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Good quality of crops has always been the most concerning aspect for breeders and
consumers. However, crop quality is a complex trait affected by both the genetic systems
and environmental factors, thus, it is difficult to improve through traditional breeding
strategies. Recently, the CRISPR/Cas9 genome editing system, enabling efficiently
targeted modification, has revolutionized the field of quality improvement in most
crops. In this review, we briefly review the various genome editing ability of the
CRISPR/Cas9 system, such as gene knockout, knock-in or replacement, base editing,
prime editing, and gene expression regulation. In addition, we highlight the advances in
crop quality improvement applying the CRISPR/Cas9 system in four main aspects:
macronutrients, micronutrients, anti-nutritional factors and others. Finally, the potential
challenges and future perspectives of genome editing in crop quality improvement is also
discussed.
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1 INTRODUCTION

Quality is the most important economic character of crops, determining products’ application value
and market competitiveness. With the continuous improvement of people’s living standards, higher
requirements are put forward for crop quality. Cultivating more nutritious, more delicious and
healthier crop varieties is of great significance to improving people’s living standards and the
sustainable development of social health. However, the pace of crop quality improvement has been
relatively slow in the world due to the over-emphasis on demand for crop yield. The authors think
that three main reasons are hindering the pace of crop quality improvement:1) The genetic control
network of quality traits is extremely complex, and the available gene resources are still not abundant;
2) Crop quality traits are susceptible to environmental factors, such as fertilizer, climate and
biological stress; 3) Traditional breeding methods (cross-breeding, mutation breeding and transgenic
breeding) are time-consuming, random and introduce foreign genes.

A new generation of genome editing techniques, represented by regularly clustered interspaced
short palindromic repeats/CRISPR-associated endonuclease 9 (CRISPR/Cas 9), is a revolutionary
technology developed in the field of life sciences in recent years, which can produce predictable and
heritable changes in specific locations of plant genomes. It includes deletion, insertion and
replacement of base sequences to achieve precise improvement of plant traits. At the same time,
compared with the traditional transgenic technology, the insertion site of the CRISPR/Cas9
expression vector is different from that of the gene-editing site. After the endogenous gene
editing, the exogenous inserted plasmid can be removed by separating chromosomes during the
generation of offspring gametes, thus eliminating the need to introduce exogenous genes. There is no
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transgenic controversy, and the application prospect is very
broad. Providing a new turning point for the agricultural
technology revolution.

At present, there are more and more cases of crop quality
improvement using the CRISPR/Cas9 system. Here, we briefly
review the various genome editing ability of the CRISPR/Cas9
system, summarized the recent progress in CRISPR/Cas9-
mediated crop quality improvement, and further discussed
potential challenges and future perspectives of genome editing
in crop quality improvement.

2 ESTABLISHMENT OF THE CRISPR/CAS9
SYSTEM

The CRISPR/Cas system is widely present in bacterial and
archaebacterial genomes and is part of the adaptive immune
system of microorganisms (Mojica et al., 2005; Grissa et al., 2007;
Jinek et al., 2012). It consists of two core components: the
clustered regularly interspaced short palindromic repeats
(CRISPR) and Cas protein. The CRISPR constitutes 20–50 bp
palindromic repeat sequence (Repeat), non-repeating 20–58 bp
spacer sequence (Spacer) and AT-rich leading sequences
(Leader). Cas protein acting as DNA endonuclease helps
bacteria acquire new space sequences, essential for the
bacterial immune system. According to the number and
function of Cas proteins, CRISPR/Cas system has been divided
into two classes and five types (I–V) (Makarova et al., 2011;
Makarova and Koonin, 2015). Type I, III and IV belong to class I
requiring multiple Cas proteins to form complex to work
cooperatively. At the same time, type II and V belongs to class
II interfering with target genes using only one single Cas protein.
The immune process of the CRISPR/Cas system can be divided
into three stages in bacteria (Makarova et al., 2011): 1) When
foreign DNA infects bacteria, short DNA homologous fragments
from protospacer sequences on bacteriophages or plasmids are
integrated into the downstream of CRISPR leading sequence to
form new space sequences; 2) CRISPR is induced to be
transcribed into long RNA precursors (pre-crRNA), which are
then truncated into short mature crRNAs, then the crRNAs
precisely bind to trans-activating RNAs (tracrRNA) to fuses
into tracrRNA/crRNA complexes; 3) The complexes regulate
and guide Cas protein to precisely destroy the foreign DNA
sequence, and produce DNA double-strand breaks (DSBs).

With a better understanding of the bacterial CRISPR/Cas
immune system and its operational principle, scientists began
to modify and apply this system to plant and animal genome
editing (Cho et al., 2013; Cong et al., 2013; Feng et al., 2013; Mali
et al., 2013; Ma et al., 2015; Yin et al., 2017). CRISPR/Cas9 system
is the only class II type system reported for gene editing (Hsu
et al., 2014). By artificial design, the tracrRNA/crRNA complex
was simplified to a short guide RNA (sgRNA), which contains a
∼20 nt fragment complemented to a specific site of target genes
and followed by a protospacer adjacent motif (PAM) in the target
genes of interest. Under the guidance of sgRNA, DSBs are created
by Cas9 nuclease at ∼3 bp upstream of the PAM motif and then
repaired through the error-prone non-homologous end-joining

(NHEJ) or the error-free homology-directed repair (HDR)
pathways. The NHEJ repaired way usually results in gene
knockout to lose protein function (Liu et al., 2019).
Alternatively, the HDR pathway can be triggered when an
exogenous DNA repair template is provided, resulting in the
introduction of the repair template into a target genomic region
(Chapman et al., 2012).

3 CRISPR/CAS9 SYSTEM IN PLANT
FUNCTIONAL GENOMICS RESEARCH

At present, the applications of the CRISPR/Cas9 system in plant
genome editing mainly focus on gene function research and
genetic improvement of crops. It has shown various genome-
editing abilities, such as gene knockout, knock-in or replacement,
base editing, prime editing, and expression regulation (Figure 1).

3.1 Gene Knockout
Gene knockout is the most extensive application of the CRISPR/
Cas9 system in plant functional genome research, which can be
divided into single and multiplex gene knockout (Figure 1A).
Under the guidance of sgRNA, the Cas9 nuclease cleaves the
target DNA segment in the exon region of the gene to cause DSBs.
The preferred NHEJ repair pathway is prone to produce
insertions/deletions of one or several bases near the cutting
site (Feng et al., 2014; Ma et al., 2015). When the number of
inserted or missing bases is not multiple 3, the frameshift
mutation will occur, and the target protein cannot be correctly
encoded. It is worth noting that small insertions or deletions in
edited cell lines may produce abnormal transcripts or proteins,
causing unexpected effects that complicate functional analysis
(Tuladhar et al., 2019). Therefore, many studies tend to produce
two DSBs within a distance to delete larger genomic fragments to
make true null alleles of coding and non-coding genes by NHEJ or
microhomology-mediated end joining (MMEJ) repair (Owens
et al., 2019; Tan et al., 2020).

