (15 min at 125,0006 g). Solubilisates were

incubated with streptavidin agarose resin (Thermo Scientific) for

1 hour at 4uC to separate biotinylated proteins. After washing with

PBS, biotinylated proteins were eluted by incubation in Laemmli
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buffer for 10 min at 37uC. Protein samples were finally resolved by

SDS-PAGE and identified by Western blotting.

Deglycosylation assay
Solubilized membrane or surface protein fractions were

denatured in 50 mM phosphate buffer, supplemented with 1%

SDS and 0.5 M b-mercaptoethanol and afterwards incubated with

endoglycosidase H or PNGase F (both Roche) in the presence of

0.5% NP-40 and protease inhibitors overnight at 37uC. Protein

samples were finally resolved by SDS-PAGE and Western blotting.

SDS-PAGE and Western Blotting
Protein samples were run on 12% SDS-PAGE. After electro-

blotting on PVDF membrane (Millipore), Western analysis was

performed using rabbit anti-CNIH-2 (1:1000; [26]), mouse anti-

calnexin (1:1000, Abcam), rabbit anti-GluA1 (1:1000, Millipore),

mouse anti-GluA2 (1:1000, Millipore) followed by goat anti-mouse

or anti-rabbit secondary antibodies conjugated to horseradish

peroxidase (1:15000, Santa Cruz). Blots were finally developed

with ECL plus (GE Healthcare).

Preparation of viral particles
CNIH-2:IRES:GFP was cloned into pSCA1 [49]. Semliki forest

viral particles were produced by standard procedures [48]. CNIH-

2 was cloned into the HIV-derived lentiviral vector CMV-GFP

[50]. High-tighter lentivirus preparations were produced by

standard procedures [51]. Used virus solutions had a titer between

107 and 109.

Electrophysiology
Recordings from organotypic hippocampal slice cultures: Slices

were used between DIV 7 and DIV 10. Somatic outside-out

patches from CA1 pyramidal cells were performed at RT and

clamped at 270 mV using a Multiclamp 700B amplifier. Signals

were low-pass filtered at 2.5 kHz and sampled at 10 kHz with a

DigidData 1322. AMPAR currents were evoked by local

application of 0.5 mM glutamate for 2 s in the presence of

250 mM trichlormethiazide to block receptor desensitization.

Recordings were made within 24 hours after infection, using 2–

3 MV glass electrodes filled with an internal solution consisting of

the following (in mM): 115 CsMeSO3, 20 CsCl, 10 HEPES, 2.5

MgCl2, 4 Na2-ATP, 0.4 Na-GTP, 10 Na-phosphocreatine, 0.6

EGTA, and 0.1 spermine, pH 7.2. External perfusion medium

consisted of (in mM): 119 NaCl, 2.5 KCl, 2.5 CaCl2, 1.3 MgSO4,

2.7 MgCl2, 1 NaH2PO4, 26.2 NaHCO3 and 11 glucose, saturated

with 95% O2 and 5% CO2. Data were analyzed with Clampfit

10.0 and Prism 5.0.

Recordings from dissociated hippocampal neurons: Electro-

physiological recordings from outside-out patches excised from

cultured hippocampal neurons (DIV 16–21) were performed at

RT and a holding potential of 2120 mV. Recordings were made

within 24 hours after infection with an Axopatch 200B amplifier,

low-pass filtered at 10 kHz, and sampled at 50–100 kHz. Pipettes

made from quartzglass had resistances of 1–2 MV when filled with

intracellular solution (in mM): 135 CsF, 33 CsOH, 2 MgCl2, 1

CaCl2 and 11 EGTA, pH 7.4. Extracellular solution applied to

outside-out patches was composed as follows (in mM): 5.8 KCl,

144 NaCl, 0.9 MgCl2, 1.3 CaCl2, 0.7 NaH2PO4, 5.6 D-Glucose,

and 10 HEPES, pH 7.4. Rapid application/removal of glutamate

(10 mM dissolved in extracellular solution) was performed with a

piezo-controlled fast application system with a double-barrel

application pipette that enables solution exchanges within less

than 100 ms (20–80%, measured by switching the open tip of the

patch pipettes between normal and 10fold-diluted extracellular

solution). Deactivation and desensitization of AMPARs were

characterized by time constants derived from bi-exponential fits to

the decay phase of the respective currents; weighted tau (tw) was

calculated as tw = (tf * af)+(ts * as), where af and as are the relative

amplitudes of the fast (tf) and slow (ts) exponential components.

Quality of the fit result was judged from the x2 deviations. Curve

fitting and further data analysis were done with Igor Pro 4.05A

Carbon.
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