Based on the high efficiency of CRISPR/Cas9 system-mediated
gene knockout, multiplex gene knockout technology provided
great convenience for functional analyzing the gene families,
elucidating the regulation of multiple genes for complex
agronomic traits, and analyzing the signal pathway in plants.
Multiple sgRNAs with different targets for different genes can be
designed and assembled into an expression cassette for
transformation (Figure 1A). For example, our group
constructed a CRISPR/Cas9 vector for targeting eight
agronomic genes simultaneously based on the isocaudamer-
based method. All editing genes have high mutation
efficiencies in the T0 generation, and both heterozygous and
homozygous genotypes at eight genes were obtained (Wang
et al., 2015; Shen et al., 2017). In wheat, using the
polycistronic tRNA strategy, Xia’s group established an
efficient CRISPR-Cas9 multiplex system which can edit
multiplex genes simultaneously. They succeeded in targeting
mutagenesis at up to 15 genomic loci, restoring transgenic free
plants and pyramiding favorable alleles in an elite wheat variety
within 1 year (Luo et al., 2021). In the case of homologous genes
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or gene families, one sgRNA targeting the conserved sequence
can also achieve good results (Li A. et al., 2018; Sánchez-León
et al., 2018).

3.2 Gene Knock-In or Replacement
During plant domestication, some alleles are consistent and fixed
within elite germplasm, such as the wheat Q allele (Zhang et al.,
2011), rice qSH1 (Konishi et al., 2006), maize teosinte branched 1
(Doebley, 2004) and tomato fw2.2 (Frary et al., 2000).
Importantly, there are still many beneficial and favourable
alleles in some local germplasm or related species. The
replacement of endogenous genes or DNA fragments by the
HDR pathway plays a useful role in crop breeding and trait
improvement. HDR-mediated editing is a powerful genome-
precise editing tool that enables targeted gene replacement and
direct introduction of elite alleles from local or related species into
commercial varieties within a few generations without any
linkage drag (Figure 1B). At present, precise knock-in or
replacement of gene fragments has been achieved in many
plants (Svitashev et al., 2015; Luo et al., 2016; Sun et al., 2016;
Begemann et al., 2017; Shi et al., 2017;Wang et al., 2017; Li J. et al.,
2018; Li S. et al., 2018; Hummel et al., 2018; Li et al., 2019).
However, the genes of previous reported HDR cases are often
resistant genes, which rely on selection pressure, or visible makers
to enrich the HDR events. The editing efficiency is very low.
There are four main challenges in performing HDR in plants: 1)
HDR is in constant competition with NHEJ for the repair of
DSBs, but the latter is the main pathway of DSB repair (Puchta
2005; Fauser et al., 2014; Shi et al., 2017; Fan et al., 2021); 2) HDR
is only active during the late S and G2 phases, while the NHEJ is

active during the overall cell cycle except for mitosis (Heyer et al.,
2010; Karanam et al., 2012; Truong et al., 2013; Orthwein et al.,
2014); 3) The donor repair template (DRT) is limited to deliver
into the nucleus/cells for HDR; 4) The timing of DSBs induction
and DRT transmission in target genes is difficult to coordinate
(Gil-Humanes et al., 2017; Wang et al., 2017; Li and Xia, 2020).

To make editing more efficient, various strategies have been
attempted in plants. There are mainly the following aspects: 1)
Increasing the amount of DRT by using the bombardment deliver
method or geminivirus replicons (GVR) (Baltes et al., 2014;
Svitashev et al., 2015; Sun et al., 2016; Dong et al., 2020); 2)
Improving the Cas9 frequency by using the specific promotors,
such as egg cell- or early embryo-specific gene promoter; 3)
Coordinating the delivery of Cas protein, two single-guide RNAs
(sgRNAs) and DRT by using the all-in-one vector which includes
all components (Peng et al., 2019). Despite these efforts, further
improving HDR frequency and delivering sufficient DRT into
plant cells remains very challenging.

3.3 Base Editing
Single-nucleotide point (SNP) mutations are the genetic basis for
sharping phenotypic diversity among individuals. Base editing
refers to the transformation of a single base at a specific position
in a target DNA fragment. This technology does not depend on
the generation of DNA DSBs so as to avoid both the randomness
of NHEJ and the low efficiency of HDR. Base editors are created
by fusing an engineered base modification enzyme, such as
deaminase, with the catalytically dead version of the
Streptococcus pyogenes Cas9 (dCas9) or nickase version of
Cas9 (nCas9) (D10A) and currently include cytosine base

FIGURE 1 | The applications of the CRISPR/Cas9 system in plant genome editing. (A) CRISPR/Cas9-mediated gene knockout can achieve InDels, fragment
deletion, and multiplex gene knockout. (B) CRISPR/Cas9-mediated gene knock-in and replacement mediated by HDR can achieve gene stacking and gene insertion or
replacement to produce new traits in breeding. (C) CRISPR/Cas9-mediated base editing for crop trait improvement including CBE-mediated C-to-T base-editing
strategy and ABE-mediated A-to-G base-editing strategy. (D)CRISPR/Cas9-mediated prime editing for crop trait improvement. (E)CRISPR/Cas9-mediated gene
expression regulation by editing the cis-regulatory elements and upstream open reading frames (uORFs).
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editors (CBEs) and adenine base editors (ABEs) (Figure 1C).
CBEs use a naturally occurring cytidine deaminase to convert
target cytosines to uracil, which catalyzes C•G to T•A conversion
(Komor et al., 2016). Drawing inspiration from CBEs, adenosine
deaminase would result in inosine, which is read as guanine by
replication and transcription machinery. Therefore, ABEs would
correct A•T to G•Cmutation theoretically (Gaudelli et al., 2017).
The establishment of CBEs and ABEs system enables single base
editing to realize four types of base conversion and has been
successfully used in crop plants (Bharat et al., 2020). Recently,
some progress has been made in the study of crop gene-directed
evolution using base editing technology. For example, Li et al.
(2020b) developed saturated targeted endogenous mutagenesis
editors (STEMES) fusing cytidine deaminase with adenosine
deaminase to achieve C: G > T: A and A: T > G: C
substitutions simultaneously, which facilitate directed evolution
of plant genes by generating de novomutations. A series of highly
efficient BE toolkits were developed to achieve C-to-T mutation
almost without PAM restriction, and the A-to-G mutation scope
was largely expanded in rice (Zhang et al., 2021). Kuang et al.
(2020) presented a base-editor-mediated gene evolution method
(BEMGE), which is a powerful tool that can accurately identify
functional genetic variations and develop specific traits in crop
breeding programs soon.

3.4 Prime Editing
Although the base editing technique has been able to achieve
precise C•G–T•A and A•T–G•C base conversion, it is difficult to
achieve precise transversion between pyrimidine and purine
bases and precise insertion or deletion of small fragments. In
2019, David R. Liu’s lab developed a revolutionary new tool for
precise gene editing, the prime editor (PE), which is a search-and-
replace genome-editing method and has realized all 12 kinds of
base substitutions, precise insertions of up to 44 bp, deletions of
up to 80 bp and combinations of these edits in human cells
(Anzalone et al., 2019). PE is composed of three components:
nCas9(H840A), reverse transcriptase (RT), and prime editing
guide RNA (pegRNA). Compared with sgRNA of CRISPR/Cas9
system, pegRNA has an additional RNA sequence at the 3′ end,
including prime binding site (PBS) that pairs with the nCas9
(H840A)-nicked ssDNA strand sequence and initiates RT, and
reverse transcriptase template (RT template) that contains the
genetic information for the desired mutations. Under the
guidance of pegRNA, nCas9(H840A) cleaves and releases the
non-target DNA strand to hybridize to the PBS in the pegRNA.
Reverse transcriptase synthesizes new DNA using the RT
template, and the newly synthesized DNA containing the
target editing is introduced into the genome to replace the
original DNA sequence through DNA repair (Figure 1D). At
present, this technology has been established and optimized in
plants (Lin et al., 2020). However, the editing efficiency of PE is
very low and varies greatly at different loci, which cannot meet
the needs of basic research and practical application (Li J. et al.,
2020; Gao et al., 2021). Scientists have optimized it from different
angles to improve the editing efficiency of PE in plants. For
example, Lin et al. (2020) optimized prime editors for plants
through codon, promoter, and editing-condition optimization.

They successfully obtained the regenerated prime-edited rice
plants at frequencies of up to 21.8%. Lin et al. (2021)
evaluated the melting temperature of PBS and showed that
30°C leads to maximal efficiency. They also presented a dual-
pegRNA approach, which uses two pegRNAs in trans encoding
the same edits, substantially enhances PE efficiency. A web
application called PlantPegDesigner was provided to simplify
the design of optimal pegRNAs or pegRNA pairs.

3.5 Expression Regulation
Although the most frequent application of CRISPR/Cas9 is to
create null alleles by targeting the coding sequences, loss-of-
function mutations in coding regions may result in pleiotropic or
deleterious effects (Li et al., 2020a; Hendelman et al., 2021).
Numerous researches in both animals and plants have
revealed that many genetic changes driving evolution,
domestication, and breeding occurred in cis-regulatory regions,
including upstream, introns, and downstream regions of genes
(Wang et al., 2014; Ding et al., 2021). Compared with coding
region mutations, cis-regulated region editing is more likely to
induce small phenotypic changes by modifying the level, timing,
or space of gene expression, which benefit crop improvement.

To date, the alteration of gene expression in plants genome
editing has focused mainly on editing or directly deleting the cis-
regulatory elements (CRE) in the promoter region of the target
genes (Figure 1E). For example, Rodríguez-Leal et al. (2017)
edited the promoters of genes that control fruit size, inflorescence
branching, and plant architecture by using a multiplexed
CRISPR/Cas9 promoter targeting approach. This approach
obtained the artificial QTL variation and precisely regulated
fruit size and other important agronomic traits in tomatoes.
Hendelman et al. (2021) used a cis-regulatory editing system
to generate a comprehensive allelic series for tomato WUSCHEL
HOMEOBOX9 (WOX9), which plays a species-specific role in
embryo and inflorescence development. This research showed
that tomatoWOX9 has a pleiotropic function, which is regulated
by cis-sequence elements at different locations of the gene
promoter region. A similar strategy, Liu et al. (2021) achieved
quantitative variation of maize yield-related traits by making
weak promoter alleles of CLE genes associated with increased
meristem size through CRISPR-based promoter fine-tuning.

In many cases, many genes that regulate important traits
require a high rate of translation to achieve crop
improvement, rather than loss or reduction of function (Xu
et al., 2017; Reis et al., 2020). Upstream open reading frames
(uORFs) are important cis-regulatory elements in the 5′ leading
sequence of eukaryotic mRNAs, and usually inhibit the
translation initiation of downstream ORFs through ribosome
stalling (Zhang et al., 2020; Kurihara, 2020). Fine-tuning the
translation by regulating uORFs can effectively improve the
translation efficiency of target genes for the improvement of
crop traits (Figure 1E). For example, editing the uORF of LsGGP2
increased oxidative stress tolerance and the ascorbate content of
lettuce by ∼150% (Zhang et al., 2018). In Arabidopsis thaliana,
deleting the uORF of PHO1 increased shoot Pi content and
improved shoot growth under low external Pi supply (Reis
et al., 2020).
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TABLE 1 | List of research on crop quality improvement by using CRISPR/Cas9 system.

Traits Target traits Crop Target gene Type of
edit

References

Macronutrient improvement Starch Rice GBSSI Gene knockout Ma et al. (2015)
Zhang et al. (2017)
Fei et al. (2019)

GBSSI Expression regulation Huang L. et al. (2020)
Zeng et al. (2020b)

GBSSI Base editing Li H. et al. (2020)
Xu Y. et al. (2021)

Barley GBSSI Gene knockout Zhong et al. (2018)
Cassava GBSSI Gene knockout Bull et al. (2018)
Maize GBSSI Gene knockout Gao et al., 2020;

Dong et al. (2019)
Rice SBEIIb Gene knockout Sun et al. (2017)
Wheat SBEIIa Gene knockout Li et al. (2021)

Proteins Barley D-hordein Gene knockout Li Y. et al. (2020)
Wheat a-gliadin Gene knockout Sánchez-León et al. (2018)
Sorghum a-kafirins Gene knockout Li A. et al. (2018)
Soybean Gly m Bd 28 K Gene knockout Sugano et al. (2020)

Gly m Bd 30 K
Rice OsAAP6, OsAAP10 Gene knockout Wang et al. (2020)

Oils Rapeseed BnaA.FAD2.a Gene knockout Okuzaki et al. (2018)
Rapeseed BnaFAD2 Gene knockout Huang H. et al., 2020
Rapeseed BnTT8 Gene knockout Zhai et al., 2020
Camelina CsFAD2 Gene knockout Lee et al. (2021)
Soybean FAD2-1 Gene knockout Al Amin et al. (2019)
Soybean FAD2-2 Gene knockout Do et al. (2019)
Rice OsFAD2-1 Gene knockout Abe et al. (2018)

Micronutrient improvement Anthocyanins Rice Rc Gene knockout Zhu et al. (2019)
Tomato ANT1 Gene knock-in Čermak et al. (2015)
Tomato SlMYB12 Gene knockout Deng et al., 2018;

Yang T. et al. (2019)
Carrot DcMYB7 Gene knockout Xu et al. (2019)

Vitamins Rice SSU-crtI, ZmPsy Gene knock-in Dong et al. (2020)
Lettuce LsGGP2 Expression regulation Zhang et al. (2018)

γ-aminobutyric acid Tomato SlGAD2, SlGAD3 Gene knockout Nonaka et al. (2017)
Rice GAD3 Gene knockout Akama et al. (2020)
Tomato GABA-TP1, GABA-TP2,

GABA-TP3, CAT9, SSADH.
Gene knockout Li R. et al. (2018)

Elimination of Anti-nutritional factors Phytic acid Rice OsPLDα1 Gene knockout Khan et al. (2019)
Rapeseed BnITPK Gene knockout Sashidhar et al. (2020)

Heavy metals Rice OsNramp5 Gene knockout Tang et al. (2017)
Rice OsHAK1 Gene knockout Nieves-Cordones et al. (2017)

Enzymatic browning Potato StPPO2 Gene knockout González et al. (2020)
Steroidal glycoalkaloids Potato St16DOX Gene knockout Nakayasu et al. (2018)
Acrylamide Wheat TaASN2 Gene knockout Raffan et al. (2021)

Other improvements Fragrant aromas Rice OsBADH2 Gene knockout Ashokkumar et al. (2020);
Hui et al. (2021)

Rice OsBADH2 Gene knockout Tang et al. (2021)
Maize BADH2 Gene knockout Wang et al. (2021)

Shelf-life Banana MaACO1 Gene knockout Hu et al. (2021)
Petunias PhAC 1 Gene knockout Xu et al. (2019)
Tomato RIN Gene knockout Ito et al. (2015)
Tomato Cnr Gene knockout Gao et al. (2019)
Tomato Nor Gene knockout Gao et al. (2019)
Tomato ALC Gene replacement Yu et al. (2017)
Tomato PL Gene knockout Wang D. et al. (2019)

Frontiers in Genome Editing | www.frontiersin.org January 2022 | Volume 3 | Article 8196875

Yang et al. CRISPR/Cas9 System for Crop Quality Improvement

https://www.frontiersin.org/journals/genome-editing
www.frontiersin.org
https://www.frontiersin.org/journals/genome-editing#articles


4 CRISPR/CAS9 SYSTEM FOR CROP
QUALITY IMPROVEMENT

A balanced, varied, and appropriate healthy diet ensures a
person’s needs for macronutrients and essential
micronutrients. It protects against undernutrition,
micronutrient deficiencies, and non-communicable diseases
such as obesity, diabetes, heart disease, stroke, and cancer.
This is the foundation of a good life. The edible part of crops
is mainly composed of macronutrients (starch, protein and oil)
and micronutrients (anthocyanins, vitamins, γ -aminobutyric
acid etc.). In the past 5 years, scientists have used CRISPR/
Cas9 technology to study the nutritional components of crops
and flavour and storage characteristics, and achieved great
success (Table 1).

4.1 Macronutrient Improvement
4.1.1 Starch
Starch, a high molecular carbohydrate, is a major component of
harvestable crop organs and a major energy source in the human
diet and an industrial feedstock. It widely exists in maize (Zea
Mays), rice (Oryza sativa), wheat (Triticum aestivum), barley
(Hordeum vulgare), potato (Solanum tuberosum), cassava
(Manihot Esculenta), and other starch crops. Starch consists of
amylopectin and amylose and is stored as semi-crystalline
granules in the chloroplasts of leaves and amyloplasts of
storage organs. Amylopectin has a dendritic structure, which
determines the crystallinity of starch granules. Amylose is a linear
glucose polymer, accounting for only about 20% of the granules.
Still, it strongly determines the physicochemical properties of
starch, such as stickiness, palatability, and digestibility during
cooking and processing (Jobling, 2004; Sonnewald and
Kossmann, 2013; Emmambux and Taylor, 2016). At present,
the genetic mechanism of starch has been well analyzed. With
glucose-1-phosphoric acid (Glc-1-P) as raw material, ADPG is
formed under the action of glucose pyrophosphorylase (AGPase).
Amylose is synthesized under the action of grain binding starch
synthase GBSSI; Amylopectin is synthesized by soluble starch
synthase (SSS), branching enzyme (SBE) and debranching
enzyme (DBE). At the molecular level, all the genes involved
in starch synthesis and regulation can affect starch quality.
Knocking out Wx (GBSSI) leads to the rapid reduction of
amylose, amylopectin content up to nearly 100% in starch
granules, referred to as waxy or glutinous starch. For example,
Ma et al. (2015), Zhang et al. (2017) and Fei et al. (2019)
successfully reduced the amylose content of the mutant to less
than 5% by knocking out the exon region of rice waxy geneWx to
obtain waxy rice. The same knockout strategy is also used for
barley and cassava (Bull et al., 2018; Zhong et al., 2018). Gao et al.
(2020) created waxy corn hybrids by deleting large segments of a
waxy allele using CRISPR–Cas9 in 12 elite inbred maize lines.
Field trials at 25 locations showed that CRISPR-waxy hybrids
were agronomically superior to introgressed hybrids. Specially,
this CRISPR-Cas9 waxy corn is considered unregulated by the
relevant regulations of APHIS and has been conducted a pre-
commercial launch in the Midwestern United States in 2019.
‘Sweet-waxy compound corn’ is now widely favoured for its

chewiness and sweetness. Dong et al. (2019) edited SH2 and
Wx and identified single or double mutations that can be used to
produce super-sweet, waxy or sweet and waxy compound corns
(SWCs) that can be used in specialty corn breeding. In addition to
occurring frameshift of Wx, scientists are trying to fine-tune AC
by manipulating Wx at expression, post-transcriptional, and
translational levels. Rice Wx variants including Wxlv, Wxa,
Wxb, Wxin, Wxmw, Wxop/hp, Wxmp, Wxmq, and wx determine
the eating and cooking quality (ECQ) of rice. Huang L. et al.
(2020) generated six novel Wx alleles by editing the region near
the TATA box of the Wxb promoter, which downregulated Wx
expression and fine-tuned grain AC. Zeng et al. (2020b) targeted
the 5′UTR intronic splicing site (5′UISS) of Wxa to alter the
intron-splicing efficiency and generate new quantitative trait
alleles. Li et al. (2020c) and Xu Y. et al. (2021) used the
CRISPR/Cas9-mediated base editing system to target regions
closed to the mentioned ‘soft rice’ allele responsible sites for
mild reduction of rice AC.

Foods with high amylose content and resistant starch (RS)
contribute to improving human health and reducing the risk of
serious noninfectious diseases, while cereal crops high in RS are
not widely available (Zhu et al., 2012). Researches showed that the
starch branching enzyme (SBE) gene controls amylopectin
synthesis, and the contents of amylose and resistant starch
(RS) would increase in SBE mutated crops (Shimada
et al.,2006). Sun et al. (2017) conducted targeted mutagenesis
of rice SBEIIb using CRISPR/Cas9 technology, and the AC and RS
contents were significantly increased to 25.0 and 9.8%,
respectively. Li et al. (2021) also conducted directed
mutagenesis of TaSBEIIa of winter wheat and spring wheat
varieties through CRISPR/Cas9, and obtained transgenic high-
straight wheat with improved starch composition, structure and
properties.

4.1.2 Proteins
Plant seed storage proteins (SSPs) are important sources of
human dietary protein, mainly from cereals and legumes.
According to the solubility-linked physical properties, SSPs are
classified as four fractions: water-soluble albumins, salt-soluble
globulins, alcohol-soluble prolamins, and alkaline-soluble
glutelins. The proportions of these four kinds of proteins in
different crop seeds are different. For example, glutelin is the most
abundant protein fraction in rice and comprises about 60–80% of
the total SSPs, while prolamin is the dominant one in maize,
wheat and barley (Yang Y. et al., 2019). Many studies have shown
that the level and proportion of protein fraction content greatly
impact crop quality. Manipulating seed storage protein content
by CRISPR/Cas9 gene editing is an effective way to regulate seed
nutritional value. In barley, D hordein is one of the storage
proteins in the grain, which has a negative effect on malting
quality. Li Y. et al. (2020) used CRISPR/Cas9 technology to edit
the D hordein gene in a spring barley cultivar and obtained two
mutated lines. Transcriptomic analysis and protein SDS-PAGE
showed that the transcription level of the D hordein gene and D
hordein content in the mutant was lower than that of the wild
type, which provided a basis for breeding high malt quality
varieties. In wheat, the α-gliadin family is the main protein
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group associated with celiac disease. This genetic autoimmune
disorder damages the small intestine and interferes with the
absorption of nutrients from food. The gliadin contains a 33-
amino acid polypeptide, called 33-mer, the main
immunodominant peptide in celiac patients. Sánchez-León
et al. (2018) targeted a conserved region adjacent to the
coding sequence for the 33-mer in the gliadin genes with two
sgRNAs and obtained low gluten hexaploid and durum wheat, of
which immunoreactivity was reduced by 85%. A similar knockout
strategy was carried out in sorghum. A single sgRNA was
designed to mutate conserved region encoding the α-kafirins
endoplasmic reticulum signal peptide. Edited plants’ grain
protein digestibility and lysine content significantly increased
(Li A. et al., 2018). In soybean, many allergens have been
identified, resulting in 5–8% of babies and 2% of adults being
allergic to soybean in the United States and Europe (Heppell et al.,
1987). Sugano et al. (2020) designed two sgRNAs simultaneously
site-directed mutate two genes encoding the major allergens Gly
m Bd 28 K and Gly m Bd 30 K in two Japanese soybean varieties
and successfully obtained Cas9-free plants with no Gly m Bd
28 Kor Gly m Bd 30 K protein. In rice, grain storage protein
seriously affects the quality of rice, especially the eating and
cooking quality (ECQ) (Yang et al., 2015; Yang et al., 2020).
Generally, the higher rice grain protein content (GPC) will lead to
the worse ECQ; thus, the cultivars with good ECQ always are
required to have relatively lower GPC, usually less than 7%.Wang
et al. (2020) used CRISPR/Cas9 system to knock outOsAAP6 and
OsAAP10 in three high-yielding japonica varieties and one
japonica line, respectively. The protein content of the mutants
was decreased, and the ECQ was increased significantly.

4.1.3 Oils
Seed oils are primarily used as edible oils, and their industrial
application has also been gradually increasing (Biermann et al.,
2011). The most seed oil contains high content of
polyunsaturated fatty acids (PUFAs) such as linoleic acid but
low content of monounsaturated acids (MUFAs) such as oleic
acid. Notably, PUFAs oil tends to oxidize, resulting in rancidity,
off-flavours, and short shelf-life. In contrast, high MUFAs oil is
10-fold higher auto-oxidizing stable than linoleic acid, which is
not only beneficial for lowering cholesterol and reducing systolic
blood pressure, but also preferred for industrial uses, for example
as biodiesel duels and biolubricants (O’Keefe et al., 1993; Davis
et al., 2008; Terés et al., 2008). Therefore, industry and food
products prefer to use high-oleic vegetable oil, and many studies
have begun to alter the fatty acid composition of oilseed crops
artificially. Fatty acid desaturase 2 (FAD2) catalyzes the
conversion of oleic acid to linoleic acid in plants, and many
studies reported that suppressing FAD2 gene expression can
develop the high-oleic oilseed crops (Okuley et al., 1994;
Sivaraman et al., 2004; Jung et al., 2011; Nguyen et al., 2013;
Chen et al., 2015; Lee et al., 2016; Lee et al., 2017; Wood et al.,
2018). Recently, scientists have done a lot of work to improve the
oil quality using CRISPR/Cas9 technology, mainly focusing on
some oil crops, such as rapeseed, soybean, camelina, etc. Okuzaki
et al. (2018) targeted the BnaA.FAD2.a (FAD2_Aa) in B. napus to
increase the oleic acid content. Huang H. et al. (2020) designed

two sgRNAs, one of which targets four copies of BnaFAD2. The
oleic acid content in seeds of mutant increased significantly, with
a maximum of more than 80% compared with wild type of
66.43%, and with a decrease in linoleic and linolenic acid
content. Compared with black-seeded rape, yellow-seeded B.
napus has the characteristics of the thinner seed coat, low
lignin and polyphenol content, high oil content and high
protein content, so it is widely accepted as a good-quality trait.
Zhai et al. (2020) targeted BnTT8, which controls flavonoid
accumulation in crops, to successfully obtain yellow-seeded
lines with elevated oil and protein content and altered fatty
acid (FA) composition using the CRISPR/Cas9 system. In
hexaploid Camelina sativa, Lee et al. (2021) used a single
guide RNA covering the common region of the three CsFAD2
homologs. When all three homologous genes were knocked out,
seed MUFA levels increased by nearly 80%, but with a stunted
bushy phenotype. However, transformants with two pairs of
CsFAD2 homologs mutated but the other pair with wild-type
heterozygous showed normal growth, and a seed MUFAs
production increased up to 60%. In soybean, Al Amin et al.
(2019) and Do et al. (2019) respectively mutated FAD2-1 and
FAD2-2 loci using the CRISPR/Cas9 system to increase the oleic
acid content in edited soybean plants. Besides oil crops, rice bran
oil (RBO) contains many valuable healthy constituents, including
oleic acid. In rice, three functional FAD2 genes were found, and
only OsFAD2-1 is the highest expressed in rice seeds. Abe et al.
(2018) disrupted the OsFAD2-1 gene by CRISPR/Cas9 system,
and the oleic acid content of homozygous knockout plants was
increased to more than twice that of wild type.

4.2 Micronutrient Improvement
4.2.1 Anthocyanins
Anthocyanins are water-soluble flavonoid compounds widely
distributed in plants and confer pigmentation to plants. They
are all recognized antioxidants with human health benefits, such
as reducing the risk of diabetes, obesity, cardiovascular disease
(CVD), and certain cancers (Wang and Stoner 2008; Tsuda 2012;
Vinayagam and Xu 2015; Wallace et al., 2016). Wild rice species
(Oryza rufipogon L.)are rich in proanthocyanidins and
anthocyanidins and show red pericarp, which is regulated by
two complementary genes Rc and Rd. Rc encodes a basic helix-
loop-helix (bHLH) transcription factor, and Rd encodes a
dihydroflavonol-4-reductase (DFR) protein (Sweeney et al.,
2006; Furukawa et al., 2007). At present, most cultivated rice
varieties produce white grain due to the frameshift mutation in
the exon of the Rc gene. Zhu et al. (2019) successfully reverted
frameshift mutation into in-frame mutations by using CRISPR/
Cas9-mediated method, restoring the function of Rc allele and
converting three elite white pericarp rice varieties into red ones
with high content of proanthocyanidins and anthocyanidins.
Čermák et al. (2015) inserted a 1938 bp donor template into
the promoter region of tomato ANT1 gene controlling
anthocyanin biosynthesis, resulting in overexpression and
ectopic accumulation of pigments in tomato tissues. In
addition, consumers in different regions have different fruit
colour preferences; scientists also use CRISPR/Cas9 technology
to regulate genes related to anthocyanin synthesis to achieve the

Frontiers in Genome Editing | www.frontiersin.org January 2022 | Volume 3 | Article 8196877

Yang et al. CRISPR/Cas9 System for Crop Quality Improvement

https://www.frontiersin.org/journals/genome-editing
www.frontiersin.org
https://www.frontiersin.org/journals/genome-editing#articles


effect of changing fruit colour. For example, European and the
American consumers prefer red fruit tomatoes, while pink fruit
tomatoes are more popular in Asian countries, especially in China
and Japan (Lin et al., 2014). However, most tomato breeding
materials are red fruit materials. Using the CRISPR/Cas9 system,
Li’s group accelerated the breeding process by disrupting the
SlMYB12 gene, a key determinant for flavonoid accumulation, of
a superior red tomato inbred line to produce tomato plants with
pink fruit (Deng et al., 2018; Yang T. et al., 2019). Xu et al. (2019)
knocked the DcMYB7, which activates the expression of its
DcbHLH3 partner, a structural gene in the anthocyanin
biosynthetic pathway, in a solid purple carrot using CRISPR/
Cas9 system resulted in carrots with yellow roots.

4.2.2 Vitamins
Vitamins are a small part of the organic compounds that are
needed in the human diet. We have known that vitamin
deficiency is directly linked to human disease. For example,
vitamin A deficiency causes visual problems, such as night
blindness and even blindness in severe deficiency. However,
as rice lack provitamin A (mainly β-carotene), the poor
populations in the developing countries of South and
Southeast Asia, where white rice is a staple food, cannot
meet vitamin A intake dependency criteria. Dong et al.
(2020) inserted a 5.2 Kb carotenoid biosynthesis cassette
consisting of the coding sequences of SSU-crtI and ZmPsy at
two genomic safe harbors in rice using CRISPR-Cas9
technology and successfully obtained marker-free rice plants
with high carotenoid content in seeds. Numerous
epidemiological studies have shown a positive association
between dietary or plasma levels of vitamin C content and
health benefits. The major source of vitamin C in the human
diet is ascorbic acid (ASA) from fruit and vegetables. Zhang
et al. (2018) targeted the uORF initiation codon region of
LsGGP2, a key enzyme in vitamin C biosynthesis in lettuce,
it not only increased the antioxidant stress ability of lettuce, but
also increased ascorbate content by ∼150%.

4.2.3 γ-aminobutyric Acid (GABA)
The γ-aminobutyric acid (GABA), a four-carbon nonprotein
amino acid widely presenting in plants, functions as an
inhibitory neurotransmitter in the central nervous system for
animals to alleviate hypertension ((Bachtiar et al., 2015). In
plants, GABA is first synthesized from its precursor glutamate
by glutamate decarboxylase (GAD), and then catabolized to
succinate by GABA transaminase (GABA-T) and succinic
semialdehyde dehydrogenase (SSADH) in a subsequent
reaction. Applying the CRISPR/Cas9 system to regulate the
related genes in the GABA synthesis pathway can rapidly
increase the GABA content plants and improve crops
nutritional quality. Previous reports indicated that GAD has a
C-terminal autoinhibitory domain that regulates enzymatic
function, and deletion of this domain increases GAD activity.
Nonaka et al. (2017) deleted the autoinhibitory domain of
SlGAD2 and SlGAD3, expressed during tomato fruit
development using the CRISPR/Cas9 system, and the
premature termination before the autoinhibitory domain

increased GABA accumulation by 7–15 fold. Similarly, Akama
et al. (2020) knocked the GAD3, which is predominantly
expressed in rice seeds and obtained the edited lines with
seven-fold higher levels of GABA. Li R. et al. (2018)
manipulated the GABA shunt in tomatoes by targeting five
key genes, namely GABA-TP1, GABA-TP2, GABA-TP3, CAT9
and SSADH. The accumulation of GABA in the leaves and fruits
of the edited lines was significantly increased, and the GABA
content in the leaves of quadruple mutants was 19-fold higher
than that of wild type.

4.3 Elimination of Anti-nutritional Factors
Anti-nutritional factors (ANFs) refer to substances in the feed
that adversely affect digestion, absorption and utilization of
nutrients and cause adverse physiological reactions in humans
and animals, such as phytic acid (PA) and heavy metal quinones,
steroidal glycoalkaloids, and free asparagine. The use of gene-
editing techniques to eliminate the ANFs in crops edible parts
could benefit human health.

4.3.1 Phytic Acid
PA acts as a major reservoir of phosphorus in seeds from cereals
to oilseeds but strongly chelates essential minerals in human and
monogastric animals, leading to so-called “hidden hunger.” The
lipid-dependent and lipid-independent pathways are two known
phytic acid biosynthesis pathways (Bhati et al., 2014; Kuo et al.,
2018). The lipid-dependent pathway involves the inositol lipid
phosphatidylinositol (PI), which produces phytic acid through a
continuous reaction processes. Khan et al. (2019) used the
CRISPR/Cas9 system to generate mutants of a phospholipase
D gene (OsPLDα1) to disrupt the production of phosphatidic acid
and reduce the phytic acid in rice seeds. Compared with the wild
type, the expression of key genes related to phytic acid
biosynthesis was changed and the phytic acid content was
significantly reduced in ospldα1 mutants. In Brassica napus. L.,
the key enzyme ITPK (inositol tetrakisphosphate kinase)
catalyzes the penultimate step for synthesising PA in the lipid-
independent pathways (Raboy, 2009). Knocking out three
functional paralogs of BnITPK resulted in low PA and high
free phosphorus using CRISPR-Cas9 system (Sashidhar et al.,
2020).

4.3.2 Heavy Metals
Heavy metals, which can be taken up by crops and transported to
their edible parts, is widely known to be harmful to health.
Cadmium (Cd) is a highly toxic heavy metal that causes
osteoporosis, kidney failure, cancer, and cardiovascular
diseases for humans (Bertin and Averbeck, 2006). Rice with
excessive cadmium is the main source of dietary cadmium
intake. Previous researches reported that the natural
resistance-associated macrophage proteins 5 (NRAMP5)
mediate the root uptake of Cd (Ishikawa et al., 2012; Sasaki
et al., 2012). Tang et al. (2017) designed two sequence-specific
single guide RNA (sgRNA) to target exon IX of OsNramp5 in two
rice cultivars. Hydroponic culture and Cd-contaminated paddy
field trials showed that Cd concentrations were dramatically
decreased in shoots and roots of osnramp5 mutants.
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As a result of the Fukushima nuclear accident, massive releases
of radioactive cesium (Cs) isotopes 134Cs (2-year half-life) and
137Cs (30-year half-life) are expected to have contaminated about
half of Japan’s soil (Yasunari et al., 2011). Cesium (Cs) is a group I
alkali metal with chemical properties similar to potassium (K).
Several cloned K+ transporters, like HAK/KUP/KT family, can
also transport Cs+ in the plants (Véry et al., 2014; Scherzer et al.,
2015). Nieves-Cordones et al. (2017) used the CRISPR-Cas
system to knock out the OsHAK1, resulting in a strong
reduction of radioactive cesium contents in mutated plants
when grown in Fukushima soil highly contaminated with 137Cs+.

4.3.3 Enzymatic Browning
Enzymatic browning refers to the process in which polyphenol
oxidases (PPOs) catalyze the formation of phenolic substances
into quinones in the presence of oxygen, resulting in the
formation of dark precipitate in fruits and vegetables and loss
of nutritional quality. A lower PPO activity in plants would
reduce the enzymatic browning phenotype. González et al.
(2020) induced StPPO2 gene mutations in tetraploid potato
using CRISPR/Cas9 system. Compared to the control,
mutations in the four alleles of the StPPO2 gene resulted in a
reduction of PPO activity by up to 69% and a 73% reduction in
enzymatic browning in tubers.

4.3.4 Steroidal Glycoalkaloids
Also, in potatoes, there are high levels of toxic compounds of
steroidal glycoalkaloids (SGAs), α-solanine and α-chaconine, in
the flowers and the tuber sprouts. Nakayasu et al. (2018) edited
St16DOX encoding a steroid 16α-hydroxylase in SGA
biosynthesis, to generate two SGA-free St16DOX-disrupted
potato hairy root lines.

4.3.5 Acrylamide
Acrylamide in food is a processing contaminant that forms from
free asparagine and potentially increases the risk of developing
cancer for humans. In wheat, Raffan et al. (2021) knocked out the
asparagine synthetase gene TaASN2 using four guide RNAs
targeting all three homologues of TaASN2. Compared with the
wild type, the concentration of free asparagine in seeds of the
plants with all six TaASN2 alleles edited was significantly
decreased, up to 90%.

4.4 Other Improvements
4.4.1 Fragrant Aromas
The fragrant aromas of dishes or staple food keep the mind at ease
and improve appetite. The most famous example is the aromatic
rice varieties basmati and jasmine rice, with a popcorn-like scent,
which are popular worldwide. 2-acetyl-1-pyrroline (2AP) is the
key flavour compound in rice aroma volatiles. Rice flavour is
mainly controlled by recessive genes OsBadh2/fgr (betaine
aldehyde dehydrogenase 2). It is reported that OsBadh2
converts γ-aminobutyraldehyde (GABald) to gamma-
aminobutyric acid (GABA), and the reduced or loss of
BADH2 activity promotes the GABald to be converted into
2AP (Bradbury et al., 2005). Comparative sequencing revealed
an 8bp deletion in the 7th exon of OsBadh2 in most fragrant rice

varieties, which resulted in the loss of the original function of
Badh2, thus producing fragrance in rice leaves and grains. Based
on it, Ashokkumar et al. (2020) employed the CRISPR/Cas9 tool
to target the 7th exon of OsBADH2 and created novel alleles to
introduce aromas into an elite non-aromatic rice variety.
Similary, Hui et al. (2021) targeted the 7th exon of OsBADH2
in no-fragrant japonica and indica varieties and provided
important genetic resources for grain aroma improvement in
three-line hybrid rice. Tang et al. (2021) first used CRISPR/Cas9
to delete the exon nucleotide at the exon-intron junction of
OsBADH2, which induces the exon skipping of OsBADH2,
resulting in high 2AP production and grain fragrance. As rice,
naturally fragrant germplasm has been observed in other plants,
such as soybean (Juwattanasomran et al., 2011), cucumber
(Yundaeng et al., 2015), coconut (Vongvanrungruang et al.,
2016), sorghum (Yundaeng et al., 2013), and mung bean
(Attar et al., 2017). The 2AP accumulation all results from a
loss of function, a weak allele, or lower expression of BADH2.
However, no such germplasm was found in maize. Wang et al.
(2021) generated the word’s first aromatic maize by simultaneous
genome editing of the two BADH2 genes.

4.4.2 Long Shelf-Life
Crop shelf life is a key quality trait in the modern supply chain,
especially for fruit and ornamental crops. The short shelf life
greatly limits crops’ transportation, marketing, and storage,
resulting in huge postharvest losses. Ethylene is the natural
plant hormone that makes fruits ripen and flowers to
senescence quickly. Therefore, genetic modification to reduce
endogenous ethylene or impair the ethylene biosynthetic pathway
might be an effective method to prolong the shelf life of crops
(Elitzur et al., 2016). Ethylene derived from methionine is
converted to S adenosylmethionine (SAM) by SAM synthase,
then to 1-aminocyclopropane-1-carboxylic acid (ACC) by ACC
synthase and finally to ethylene by ACC oxidase (ACO) (Yang
and Hoffman, 1984). Many researches have shown that ACOs are
involved in fruit ripening and flower senescence, and the
knockout of ACOs can effectively increase the shelf life of
crops (Do et al., 2005; Inaba et al., 2007; Huang et al.,2007).
Recently, Hu et al. (2021) conducted an RNA-seq analysis on
mature green bananas and identified a banana ACO gene
Ma07_t19730.1. This gene can be strongly induced by
ethephon and inhibited by 1-MCP to a greater extent in the
pulp and peel tissues. Under the natural ripening conditions, the
CRISPR/Cas9-based MaAC O 1 (Ma07_t19730.1)-disrupted
mutants exhibited reduced ethylene production and longer
shelf life than the WT. Petunias are favoured by the
floricultural industry for their different flower shapes and
colours and are used as a bedding plant. However, newly
produced individual flowers show rapid senescence in the
mother plant. Xu et al. (2020) designed two specific sgRNAs
to target PhACO1 of petunias and successfully obtained edited
lines with significantly reduced ethylene production and
enhanced flower longevity. Some transcription factors (TFs)
operating upstream of ethylene biosynthesis pathways also
play important roles in regulating the shelf life of crops. As in
other climacteric fruits, for example, tomatoes produce much
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ethylene during ripening. The use of naturally occurring ripening
mutants increases shelf life with a delay in the ripening process,
such as Nr (Never ripe), alc (alcobaca), rin (ripening inhibitor),
nor (non-ripening), and Cnr (colorless non-ripening) (Robinson
and Tomes, 1968; Tigchelaar et al., 1973; Thompson et al., 1999;
Garg et al., 2008). Ito et al. (2015) knocked out the RIN using
three sgRNAs to produce incomplete-ripening fruits in which red
colour pigmentation was significantly lower than that of the wild
type. Similarly, CRISPR-Cnr mutant lines showed delayed fruit
ripening phenotype, CRISPR-Nor mutant lines showed partially
immature fruit (Gao et al., 2019). The alc mutants were found to
have good fruit colour, flavour and resistance to bacterial diseases
(Casals et al., 2011). Using the HDR-mediated gene replacement,
Yu et al. (2017) successfully replaced 317T of the ALC gene with
317A and created a tomato line, significantly prolonged tomato
storage time and shelf life. In addition to regulating crop
endogenous ethylene content, shelf life is also related to
alterations in cuticle properties and remodelling of the fruit
cell walls (Keegstra, 2010). Pectin, which is abundant in the
primary cell wall (PCWs) and mesenchymal layer (ML) of
fruits, has long been known to undergo degradation during
ripening (Brummell, 2006). Uluisik et al. (2016) reported a
tomato pectate lyase (PL) gene, which is crucial for fruit
softening, and the silencing of this PL altered texture without
affecting other aspects of ripening. Wang D. et al. (2019) used

CRISPR/Cas9 technology to knock out this gene and obtained
similar results.

5 CHALLENGES AND PERSPECTIVES

CRISPR/Cas9 system has been rapidly developed and applied
since its birth in 2013 with the characteristics of simplicity, high
accuracy, short cycle and low cost. However, there are still some
unsolved problems in using the CRISPR/Cas9 system for genetic
improvement of crop quality. The following will be analyzed from
two aspects: the current challenges and perspectives of the
CRISPR/Cas9 system and the future development trend of
crop quality (Figure 2):

5.1 Challenges and Perspectives of
CRISPR/Cas9 System
5.1.1 Limited Editing Scope
As we all know, the targeting specificity of the CRISPR-Cas9
system is determined by two conditions: one is the specific
binding of sgRNA sequence to genomic DNA sequence;
another is that Cas9 protein specifically recognizes the
protospacer adjacent motif (PAM) on genomic DNA. The
Cas9 protein from Streptococcus Pyogenes (SpCas9) is the

FIGURE 2 | The current challenges and perspectives of the CRISPR/Cas9 system and the future development trend of crop quality improvement.
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current universal Cas9 protein and specifically recognizes the
NGG sequence on DNA as the PAM sequence, limiting the range
of DNA sites that Cas9 protein can target. To overcome this
limitation, a series of SpCas9 variants derived through protein
directed evolution method has greatly expanded the editing range
of the CRISPR/Cas system, Such as SpCas9-VQR, SpCas9-VRER,
xCas9, SpCas9-NG, and SpG, etc (Hu et al., 2016; Hu et al., 2018;
Wang J. et al., 2019; Zhong et al., 2019; Zeng et al., 2020a; Qin
et al., 2020; Ren et al., 2021). There is hardly even a restriction on
PAM sequences, such as the SpRY variant (Xu Z. et al., 2021; Ren
et al., 2021). However, all the above modifications have low
editing activity, and further optimization is needed to improve
editing efficiency at target sites.

5.1.2 Off-Target Risks
Compared with ZFNs and TALENs genome editing techniques,
CRISPR/Cas9 system based on gRNA has more advantages in
specific recognition. However, due to a large number of genome
bases of the edited objects, similar fragments are also widely
available. If these similar fragments are recognized, they will cause
an off-target effect. This kind of non-specific genome editing is
easy to cause uncertainty to the biological response of the edited
object, which affects the reliability of this technique in research
and application. With the development of high-throughput
sequencing technology, many crop genome data are readily
available. Based on sequence database, many software or
online tools have been developed to aid in designing target
sites or evaluating the outcome of genome/gene editing, such
as E-CRISP (Heigwer et al., 2014), CRISPR-P (Lei et al., 2014),
and CRISPR-GE (Xie et al., 2017), which will enable researchers
to examine the specificity of the target sequence further and thus
reduce the risk of off-target.

5.1.3 Delivery Methods
The robust delivery of CRISPR-Cas9 reagent into plant cells is the
basis for the effective application of CRISPR-Cas9 in plants. At
present, there are two main methods for plant transformation:
biological bombardment and Agrobacterium-mediated
transport, but both of them have certain limitations.
Agrobacterium-mediated delivery system is the most
commonly used tool for plant genetic transformation, but it
can only be applied to a small range of plant species or tissues
due to the limitations of host genotypes; Biological bombardment
can deliver biomolecules to a wide range of plant species or tissue
cells, but it is inefficient and risks genome sequence destruction
and tissue damage. It should be noted that these traditional
methods cannot avoid the lengthy tissue culture process, and
the foreign DNA fragments are needed to be integrated into the
host genome, thus producing transgenic plants. Therefore, novel
delivery strategies are urgently needed. The Cas9 protein-gRNA
ribonucleoproteins (RNPs) is one of the most important genome-
editing techniques without foreign DNA integration into plant
cells. The purified Cas protein and gRNA are preassembled into a
CRISPR/Cas RNP complex with complete activity in vitro, which
is then directly introduced into plant cells through physical or
chemical methods (Woo et al., 2015). This delivery method could
avoid transgene integration and off-target mutations. Plant virus

systems have also been modified to introduce CRISPR/Cas
reagents into plant cell, which are especially helpful for
homologous directed recombination mediated gene targeting
(Ali et al., 2015; Gil-Humanes et al., 2017; Ellison et al., 2020).
In addition, there are studies showed that nano-materials, such as
Mesoporous Silica nanoparticles (MSNs), Carbon nanotubes
(CNTs), layered double hydroxide (LDH) clay nanosheets,
DNA nanostructures, and magnetic nanoparticles, are
potential vectors for delivering various forms of CRISPR/Cas
reagents (Wang P. et al., 2019; Demirer et al., 2019; Kwak et al.,
2019; Zhang et al., 2019). Nano-materials can be diffused through
plant cell walls without mechanical assistance and without
causing tissue damage. These new genetic transformation
technologies are expected to become the most important
transformation methods in the future.

5.1.4 GMO Regulation
At present, the safety of gene editing products is still
controversial. The European Union has approved about 118
genetically modified organisms, but most of them are fed to
animals, only a handful of is for human consumption directly.
There is almost no genetically modified (GM) food market in
Europe; gene-edited crops are considered GM products and
regulated (Bruetschy, 2019). While some countries, like the
United States, Canada, Australia, Japan, Argentina, and Brazil,
have treated gene-edited crops (without foreign genes) as non-
GMOs, which are already on the market. For example, browning
resistant mushrooms created by gene editing at the University of
Pennsylvania in 2016 are not regulated in the United States
(Waltz, 2016). Therefore, the commercial application of gene-
edited crops still needs the support and improvement of relevant
regulations, policies and public opinion environment.

5.2 Developing Trends for Crop Quality
Improvement
5.2.1 Systematic Understanding Formation
Mechanism of Crop Quality
Crop quality is a comprehensive and complex character
manifested in the interaction with environmental factors,
quality, and yield characters. Therefore, many characters often
restrict each other during crop quality improvement. For
example, nitrogen fertilizer as an environmental factor can
promote the increase of rice yield and grain protein content.
Although the yield and nutritional quality of rice were improved,
the increase of grain protein content significantly decreased the
rice eating and cooking quality (Yang et al., 2015; Yang et al.,
2020). In the breeding process, rice yield and grain quality are
often difficult to balance. In the future studies, besides focusing on
a certain quality trait, attentions should also be paid to studying
the synergistic relationship within different quality or yield
characters and their interactions with environment. The
genetic basis, molecular network and metabolic regulation
mechanism of quality traits should be studied from multiple
dimensions such as transcriptome, proteome and metabolome. It
is worth mentioning that the envGWAS, which uses
environmental or non-genetic variables as traits in GWAS to
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map loci associated with those variables, is an effective and
popular way in such studies. This approach has been used to
analysis impact of many environmental factors on crop traits,
such as geographical location, climate, soil, even age and so on (Li
J. et al., 2019; Millet et al., 2019; Sharma et al., 2020).

5.2.2 Multi-Strategy Mining of Genes Related to
Quality Traits
With the development of functional genomics and molecular
biology, many genes controlling important quality traits have
been successfully cloned, such as Wx, BADH2, FAD2, etc.
However, compared with yield traits, the study of crop
quality traits started late and was even blank in some crops
with complex genetic backgrounds. Therefore, further
exploration of key genes controlling quality is the precursor
and basis of quality genetic improvement. We can conduct gene
mining through the following strategies: 1) Crop germplasm
resources are a treasure-house of abundant genetic variation. By
extensively collecting crop germplasm resources, systematically
evaluating quality traits and screening excellent germplasm
resources, it can provide a guarantee for digging quality
genes and identifying excellent alleles; 2) Using chemical,
radial mutagenesis or gene-editing techniques to create crop
mutant libraries to screen the mutants with changed quality
traits and clone related genes; 3) Using the multi-omics method
to explore quality-related genes, especially to identify key genes
that respond to environmental variation, which is helpful to
reveal the interaction between genetic variation and
environmental variation.

5.2.3 Creation of Functional and Special Quality New
Varieties
At present, people are faced with the dual challenges of
nutritional deficiency and overnutrition. Taking in too much

sugar or lipid due to unreasonable diet structure leads to
overnutrition and induces obesity, cardiovascular disease,
diabetes, and kidney disease. In addition, due to unbalanced
regional economic development and natural conditions, the “lack
of nutrition” and “hidden hunger” problems are also more
prominent, such as nutritional anaemia and vitamin A
deficiency. Chronic diseases related to diet and nutrition are
increasingly threatening people’s health. Based on this, the
concepts of “nutrition-oriented agriculture” and “functional
agriculture” have attracted more attention, and people are
gradually accepting the preventive and therapeutic effects of
nutrition-healthy food and functional food. At present,
biofortification crops with the significant increase of one or
more nutrients can be obtained by molecular design breeding
or gene-editing methods, such as high resistant starch rice, giant
embryo rice, golden rice, etc., but the progress is still slow. In the
future, we need to further search for functional germplasm
resources, analyze the synthesis and metabolic pathways of
relevant bioactive compounds and their regulatory
mechanisms, and create more new crop germplasm with high
nutrition or special functions.
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